Research progress on the stability and efficiency of the two-dimensional halide perovskite solar cells
-
摘要: 为了实现绿色可持续发展,降低CO2的排放量,大力发展和利用光伏等清洁能源技术已成为未来能源发展的新趋势。最近,以有机-无机卤化物钙钛矿太阳能电池为代表的新一代光伏电池具有成本低、轻薄、制造简单等特点,符合未来发展的需求而备受关注。有机-无机卤化物钙钛矿材料是带隙可调的直接带隙半导体,具有较低的激子结合能、较长的载流子寿命和扩散长度以及较高的缺陷容忍度等优点,目前该类电池器件最高效率已经超过25%。但材料自身的不稳定性以及对水、热、氧、紫外光等环境因素的敏感已经成为限制其进一步发展的首要问题。而二维卤化物钙钛矿以其超高的湿度稳定性引起了各国研究者的注意,然而二维卤化物钙矿电池的效率与传统三维卤化物钙钛矿电池相比,还存在较大的差距。因此,在保持其良好稳定性的前提下提升电池的效率,是二维钙钛矿电池研究面临的关键问题。本文主要围绕二维钙钛矿的结构和制备方法讨论,针对稳定性和效率问题展开了讨论,致力于为发展制备出高效、稳定的二维卤化物钙钛矿太阳能电池提供指导。
-
关键词:
- 二维钙钛矿太阳能电池 /
- 结构 /
- 稳定性 /
- 效率 /
- 研究进展
Abstract: To achieve green and sustainable development, reducing CO2 emissions, it is deemed necessary to continue to promote and develop clean energy technologies, such as photovoltaics solar cell technology. Among of photovoltaic technologies, the organic-inorganic hybrid perovskite solar cells have the characteristics of low-cost, light weight, and simple manufacturing, which are more suitable for the requirements of future development. Perovskite materials are direct bandgap semiconductors with adjustable bandgap, which have lower exciton binding energy, longer carrier lifetime and diffusion length, and higher defect tolerance. The current maximum efficiency has exceeded 25%. However, the inherent instability of the material and sensitivity to environmental factors, such as water, heat, oxygen, and ultraviolet light, have become the primary problems limiting its further development. Recently, two-dimensional (2D) halide perovskite has attracted the attention of researchers around the world due to its ultra-high humidity stability. However, the efficiency of two-dimensional halide perovskite cells is still far behind that of traditional three-dimensional halide perovskite cells. Therefore, improving the efficiency of solar cells while maintaining excellent stability is a key problem in the research of 2D perovskite solar cells. In this paper, we mainly focus on the 2D halide perovskite film preparation and device structure, as well as efficiency and stability, and other issues to provide guidance for the development of efficient and stable 2D halide perovskite solar cells.-
Key words:
- two-dimensional halide perovskite solar cell /
- structure /
- stability /
- efficiency /
- research progress
1) 段家顺和彭丽萍为共同第一作者,对本文具有同等贡献。 -
图 2 n=1, 2, 3的2D钙钛矿结构示意图:((a), (e), (i)) R-P相的 (PEA)2(MA)2Pb3I10;((b), (f), (j)) D-J相的(BA)2(MA)2Pb3I10;((d), (h), (l)) ACI相的 (GA)2(MA)3Pb3I10[57]
Figure 2. Schematic diagram of n=1, 2, 3 perovskite structure: ((a), (e), (i)) (BA)2(MA)2Pb3I10 is the R-P phases; ((b), (f), (j)) (AMP)2MA2Pb3I8 is the D-J phase; ((d), (h), (l)) (GA)2(MA)3Pb3I10 is the ACI phase[57]
R-P—Ruddlesden-Popper; D-J—Dion-Jacobson; ACI—Alternating cation in the interlayer space
图 3 (a) 2D钙钛矿中的量子阱;(b) 2D钙钛矿不同位置的介电常数[66]
Figure 3. (a) Quantum well in 2D perovskite; (b) Dielectric constant of 2D perovskite at different positions[66]
VB, CB—Valence and conduction bands; L, m, ε, V —Thickness, effective mass, dielectric constant, and confinement potential; Subscripts and superscripts b, w, e, h—Barrier, well, electron, hole; Real composite material W/B is decomposed into two parts: the perovskite well section W, and organic barrier section B; ε(z)—Dielectric constant
图 4 (a)分子式为(RNH3)2An-1MnX3n+1的(100)取向卤化物钙钛矿系列;单层(C4H9NH3)2PbBr4的结构示意图(b)、AFM图像(c) 和TEM图像(d);(e)不同卤化物2 D钙钛矿的光致发光结果图: (C4H9NH3)2PbCl4 (i)、(C4H9NH3)2PbBr4 (ii)、(C4H9NH3)2PbI4 (iii)、(C4H9NH3)2PbCl2Br2 (iv)、(C4H9NH3)2PbBr2I2 (v)和(C4H9NH3)2(MA)Pb2Br7 (vi);图形化描述的伪色彩PL强度谱线(f)和CsPbBr3 纳米片随时间衰变的PL图谱(g)[83]
Figure 4. (a) (100)-oriented halide perovskite series with the general formula of (RNH3)2An-1MnX3n+1, Structural illustration (b), AFM (c), and TEM images (d) of single-layer (C4H9NH3)2PbBr4; (e) Photoluminescence of different 2D halide perovskites: (C4H9NH3)2PbCl4 (i), (C4H9NH3)2PbBr4 (ii), (C4H9NH3)2PbI4 (iii), (C4H9NH3)2PbCl2Br2 (iv), (C4H9NH3)2PbBr2I2 (v) and (C4H9NH3)2(MA)Pb2Br7 (vi); Graphical depiction of the pseudo-colored PL intensity (f) and Time-resolved PL decay of CsPbBr3 nanoplatelets (g)[83]
图 6 (a)气体输送系统示意图;(b)转化为CH3NH3PbI3前后的PbI2纳米片的厚度(数据线以上的图像)[86];(c)二维PbI2纳米片合成示意图[87];((d)~(g)) 不同厚度的二维MAPbI3纳米片的AFM形貌图;(h)二维钙钛矿纳米片的归一化PL谱;(i)钙钛矿单个电池的PL峰和能隙图[83]
Figure 6. (a) Schematic of vapor-transport system; (b) Thickness of PbI2 platelets before (images above data line) and after converted to CH3NH3PbI3 (images below data line)[86]; (c) Schematic for the synthesis of 2D PbI2 nanosheets[87]; ((d)-(g)) AFM topography images of 2D MAPbI3 nanosheets with different thicknesses; (h) Normalized PL spectra of 2D perovskite nanosheets; (i) Plots of PL peak and energy gap as a function of the number of unit cells in perovskites [83]
表 1 基于不同有机空位间隔阳离子(OSC)的R-P相结构的2D卤化物钙钛矿太阳能电池器件的性能
Table 1. Summary of device performance of RP-2D-PSCs by different organic spacer cations (OSC)
A’ site Structure Device configuration PCE/% Ref. 5-Aminovaleric acid
(AVA)PEA2SnI4/FASnI3 (AVA)2PbI4/MAPbI3 FTO/c-TiO2/m-TiO2/PVK/Spiro-OMeTAD/Au 14.6 [77] Phenylethylamine
(PEA)(PEA)2(MA)2Pb3I10 FTO/c-TiO2/PVK/Spiro-OMeTAD/Au 4.73 [90] (PEA)2(FA)8Sn9I28 ITO/NiOx/PVK/PCBM/Ag 5.94 [96] Butylamine
(BA)(BA)2(MA)3Pb4I13 ITO/PEDOT:PSS/PVK/PCBM/Al 12.51 [60] (BA)2(MA)2Pb3I10 FTO/c-TiO2/m-TiO2/PVK/Spiro-OMeTAD/Au 4.02 [109] (BA)2(MA)Pb2I7 FTO/c-TiO2/PVK/Spiro-OMeTAD/Au 0.39 [109] (BA)2PbI4 FTO/c-TiO2/PVK/Spiro-OMeTAD/Au 0.01 [109] (BA)2[Cs0.05(MA)0.95]3Pb4I13 FTO/c-TiO2/PVK/Spiro-OMeTAD/Au 13.68 [110] (BA)2CsPb2I7 FTO/c-TiO2/PVK/Spiro-OMeTAD/Au 4.84 [111] (BA)2(MA0.8FA0.2)3Pb4I13 ITO/PEDOT:PSS/PVK/PCBM/BCP/Ag 12.81 [112] Butylamine
(BA*)(BA*)2PbI4/Cs0.15FA0.85Pb(I0.73Br0.27)3 FTO/c-TiO2/PVK/Spiro-OMeTAD/Au 18.13 [112] Branched butylamine
(Iso-BA)(iso-BA)2(MA)3Pb4I13 (RT) ITO/C60/PVK/Spiro-OMeTAD/Au 8.82 [120] (iso-BA)2MA3Pb4I13 (n =4) FTO/C60/2D PER/Spiro-OMeTAD/Au 10.6 [122] Amylamine
(AA)AA2MA3Pb4I13 (n =4) ITO/PTAA/2D PER/C60/BCP/Ag 18.4 [126] 4-(Aminoethyl) pyridine
(4AEP)(4AEP)2MA4Pb5I16 (n =5) FTO/C60/2D PER/Spiro-OMeTAD/Au 11.6 [121] 2-Thiophenemethylamine
(THMA)THMA2MA2Pb3I10 (n =3) ITO/PEDOT:PSS/2D PER/PCBM/BCP/Ag 15.4 [123] (THMA)2PbI4 ITO/SnO2/PVK/Spiro-OMeTAD/MoO3/Ag 21.49 [125] 4-Fluorophenethylamine
(F-PEA)(F-PEA)2MA4Pb5I16 (n =5) FTO/c-TiO2/2D PER/Spiro-OMeTAD/Au 13.6 [125] 2-(Methylthio) ethylamine
(MTEA)(MTEA)2MA3Pb5I16 (n=5) ITO/PEDOT:PSS/2D PER/PCBM/BCP/Ag 18.0 [127] Notes: ITO—Indium tin oxides; FTO—Fluorine doped tin oxides; PVK—Perovskite; 2D PER—2 Dimensional perovskite; PCBM—6,6-Phenyl C61 butyric acid methyl ester; Spiro-OMeTAD—2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene; PEDOT:PSS—Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate); PTAA—Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]. 表 2 基于不同OSC的D-J相结构的2D 卤化物钙钛矿太阳能电池器件的性能
Table 2. Summary of device performance of DJ- 2D-PSCs by different OSC
A’ site Structure Device configuration PCE/% Ref. 1,3-Propanediamine
(PDA)(PDA)MA4Pb5I16 (n =5) ITO/PEDOT:PSS/2D PER/PC60BM/Al 14.1 [128] 1,4-Butanediamine
(BDA)(BDA)MA4Pb5I16 (n =5) ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al 16.3 [128] BDA/PEA ITO/PEDOT:PSS/2D PER /PC60BM/BCP/Ag 17.21 [129] (BDA)MA4Pb5I16 ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al 17.9 [130] 1,5-Pentamethylenediamine
(PEDA)(PEDA)MA4Pb5I16 (n =5) ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al 12.9 [128] 1,6-Hexamethylenediamine
(HDA)(HDA)MA4Pb5I16 (n =5) ITO/PEDOT:PSS/2D PER/PC60BM/LiF/Al 10.5 [128] 3-(Aminomethyl) piperidinium
(3AMP)(3AMP)MA3Pb4I13 FTO/PEDOT:PSS/2D PER/BCP/Ag 7.32 [131] 4-(Aminomethyl) piperidinium
(4AMP)(4AMP)MA3Pb4I13 FTO/PEDOT:PSS/2D PER/BCP/Ag 4.24 [131] 3-(Aminomethyl) piperidinium
(3AMPY)(3AMP)MA3Pb4I13 FTO/PEDOT:PSS/2D PER/BCP/Ag 9.20 [133] 4-(Aminomethyl) piperidinium
(4AMPY)(4AMP)2MA3Pb4I13 FTO/PEDOT:PSS/2D PER/BCP/Ag 5.69 [133] 1,4-Benzenedimethanamonium
(PDMA)(PDMA)A9Pb10(I0.93Br0.07)31 FTO/c-TiO2/mp-TiO2/2D PER/
Spiro-MeOTAD/Au15.6 [136] Meta-(aminomethyl) piperidinium
(MAMP)(MAMP)MA3Pb4I13 FTO/TiO2 /2D PER/Spiro-MeOTAD/Au 16.5 [134] -
[1] 中国国家统计局. 中国统计年鉴-2020. (2021-01-01)[2021-04-01].https://data.stats.gov.cn/easyquery.htm?cn=C01.National Bureau of Statistics of China. China statistical yearbook-2020. (2021-01-01)[2021-04-01]. https://data.stats.gov.cn/easyquery.htm?cn=C01(in Chinese). [2] 中华人民共和国中央人民政府. 政府工作报告. (2021-03-05)[2021-04-01]. http://www.gov.cn/zhuanti/2021qglh/2021zfgzbgdzs/2021zfgzbgdzs.htmlCentral People's Government of the People's Republic of China. Report on the work of the Government. (2021-03-05)[2021-04-01]. http://www.gov.cn/zhuanti/2021qglh/ 2021zfgzbgdzs/2021zfgzbgdzs.html(in Chinese). [3] BABAR F, MEHMOOD U, ASGHAR H, et al. Nanostructured photoanode materials and their deposition me-thods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review[J]. Renewable and Sustainable Energy Reviews,2020,129(10):1-22. [4] FUKUDA K, YU K, SOMEYA T, et al. The future of flexible organic solar cells[J]. Advanced Energy Materials,2020,10(25):1-10. [5] RONG Y, HU Y, MEI A, et al. Challenges for commerciali-zing perovskite solar cells[J]. Science,2018,361(6408):1-7. [6] SELOPAL G S, ZHAO H, WANG Z M, et al. Core/shell quantum dots solar cells[J]. Advanced Functional Materials,2020,30(13):1-21. [7] KOJIMA A, TESHIMA K, SHIRIAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009,131(17):6050-6051. doi: 10.1021/ja809598r [8] CHUNG I, LEE B, HE J, et al. All solid-state dye-sensitized solar cells with high efficiency[J]. Nature,2012,485:486. doi: 10.1038/nature11067 [9] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science,2012,338:643-647. doi: 10.1126/science.1228604 [10] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports,2012,2:591. [11] KOVALENKO M V, PROTESESCY L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science,2017,358:745-750. doi: 10.1126/science.aam7093 [12] GARÍA DE ARQUER F P, ARMIN A, MEREDITH P, et al. Solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials,2017,2:16100. doi: 10.1038/natrevmats.2016.100 [13] SUTHERLAND B R, SARGENT E H. Perovskite photonic sources[J]. Nature Photonics,2016,10:295. doi: 10.1038/nphoton.2016.62 [14] KAGAN C R, MITZI D B, DIMITRAKOPOULOS C D. Orga-nic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors[J]. Science,1999,286:945-947. doi: 10.1126/science.286.5441.945 [15] CHOI J, HAN J S, HONG K, et al. Organic-inorganic hybrid halide perovskites for memories, transistors, and artificial synapses[J]. Advanced Materials,2018,30:1704002. doi: 10.1002/adma.201704002 [16] JIA Y, KERNER R A, GREDE A J, et al. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor[J]. Nature Photonics,2017,11:784-788. doi: 10.1038/s41566-017-0047-6 [17] EATON S W, LAI M, GIBSON N A, et al. Lasing in robust cesium lead halide perovskite nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113:1993. doi: 10.1073/pnas.1600789113 [18] ZHU H, FU Y, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high qua-lity factors[J]. Nature Materials,2015,14:636. doi: 10.1038/nmat4271 [19] KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature,2017,550:87. doi: 10.1038/nature24032 [20] HE Y, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications,2018,9:1609. doi: 10.1038/s41467-018-04073-3 [21] YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics,2015,9:444. doi: 10.1038/nphoton.2015.82 [22] WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics,2017,11:315. doi: 10.1038/nphoton.2017.43 [23] CONTRIBUTORS W. Perovskite[EB/OL]. (2021-01-24) [2021-04-02].https://en.wikipedia.org/w/index.php? title=Perovskite&oldid=1002428225. [24] WELLS H L. Über die cäsi-umund kalium-bleihalogenide[J]. Zeitschrift Fur Anorganische Chemie, 1893, 3(1): 195-210 [25] GRATZEL M. The rise of highly efficient and stable perovskite solar cells[J]. Accounts of Chemical Research,2017,50(3):487-491. doi: 10.1021/acs.accounts.6b00492 [26] LI C, LU X, DING W, et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites[J]. Acta Crystallographica Section B: Structural Science,2008,64(6):702-707. doi: 10.1107/S0108768108032734 [27] CHEN Q, DE MARCO N, YANG Y, et al. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications[J]. Nano Today,2015,10(3):355-396. doi: 10.1016/j.nantod.2015.04.009 [28] QIU Z W, LI N X, HUANG Z J, et al. Recent advances in improving phase stability of perovskite solar cells[J]. Small Methods,2020,4(5):1-31. [29] LI Z, YANG M, PARK J S, et al. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials,2016,28(1):284-292. doi: 10.1021/acs.chemmater.5b04107 [30] MASI S, GUALDRÓN-REYES A F, MORA-SERÓ I. Stabilization of black perovskite phase in FAPbI3 and CsPbI3[J]. ACS Energy Letters,2020,5(6):1974-1985. doi: 10.1021/acsenergylett.0c00801 [31] PARK N G, MIYASAKA T, GRÄTZEL M. Organic-inorganic halide perovskite photovoltaics. 1 ed [M]. Switzerland: Springer, 2016. [32] HAO F, STOUMPOS C C, CHANG R P H, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. Journal of the American Chemical Society,2014,136(22):8094-8099. doi: 10.1021/ja5033259 [33] FILIP M R, EPERON G E, SNAITH H J, et al. Steric engi-neering of metal-halide perovskites with tunable optical band gaps[J]. Nature Communications,2014,5(1):5757. doi: 10.1038/ncomms6757 [34] LI C, WEI J, SATO M, et al. Halide-substituted electronic properties of organometal halide perovskite films: Direct and inverse photoemission studies[J]. ACS Applied Materials & Interfaces,2016,8(18):11526-11531. [35] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state den-sity and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science,2015,347(6221):519-523. doi: 10.1126/science.aaa2725 [36] MACULAN G, SHEIKH A D, ABDELHADY A L, et al. CH3NH3PbCl3 single crystals: Inverse temperature crystallization and visible blind UV-photodetector[J]. Journal of Physical Chemistry Letters,2015,6(19):3781-3786. doi: 10.1021/acs.jpclett.5b01666 [37] ZHUMEKENOV A A, SAIDAMINOV M I, HAQUE M A, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length[J]. ACS Energy Letters,2016,1(1):32-37. doi: 10.1021/acsenergylett.6b00002 [38] STRAUS D B, GUO S, CAVA R J. Kinetically stable single crystals of perovskite-phase CsPbI3[J]. Journal of the American Chemical Society,2019,141(29):11435-11439. doi: 10.1021/jacs.9b06055 [39] DANG Y, ZHOU Y, LIU X, et al. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth[J]. Angewandte Chemie-International Edition,2016,55(10):3447-3450. doi: 10.1002/anie.201511792 [40] GALKOWSKI K, MITIOGLU A, MIYATA A, et al. Determi-nation of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-ha-lide perovskite semiconductors[J]. Energy & Environmental Science,2016,9(3):962-970. [41] MIYATA A, MITIOGLU A, PLOCHOCKA P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites[J]. Nature Physics,2015,11(7):582-587. doi: 10.1038/nphys3357 [42] DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science,2015,347(6225):967-970. doi: 10.1126/science.aaa5760 [43] STEIRER K X, SCHULZ P, TEETER G, et al. Defect tole-rance in methylammonium lead triiodide perovskite[J]. ACS Energy Letters,2016,1(2):360-366. doi: 10.1021/acsenergylett.6b00196 [44] CHU W, ZHENG Q, PREZHDO O V, et al. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination[J]. Science Advances,2020,6(7):1-8. [45] SALIBA M, CORREA-BAENA J P, WOLFF C M, et al. How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures[J]. Che-mistry of Materials,2018,30(13):4193-4201. doi: 10.1021/acs.chemmater.8b00136 [46] LI J, HAN Z, GU Y, et al. Perovskite single crystals: Synthe-sis, optoelectronic properties, and application[J]. Advanced Functional Materials,2021,31(11):1-35. [47] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics,2014,8(7):506-514. doi: 10.1038/nphoton.2014.134 [48] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science,2015,348(6240):1234-1237. doi: 10.1126/science.aaa9272 [49] JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photo-nics,2019,13(7):460-466. doi: 10.1038/s41566-019-0398-2 [50] NIE W, TSAI H, ASADPOUR R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science,2015,347(6221):522-525. doi: 10.1126/science.aaa0472 [51] XIAO J, SHI J, LIU H, et al. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material[J]. Advanced Energy Materials,2015,5(8):1-7. [52] LENG M , YANG Y , ZENG K , et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability[J]. Advanced Functional Materials,2018,28(1):1704446. [53] XING G, MATHEWS N, SUN S, et al. Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science,2013,342(6156):344-347. doi: 10.1126/science.1243167 [54] WANG W B, ZHAO D W, ZHANG F J, et al. Highly sensi-tive low-bandgap perovskite photodetectors with response from ultraviolet to the near infrared region[J]. Advanced Functional Materials,2017,27(42):1-7. [55] WANG K, WU C, YANG D, et al. Quasi-two-dimensional halide perovskite single crystal photodetector[J]. ACS Nano,2018,12(5):4919-4929. doi: 10.1021/acsnano.8b01999 [56] SHEN Y, LIU Y, YE H, et al. Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection[J]. Angewandte Chemie-International Edition,2020,132(35):15006-15012. [57] SAPAROV B, MITZI D B. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chemical Reviews,2016,116(7):4558-4596. doi: 10.1021/acs.chemrev.5b00715 [58] MAO L, STOUMPOS C C, KANATZIDIS M G. Two-dimensional hybrid halide perovskites: Principles and promises[J]. Journal of the American Chemical Society, 2019, 141(3): 1171-1190. [59] ZHANG J, QIN J, WANG M, et al. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells[J]. Joule,2019,3(12):3061-3071. doi: 10.1016/j.joule.2019.09.020 [60] TSAI H, NIE W, BLANCON J C, et al. High efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature,2016,536(7616):312-316. doi: 10.1038/nature18306 [61] KRISHNA A, GOTTIS S, NAZEERUDDIN M K, et al. Mixed dimensional 2D/3D hybrid perovskite absorbers: The future of perovskite solar cells?[J]. Advanced Functional Materials,2019,29(8):1806482. [62] JIANG X Q, ZHANG J F, AHMAD S, et al. Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability[J]. Nano Energy,2020,75:104892. [63] VASILEIADOU E S, WANG B, SPANOPOULOS I, et al. Insight on the stability of thick layers in 2D Ruddlesden-Popper and Dion-Jacobson lead iodide perovskites[J]. Journal of the American Chemical Society,2021,143(6):2523-2536. doi: 10.1021/jacs.0c11328 [64] STOUMPOS C C, SOE C M M, TSAI H H, et al. High members of the 2D Ruddlesden-Popper halide perovskites: Synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16[J]. Chem,2017,2(3):427-440. [65] YANG R, LI R, CAO Y, et al. Oriented quasi-2D perovskites for high performance optoelectronic devices[J]. Advanced Materials,2018,30(51):1-8. [66] TRAORE B, PEDESSEAU L, ASSAM L, et al. Composite nature of layered hybrid perovskites: Assessment on quantum and dielectric confinements and band alignment[J]. ACS Nano,2018,12(4):3321-3332. doi: 10.1021/acsnano.7b08202 [67] MITZI D B, CHONDROUDIS K, KAGAN C R. Organic-inorganic electronics[J]. IBM Journal of Research and Deve-lopment,2001,45(1):29-45. doi: 10.1147/rd.451.0029 [68] PENG W, YIN J, HO K T, et al. Ultralow self doping in two-dimensional hybrid perovskite single crystals[J]. Nano Letters,2017,17(8):4759-4767. doi: 10.1021/acs.nanolett.7b01475 [69] BLANCON J C, STIER A V, TSAI H, et al. Scaling law for excitons in 2D perovskite quantum wells[J]. Nature Communications,2018,9:2254. doi: 10.1038/s41467-017-02088-w [70] MIAO R, SHENG C, ZHAO J L, et al. Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes[J]. Nano-Micro Letters,2021,13:163-199. [71] LIN Y, FANG Y, ZHAO J, et al. Unveiling the operation mechanism of layered perovskite solar cells[J]. Nature Communications,2019,10(1):1-11. doi: 10.1038/s41467-018-07882-8 [72] QUAN L N, YUAN M, COMIN R, et al. Ligand stabilized reduced-dimensionality perovskites[J]. Journal of the American Chemical Society,2016,138(8):2649-2655. doi: 10.1021/jacs.5b11740 [73] LIU P Y, HAN N, WANG W, et al. High-quality Ruddlesden-Popper perovskite film formation for high-performance perovskite solar cells[J]. Advanced Materials,2021,33(10):1-40. [74] WU M, SHI J J, ZHANG M, et al. Promising photovoltaic and solid-state-lighting materials: Two-dimensional Ruddlesden-Popper type lead free halide double perovskites Csn+1Inn/2Sbn/2I3n+1 (n=3) and Csn+1Inn/2Sbn/2Cl3n+1/Csm+1Cum/2Bim/2Cl3m+1 (n=3, m=1) [J]. Journal of Materials Chemistry C, 2018, 6: 11575-11586. [75] GE C, ZHAI W, TIAN C, et al. Centimeter-scale 2D perovskite (PEA)2PbBr4 single crystal plates grown by a seeded solution method for photodetectors[J]. RSC Advances,2019,9:16779-16783. doi: 10.1039/C9RA01415B [76] ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and sto-rage devices[J]. Nature Materials,2005,4:366-377. doi: 10.1038/nmat1368 [77] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics,2016,10:216-226. doi: 10.1038/nphoton.2015.282 [78] LIN Z, LIU Y, HALIM U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics[J]. Nature,2018,562:254-258. doi: 10.1038/s41586-018-0574-4 [79] CHEN S, SHI G. Two-dimensional materials for halide perovskite-based optoelectronic devices[J]. Advanced Materials,2017,29:1605448. doi: 10.1002/adma.201605448 [80] CHEN S S, LIU Y, XIAO X, et al. Identifying the soft nature of defective perovskite surface layer and its removal using a facile mechanical approach[J]. Joule,2020,4:2661-2674. doi: 10.1016/j.joule.2020.10.014 [81] CAI X, LUO Y, LIU B, et al. Preparation of 2D material dispersions and their applications[J]. Chemical Society Reviews,2018,47:6224-6266. doi: 10.1039/C8CS00254A [82] STOUMPOS C C, CAO D H, CLARK D J, et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors[J]. Chemistry of Materials,2016,28:2852-2867. doi: 10.1021/acs.chemmater.6b00847 [83] HONG K, LE Q V, KIM S Y, et al. Low-dimensional halide perovskites: Review and issues[J]. Journal of Materials Chemistry C,2018,6:2189-2209. doi: 10.1039/C7TC05658C [84] CHEN J, GAN L, ZHUGE F, et al. A ternary solvent method for large-sized two-dimensional perovskites[J]. Angew-andte Chemie-International Edition,2017,56:2390-2394. doi: 10.1002/anie.201611794 [85] HA S T, SU R, XING J, et al. Metal halide perovskite nanomaterials: Synthesis and applications[J]. Chemical Science,2017,8:2522-2536. doi: 10.1039/C6SC04474C [86] SMITH I C, HOKE E T, IBARRA S D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie-International Edition,2014,53:11232-11235. doi: 10.1002/anie.201406466 [87] YAN J, QIU W, WU G, et al. Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells[J]. Journal of Materials Chemistry,2018,6:11063-11077. doi: 10.1039/C8TA02288G [88] MULJAROV E A, TIKHODEEV S G, GIPPIUS N A, et al. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds[J]. Physical Review B,1995,51(20):14370-14378. doi: 10.1103/PhysRevB.51.14370 [89] KATAOKA T, KONDO T, ITO R, et al. Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4[J]. Physi-cal Review B,1993,47(4):2010-2018. doi: 10.1103/PhysRevB.47.2010 [90] SMITH I C, HOKE E T, SOLIS-IBARRA D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie-International Edition,2014,53(42):1-5. [91] ZHENG K, PULLERITS T. Two dimensions are better for perovskites[J]. Journal of Physical Chemistry Letters,2019,10(19):5881-5885. doi: 10.1021/acs.jpclett.9b01568 [92] AHMAD S, FU P, YU S, et al. Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability[J]. Joule,2019,3(3):794-806. doi: 10.1016/j.joule.2018.11.026 [93] KIM H, LEE S U, LEE D Y, et al. Optimal interfacial engi-neering with different length of alkylammonium halide for efficient and stable perovskite solar cells[J]. Advanced Energy Materials,2019,9(47):1-8. [94] WANG H, ZHU C, LIU L, et al. Interfacial residual stress relaxation in perovskite solar cells with improved stabi-lity[J]. Advanced Materials,2019,31(48):1-10. [95] LIN Y, BAI Y, FANG Y, et al. Suppressed ion migration in low dimensional perovskites[J]. ACS Energy Letters,2017,2(7):1571-1572. doi: 10.1021/acsenergylett.7b00442 [96] QIU J, XIA Y D, CHEN Y H, et al. Management of crystallization kinetics for efficient and stable low-dimensional Ruddlesden-Popper (LDRP) lead-free perovskite solar cells[J]. Advanced Science,2019,6:1800793. doi: 10.1002/advs.201800793 [97] XIAO X, DAI J, FANG Y, et al. Suppressed ion migration along the in-plane direction in layered perovskites[J]. ACS Energy Letters,2018,3(3):684-688. doi: 10.1021/acsenergylett.8b00047 [98] LUO T, ZHANG Y, XU Z, et al. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%[J]. Advanced Materials,2019,31(44):1-8. [99] DONG Y, LU D, XU Z, et al. 2-Thiopheneformamidinium-based 2D Ruddlesden-Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis[J]. Advanced Energy Materials,2020,10(28):1-9. [100] ZHU T, ZHENG D, LIU J, et al. PEAI-based interfacial layer for high Efficiency and stable solar cells based on a MACl-mediated grown FA0.94MA0.06PbI3 perovskite[J]. ACS Applied Materials & Interfaces,2020,12(33):37197-37207. [101] LEE J W, DAI Z, HAN T H, et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells[J]. Nature Communications,2018,9(1):3021-3031. doi: 10.1038/s41467-018-05454-4 [102] MATTEO D, AN Q Z, ALBALADEJO-SIGUAN M, et al. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification[J]. Science Advances,2021,7(49):7930. [103] WANG F, JIANG X, CHEN H, et al. 2D-Quasi-2D-3D hie-rarchy structure for tin perovskite solar cells with enhanced efficiency and stability[J]. Joule,2018,2(12):2732-2743. doi: 10.1016/j.joule.2018.09.012 [104] CHEN P, BAI Y, WANG S, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells[J]. Advanced Functional Materials,2018,28(17):1-10. [105] CHEN Y, YU S, SUN Y, et al. Phase engineering in quasi-2D Ruddlesden-Popper perovskites[J]. Journal of Physical Chemistry Letters,2018,9(10):2627-2631. doi: 10.1021/acs.jpclett.8b00840 [106] ZHANG Y, CHEN J, LIAN X, et al. Highly efficient guanidinium-based quasi 2D perovskite solar cells via a two-step post-treatment process[J]. Small Methods,2019,3(11):1-9. [107] ZHAO X, LIU T, KAPLAN A B, et al. Accessing highly oriented two dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells[J]. Nano Letters,2020,20(12):8880-8889. doi: 10.1021/acs.nanolett.0c03914 [108] LAI H, LU D, XU Z, et al. Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden-Popper perovskites for solar cells with efficiency over 19%[J]. Advanced Materials,2020,32(33):1-10. [109] HUANG Y, LI Y, LIM E L, et al. Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering[J]. Journal of the American Chemical Society,2021,143(10):3911-3917. doi: 10.1021/jacs.0c13087 [110] LIU Y, HONG Z, CHEN Q, et al. Integrated perovskite/bulk-heterojunction toward efficient solar cells[J]. Nano Letters,2015,1:662-668. [111] LIAO J F, RAO H S, CHEN B X, et al. Dimension engi-neering on cesium lead iodide for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A,2017,5:2066-2072. doi: 10.1039/C6TA09582H [112] KOH T M, SHANMUGAM V, GUO X, et al. Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics[J]. Journal of Materials Chemistry A,2018,6:2122-2128. doi: 10.1039/C7TA09657G [113] CAO D H, STOUMPOS C C, FARHA O K, et al. 2D Homolo-gous perovskites as light-absorbing materials for solar cell applications[J]. Journal of the American Chemical Society,2015,137(24):7843-7850. doi: 10.1021/jacs.5b03796 [114] CHEN A Z, SHIU M, MA J H, et al. Origin of vertical orienta-tion in two-dimensional metal halide perovskites and its effect on photovoltaic performance[J]. Nature Communications,2018,9:1336. doi: 10.1038/s41467-018-03757-0 [115] WANG H, CHAN C C S, CHU M, et al. Interlayer cross linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling[J]. Solar RRL,2020,4(4):1-9. [116] ZHENG H, LIU G, ZHU L, et al. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition[J]. Advanced Energy Materials,2018,8(21):1-8. [117] MAHMUD M A, DUONG T, PENG J, et al. Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D-3D perovskite solar cells: A review[J]. Advanced Functional Materials,2021:2009164. doi: 10.1002/adfm.202009164 [118] KIM G, MIN H, LEE K S, et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells[J]. Science,2020,370(6512):108-112. doi: 10.1126/science.abc4417 [119] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engi-neering for α-FAPbI3 perovskite solar cells [J]. Nature, 2021, 592(7854): 381-385. [120] YANGI L K, LI Y W, PEI Y X, et al. A novel 2D perovskite as surface “patches” for efficient flexible perovskite solar cells[J]. Journal of Chemistry Materials A,2020,8(16):7808-7818. [121] LI Y, CHENG H, ZHAO K, et al. 4-(Aminoethyl) pyridine as a bifunctional spacer cation for efficient and stable 2D Ruddlesden-Popper perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2019, 11: 37804-37811. [122] CHEN Y, SUN Y, PENG J, et al. Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells[J]. Advanced Energy Materials,2017,7:1700162. doi: 10.1002/aenm.201700162 [123] LAI H, KAN B, LIU T, et al. Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%[J]. Journal of the American Chemical Society,2018,140:11639-11646. doi: 10.1021/jacs.8b04604 [124] ZHANG F, KIM D H, LU H, et al. Enhanced charge transport in 2D perovskites via fluorination of organic cation[J]. Journal of the American Chemical Society,2019,141:5972-5979. doi: 10.1021/jacs.9b00972 [125] ZHOU T, LAI H, LIU T, et al. Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite[J]. Advanced Materials,2019,31:1901242-1901251. [126] WU G, YANG T, LI X, et al. Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%[J]. Matter,2020,4:582-599. [127] REN H, YU S, CHAO L, et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction[J]. Nature Photonics,2020,14:154-163. doi: 10.1038/s41566-019-0572-6 [128] ZHENG Y T, NIU T T, QIU J, et al. Oriented and uniform distribution of Dion-Jacobson phase perovskites controlled by quantum well barrier thickness[J]. Solar RRL,2019,3:1900090. doi: 10.1002/solr.201900090 [129] YU Y Y, XIE Y L, ZHANG J, et al. Thermal and humidity stability of mixed spacer cations 2D perovskite solar cells[J]. Advanced Science,2021,8:2004510. doi: 10.1002/advs.202004510 [130] NIU T, REN H, WU B, et al. Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics[J]. Chemistry Letters,2019,10:2349-2356. [131] MAO L, KE W, PEDESSEAU L, et al. Hybrid Dion-Jacobson 2D lead iodide perovskites[J]. Journal of the Ameri-can Chemical Society,2018,140:3775-3783. doi: 10.1021/jacs.8b00542 [132] KE W, MAO L, STOUMPOS C C, et al. Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability[J]. Advanced Energy Materials,2019,9:1803384. doi: 10.1002/aenm.201803384 [133] LI X T, KE W J, TRAORE B, et al. Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations[J]. Journal of the American Che-mical Society,2019,141:12880-12890. doi: 10.1021/jacs.9b06398 [134] HE T, LI S, JIANG Y, et al. Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape[J]. Nature Communications,2020,11:1672. doi: 10.1038/s41467-020-15451-1 [135] LI Y, MILIĆ J V, UMMADISINGU A, et al. Bifunctional organic spacers for formamidinium-based hybrid Dion-Jacobson two-dimensional perovskite solar cells[J]. Nano Letters,2018,19:150-157. [136] COHEN B E, LI Y M, MENG Q B, et al. Dion-Jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation[J]. Nano Letters,2019,19:2588-2597. doi: 10.1021/acs.nanolett.9b00387 [137] SOEC M M, STOUMPOS C C, KEPENEKIAN M, et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, properties, and photovoltaic performance[J]. Journal of the American Chemical Society,2017,139:16297-16309. doi: 10.1021/jacs.7b09096 [138] LUO T, ZHANG Y, XU Z, et al. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%[J]. Advanced Materials,2019,31:1903848. doi: 10.1002/adma.201903848 [139] LI P, LIANG C, LIU X L, et al. Low-dimensional perovskites with diammonium and monoammonium alter-nant cations for high-performance potovoltaics[J]. Advanced Materials,2019,31:1901966. doi: 10.1002/adma.201901966