留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米纤维素基传感器的制备及其应用研究进展

张治国 杨桂花 和铭 吉兴香 陈嘉川

张治国, 杨桂花, 和铭, 等. 纳米纤维素基传感器的制备及其应用研究进展[J]. 复合材料学报, 2022, 39(3): 969-980. doi: 10.13801/j.cnki.fhclxb.20211115.003
引用本文: 张治国, 杨桂花, 和铭, 等. 纳米纤维素基传感器的制备及其应用研究进展[J]. 复合材料学报, 2022, 39(3): 969-980. doi: 10.13801/j.cnki.fhclxb.20211115.003
ZHANG Zhiguo, YANG Guihua, HE Ming, et al. Research progress in preparation and application of nanocellulose-based sensors[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 969-980. doi: 10.13801/j.cnki.fhclxb.20211115.003
Citation: ZHANG Zhiguo, YANG Guihua, HE Ming, et al. Research progress in preparation and application of nanocellulose-based sensors[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 969-980. doi: 10.13801/j.cnki.fhclxb.20211115.003

纳米纤维素基传感器的制备及其应用研究进展

doi: 10.13801/j.cnki.fhclxb.20211115.003
基金项目: 山东省重点研发计划(2019JZZY010326;2019JZZY010328);国家自然科学基金(31901267);山东省自然科学基金(ZR2019BC042)
详细信息
    通讯作者:

    杨桂花,博士,教授,博士生导师,研究方向为生物质炼制与生物基材料制备绿色化学技术 E-mail:ygh@qlu.edu.cn

    和铭,博士,副教授,硕士生导师,研究方向为纤维素功能材料制备 E-mail:heming8916@qlu.edu.cn

  • 中图分类号: TQ352.79

Research progress in preparation and application of nanocellulose-based sensors

  • 摘要: 可再生纳米纤维素近年来备受关注,纳米纤维素的优势在于来源广泛、制备方法多样、可生物降解、安全无毒、高比表面积、较高强度、较低密度和良好的热稳定性等。本论文主要针对纳米纤维素的制备方法、基于纳米纤维素制备的2D膜材料传感器与3D凝胶材料传感器的应用研究进展进行分析,重点介绍了纳米纤维素基传感器在接近传感、pH传感、电化学传感、葡萄糖传感以及离子传感检测等方面的应用。研究结果表明,纳米纤维素基传感器在灵敏度、力学性能、稳定性、特异性和环境友好性等方面优于一些传统材料制备的传感器,纳米纤维素基传感器具有广阔的潜在应用前景。

     

  • 图  1  自支撑纤维素纳米纤丝(CNF) 薄膜及显示其弯曲强度的照片(a), 侧面示意图((b), (c))和组装传感器的照片(d)[30] (经许可转载)

    Figure  1.  Pictures of a fabricated self-standing cellulose nanofibril (CNF) film and its bending strength (a), schematic side view ((b), (c)) and a picture of assembled sensor (d)[30] (Reprinted with permission)

    PET—Polyethylene terephthalate

    图  2  柔性压力传感器结构示意图[44] (经许可转载)

    Figure  2.  Structural diagram of the flexible pressure sensor[44] (Reprinted with permission)

    图  3  导电聚 3, 4-乙烯二氧噻吩/聚苯乙烯磺酸/纤维素纳米纤丝(PEDOT/PSS/CNF)气凝胶[45]:(a) PEDOT/PSS中CNF表面羧酸盐的质子化及其与PSS的氢键作用; (b)质子化、冷冻/冻干和乙二醇(EG)蒸汽退火工艺示意图;(c) CNF气凝胶和PEDOT/PSS/CNF气凝胶在加州罂粟上面的图片和不同直径的圆柱形PEDOT/PSS/CNF气凝胶的照片 (经许可转载)

    Figure  3.  Conductive poly(3, 4-ethylenedioxythiophene)/poly(styrene sulfonate)/cellulose nanofibrils (PEDOT/PSS/CNF) aerogels[45]: (a) Protonation of CNF surface carboxylates and their hydrogen bonding with PSS in PEDOT/PSS; (b) Process schematic of protonation, freezing/lyophilization, and ethylene glycol (EG) vapor annealing processes; (c) Pictures of CNF and PEDOT/PSS/CNF aerogels on top of California poppy and cylindrical PEDOT/PSS/CNF aerogels in different diameters (Reprinted with permission)

    图  4  纤维素纳米片增强的柔性多键交联聚丙烯酸水凝胶(Celn/PAA-Fem3+)的制备及其网络结构图解[53] (经许可转载)

    Figure  4.  Preparation of cellulose nanosheet enhanced flexible multibond cross-linked poly(acrylic acid) hydrogel (Celn/PAA-Fem3+) and their network structure diagram[53] (Reprinted with permission)

    AA—Acrylic acid; MBA—N, N′-Methylenebisacrylamide; CNS—Cellulose nanosheet; PAA—Poly(acrylic acid)

    图  5  纤维素纳米晶体(CNC)辅助生成银纳米粒子示意图[67] (经许可转载)

    Figure  5.  Cellulose nanocrytal (CNC)-assisted generation of AgNPs[67] (Reprinted with permission)

    图  6  在含有Cu2+的溶液中,球形纳米纤维素-二乙烯三胺-乙醇胺(SNC-DETA-EA) 表现出荧光活性的肉眼观察示意图[71] (经许可转载)

    Figure  6.  Schematic diagram of naked-eye observation of spherical nanocellulose-diethylenetriamine-ethanolamine (SNC-DETA-EA) showing fluorescence activity in a solution containing Cu2+[71](Reprinted with permission)

  • [1] BRINCHI L, COTANA F, FORTUNATI E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications[J]. Carbohydrate Polymers,2013,94(1):154-169. doi: 10.1016/j.carbpol.2013.01.033
    [2] 黄彪, 卢麒麟, 唐丽荣. 纳米纤维素的制备及应用研究进展[J]. 林业工程学报, 2016, 1(5):1-9.

    HUANG Biao, LU Qinlin, TANG Lirong. Research progress of nanocellulose manufacture and application[J]. Journal of Forestry Engineering,2016,1(5):1-9(in Chinese).
    [3] 李媛媛. 纳米纤维素及其功能材料的制备与应用[D]. 南京: 南京林业大学, 2014.

    LI Yuanyuan. Preparation and application of nanocellulose and nanocellulose based functional materials[D]. Nanjing: Nanjing Forestry University, 2014(in Chinese).
    [4] ABITBOL T, RIVKIN A, CAO Y F, et al. Nanocellulose, a tiny fiber with huge applications[J]. Current Opinion in Biotechnology,2016,39:76-88. doi: 10.1016/j.copbio.2016.01.002
    [5] KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses: A new family of nature-based materials[J]. Angewandte Chemie International Edition,2011,50(24):5438-5466. doi: 10.1002/anie.201001273
    [6] 吕少一, 傅峰, 王思群, 等. 纳米纤维素基导电复合材料研究进展[J]. 林业科学, 2015, 51(10):117-125.

    LV Shaoyi, FU Feng, WANG Siqun, et al. Advances in nanocellulose-based electroconductive composites[J]. Scientia Silvae Sinicae,2015,51(10):117-125(in Chinese).
    [7] SEGEV-BAR M, HAICK H. Flexible sensors based on nanoparticles[J]. ACS Nano,2013,7(10):8366-8378. doi: 10.1021/nn402728g
    [8] XIA K L, JIAN M Q, ZHANG Y Y, et al. Advances in wearable and flexible conductors based on nanocarbon materials[J]. Acta Physico-Chimica Sinica,2016,32(10):2427-2446. doi: 10.3866/PKU.WHXB201607261
    [9] 褚夫强, 张志广, 刘闯. 纳米纤维素在印刷电子中的应用研究进展[J]. 数字印刷, 2021,(3):66-74.

    CHU Fuqiang, ZHANG Zhiguang, LIU Chuang. Research progress on the application of nanocellulose in printed electronics[J]. Digital Printing,2021,(3):66-74(in Chinese).
    [10] 付菁菁, 何春霞, 陈永生, 等. 纳米纤维素增强SiO2气凝胶力学性能与微观结构[J]. 复合材料学报, 2018, 35(9):2593-2599.

    FU Jingjing, HE Chunxia, CHEN Yongsheng, et al. Mecha-nical properties and microstructure of SiO2 aerogels reinforced with cellulose nanofibrils[J]. Acta Materiae Compositae Sinica,2018,35(9):2593-2599(in Chinese).
    [11] GOLMOHAMMADI H, MORALES-NARVÁEZ E, NAGHDI T, et al. Nanocellulose in sensing and biosensing[J]. Chemistry of Materials,2017,29(13):5426-5446. doi: 10.1021/acs.chemmater.7b01170
    [12] 刘慰, 司传领, 杜海顺, 等. 纳米纤维素基水凝胶的制备及其在生物医学领域的应用进展[J]. 林业工程学报, 2019, 4(5):11-19.

    LIU Wei, SI Chuanling, DU Haishun, et al. Advance in preparation of nanocellulose-based hydrogels and their biomedical applications[J]. Journal of Forestry Engineering,2019,4(5):11-19(in Chinese).
    [13] SAITO T, KIMURA S, NISHIYAMA Y, et al. Cellulose nano-fibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8(8):2485-2491. doi: 10.1021/bm0703970
    [14] 黄健, 林春香, 陈瑞英, 等. 离子液体辅助纳米纤维素吸附剂的制备及其吸附性能[J]. 材料研究学报, 2020, 34(9):674-682.

    HUANG Jian, LIN Chunxiang, CHEN Ruiying, et al. Ionic liquid-assisted synthesis of nanocellulose adsorbent and its adsorption properties[J]. Chinese Journal of Materials Research,2020,34(9):674-682(in Chinese).
    [15] SIRVIÖ J A, VISANKO M, LIIMATAINEN H, et al. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose[J]. Green Chemistry,2015,17(6):3401-3406. doi: 10.1039/C5GC00398A
    [16] WANG H Q, ZUO M, DING N, et al. Preparation of nanocellulose with high-pressure homogenization from pretreated biomass with cooking with active oxygen and solid alkali[J]. ACS Sustainable Chemistry & Engineering,2019,7(10):9378-9386.
    [17] KHAWAS P, DEKA S C. Isolation and characterization of cellulose nanofibers from culinary banana peel using highintensity ultrasonication combined with chemical treatment[J]. Carbohydrate Polymers,2016,137:608-616. doi: 10.1016/j.carbpol.2015.11.020
    [18] WANG Q Q, ZHU J Y, GLEISNER R, et al. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation[J]. Cellulose,2012,19(5):1631-1643. doi: 10.1007/s10570-012-9745-x
    [19] WEN Y B, YUAN Z Y, LIU X L, et al. Preparation and characterization of lignin-containing cellulose nanofibril from poplar high-yield pulp via TEMPO-mediated oxidation and homogenization[J]. ACS Sustainable Chemistry & Engi-neering,2019,7(6):6131-6139.
    [20] 郑丁源, 李梦扬, 张显权, 等. 橡胶木纤维素纳米纤丝的制备[J]. 包装工程, 2019, 40(3):100-107.

    ZHENG Dingyuan, LI Mengyang, ZHANG Xianquan, et al. Preparation of cellulose nanofibrils from rubber wood[J]. Packaging Engineering,2019,40(3):100-107(in Chinese).
    [21] 张坤, 刘金刚, 胡云. 羧乙基化法制备纳米纤化纤维素[J]. 纸和造纸, 2015, 34(2):30-33.

    ZHANG Kun, LIU Jingang, HU Yun. Preparation of nanofibrillated cellulose by carboxyethylation[J]. Paper and Paper Making,2015,34(2):30-33(in Chinese).
    [22] 马光瑞, 和铭, 杨桂花, 等. 低共熔溶剂体系预处理制备纤维素纳米纤丝及其性能研究[J]. 林产化学与工业, 2021, 41(4):69-76. doi: 10.3969/j.issn.0253-2417.2021.04.010

    MA Guangrui, HE Ming, YANG Guihua, et al. Preparation of cellulose nanofibril by the pretreatment with deep eutectic solvent system[J]. Chemistry and Industry of Forest Products,2021,41(4):69-76(in Chinese). doi: 10.3969/j.issn.0253-2417.2021.04.010
    [23] LI B, XU W Y, KRONLUND D, et a1. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation[J]. Carbohydrate Polymers,2015,133:605-612. doi: 10.1016/j.carbpol.2015.07.033
    [24] 张会, 邵秋娟, 何建新, 等. 竹纤维素纳米晶须的结构与性质[J]. 纤维素科学与技术, 2012, 20(3):27-33. doi: 10.3969/j.issn.1004-8405.2012.03.005

    ZHANG Hui, SHAO Qiujuan, HE Jianxin, et al. The structure and properties of bamboo cellulose nanowhiskers[J]. Journal of Cellulose Science and Technology,2012,20(3):27-33(in Chinese). doi: 10.3969/j.issn.1004-8405.2012.03.005
    [25] LIU Y F, WANG H S, YU G, et a1. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid[J]. Carbohydrate Polymers,2014,110:415-422. doi: 10.1016/j.carbpol.2014.04.040
    [26] LIU W, DU H S, LIU H Y, et al. Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis[J]. ACS Sustainable Chemistry & Engineering,2020,8(44):16691-16700.
    [27] BROWN A J. XLIII. —On an acetic ferment which forms cellulose[J]. Journal of the Chemical Society, Transactions,1886,49:432-439. doi: 10.1039/CT8864900432
    [28] 朱昌来, 李峰, 尤庆生, 等. 纳米细菌纤维素的制备及其超微结构镜观察[J]. 生物医学工程研究, 2008, 27(4):287-290. doi: 10.3969/j.issn.1672-6278.2008.04.015

    ZHU Changlai, LI Feng, YOU Qingsheng, et al. Preparation of nanometer biomaterial bacterial cellulose and observation of its ultra-structure[J]. Journal of Biomedical Engi-neering Research,2008,27(4):287-290(in Chinese). doi: 10.3969/j.issn.1672-6278.2008.04.015
    [29] 武宝利, 张国梅, 高春光, 等. 生物传感器的应用研究进展[J]. 中国生物工程杂志, 2004, 24(7):65-69.

    WU Baolai, ZHANG Guomei, GAO Chunguang, et al. Application and development of biosensors[J]. Chinese Biotechnology,2004,24(7):65-69(in Chinese).
    [30] RAJALA S, SIPONKOSKI T, SARLIN E, et al. Cellulose nanofibril film as a piezoelectric sensor material[J]. ACS App-lied Materials & Interfaces,2016,8(24):15607-15614.
    [31] FARJANA S, TOOMADJ F, LUNDGREN P, et al. Conductivity-dependent strain response of carbon nanotube treated bacterial nanocellulose[J]. Journal of Sensors,2013,2013(20):77-84.
    [32] ZHANG L F, LYU S Y, ZHANG Q J, et al. Dual-emitting film with cellulose nanocrystal-assisted carbon dots grafted SrAl2O4, Eu2+, Dy3+ phosphors for temperature sensing[J]. Carbohydrate Polymers,2019,206:767-777. doi: 10.1016/j.carbpol.2018.11.031
    [33] 段建瑞, 李斌, 李帅臻. 常用新型柔性传感器的研究进展[J]. 传感器与微系统, 2015, 34(11):1-4.

    DUAN Jianrui, LI Bin, LI Shuaizhen. Research progress on common novel flexible sensor[J]. Transducer and Microsystem Technologies,2015,34(11):1-4(in Chinese).
    [34] DAI L, WANG Y, ZOU X J, et al. Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2- and 3-D nanocellulosic materials[J]. Small,2020,16(13):1906567. doi: 10.1002/smll.201906567
    [35] TANG L R, CHEN W X, CHEN B, et al. Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals[J]. Sensors and Actuators B: Chemical,2021,327:128944. doi: 10.1016/j.snb.2020.128944
    [36] XU S M, YU W J, YAO X L, et al. Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing[J]. Compo-sites Science & Technology,2016,131:67-76.
    [37] EYEBE G A, BIDEAU B, BOUBEKEUR N, et al. Environmentally-friendly cellulose nanofibre sheets for humidity sensing in microwave frequencies[J]. Sensors and Actuators B Chemical,2017,245:484-492. doi: 10.1016/j.snb.2017.01.130
    [38] 周静, 童欣, 沈文浩. 拟用于可穿戴气敏传感器的二氧化钛/纳米纤维素复合膜制备及表征[J]. 高分子材料科学与工程, 2020, 36(3):149-157.

    ZHOU Jing, TONG Xin, SHEN Wenhao. Preparation and characterization of titanium dioxide/nanocellulose composites film for wearable gas sensor[J]. Polymeric Materials Science and Engineering,2020,36(3):149-157(in Chinese).
    [39] NGUYEN L H, NAFICY S, MCCONCHIE R, et al. Polydiacetylene-based sensors to detect food spoilage at low temperatures[J]. Journal of Materials Chemistry C,2019,7:1919-1926. doi: 10.1039/C8TC05534C
    [40] SADASIVUNI K K, PONNAMMA D, KO H U, et al. Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites[J]. Sensors & Actuators B Chemical,2016,233:633-638.
    [41] SCHYRR B, PASCHE S, VOIRIN G, et al. Biosensors based on porous cellulose nanocrystal−poly (vinyl alcohol) scaffolds[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12674−12683.
    [42] ZHANG T J, WANG W, ZHANG D Y, et al. Biotemplated synthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing[J]. Advanced Functional Materials,2010,20(7):1152-1160. doi: 10.1002/adfm.200902104
    [43] WU Z Y, LI C, LIANG H W, et al. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angewandte Chemie International Edition,2013,52:2925-2929. doi: 10.1002/anie.201209676
    [44] CHEN S, CHEN Y L, LI D Q, et al. Flexible and sensitivity-adjustable pressure sensors based on carbonized bacterial nanocellulose/wood-derived cellulose nanofibril composite aerogels[J]. ACS Applied Materials & Interfaces,2021,13(7):8754-8763. doi: 10.1021/acsami.0c21392
    [45] ZHOU J, HSIEH Y L. Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors[J]. ACS Applied Materials & Interfaces,2018,10(33):27902-27910. doi: 10.1021/acsami.8b10239
    [46] YANG Y T, SU G T, LI Q L, et al. Performance of the highly sensitive humidity sensor constructed with nanofibrillated cellulose/graphene oxide/polydimethylsiloxane aerogel via freeze drying[J]. RSC Advances,2021,11(3):1543-1552. doi: 10.1039/D0RA08193K
    [47] EDWARDS J V, FONTENOT K R, PREVOST N T, et al. Preparation, characterization and activity of a peptide-cellulosic aerogel protease sensor from cotton[J]. Sensors,2016,16(11):1789. doi: 10.3390/s16111789
    [48] 董凤霞, 戴磊. 纤维素纳米纤丝基水凝胶及其在废水处理中的应用进展[J]. 中国造纸, 2020, 39(5):63-69.

    DONG Fengxia, DAI Lei. Research progress on cellulose nanofibrils-based hydrogel and its application in waste-water treatment[J]. China Pulp and Paper,2020,39(5):63-69(in Chinese).
    [49] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7):1227-1233.

    YANG Fan, MA Jianzhong, BAO Yan. Advances in nanocellulose and its application in hydrogels[J]. Materials Reports,2019,33(7):1227-1233(in Chinese).
    [50] PAN X F, WANG Q H, NING D W, et al. Ultra-flexible self-healing guar gum-glycerol hydrogel with injectable, anti-freeze, and strain-sensitive properties[J]. ACS Biomater-ials Science & Engineering,2018,4(9):3397-3404.
    [51] ZHOU H W, JIN Z Y, YUAN Y, et al. Self-repairing flexible strain sensors based on nanocomposite hydrogels for whole-body monitoring[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,592:124587. doi: 10.1016/j.colsurfa.2020.124587
    [52] JING X, LI H, MI H Y, et al. Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nano-fibril hydrogel sensors for sensitive pressure sensing and human motion detection[J]. Sensors and Actuators B: Chemical,2019,295:159-167. doi: 10.1016/j.snb.2019.05.082
    [53] LU F X, WANG Y Y, WANG C, et al. Two-dimensional nanocellulose-enhanced high-strength, self-adhesive and strain-sensitive poly (acrylic acid) hydrogels fabricated by radical-induced strategy for skin sensor[J]. ACS Sustainable Chemistry & Engineering,2020,8(8):3427-3436.
    [54] ZHENG C X, YUE Y Y, GAN L, et al. Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels[J]. Nanomaterials,2019,9(7):937. doi: 10.3390/nano9070937
    [55] CHEN Y Y, LU K Y, SONG Y H, et al. A skin-inspired stretchable, self-healing and electro-conductive hydrogel with a synergistic triple network for wearable strain sensors applied in human-motion detection[J]. Nanomaterials,2019,9(12):1737. doi: 10.3390/nano9121737
    [56] SONG M L, YU H Y, ZHU J Y, et al. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrysals[J]. Chemical Engineering Journal,2020,398:125547. doi: 10.1016/j.cej.2020.125547
    [57] RUIZ-PALOMERO C, BENÍTEZ-MARTÍNEZ S, SORIANO M L, et al. Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase[J]. Analytica Chimica Acta,2017,974:93-99. doi: 10.1016/j.aca.2017.04.018
    [58] ZHANG B N, ZHANG J Q, ZHANG K H, et al. A non-contact proximity sensor with low frequency electromagnetic field[J]. Sensors and Actuators A: Physical,2007,135(1):162-168. doi: 10.1016/j.sna.2006.06.068
    [59] SADASIVUNI K K, KAFY A, ZHAI L D, et al. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing[J]. Small,2015,11(8):994-1002. doi: 10.1002/smll.201402109
    [60] CHEN L, CAO W, GRISHKEWICH N, et al. Synthesis and characterization of pH-responsive and fluorescent poly (amidoamine) dendrimer-grafted cellulose nanocrystals[J]. Journal of Colloid and Interface Science,2015,450:101-108. doi: 10.1016/j.jcis.2015.03.002
    [61] TANG J T, SONG Y, BERRY R M, et al. Polyrhodanine coated cellulose nanocrystals as optical pH indicators[J]. RSC Advances,2014,4(104):60249-60252. doi: 10.1039/C4RA09043H
    [62] ZHU C Z, YANG G H, LI H, et al. Electrochemical sensors and biosensors based on nanomaterials and nanostructures[J]. Analytical Chemistry,2015,87(1):230-249. doi: 10.1021/ac5039863
    [63] BOCANEGRA-RODRÍGUEZ S, MOLINS-LEGUA C, CAMPÍNS-FALCÓ P, et al. Monofunctional pyrenes at carbon nanotube electrodes for direct electron transfer H2O2 reduction with HRP and HRP-bacterial nanocellulose[J]. Biosensors and Bioelectronics,2021,187:113304. doi: 10.1016/j.bios.2021.113304
    [64] 毕青. 电化学手性传感器的制备及应用[D]. 兰州: 西北师范大学, 2016.

    BI Qing. Preparation and application of electrochemical chiral sensor[D]. Lanzhou: Northwest Normal University, 2016(in Chinese).
    [65] SILVA R R, RAYMUNDO-PEREIRA P A, CAMPOS A M, et al. Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat[J]. Talanta,2020,218:121153. doi: 10.1016/j.talanta.2020.121153
    [66] ESMAEILI C, ABDI M M, MATHEW A P, et al. Synergy effect of nanocrystalline cellulose for the biosensing detection of glucose[J]. Sensors,2015,15(10):24681-24697. doi: 10.3390/s151024681
    [67] WANG S W, SUN J S, JIA Y X, et al. Nanocrystalline cellulose-assisted generation of silver nanoparticles for non-enzymatic glucose detection and antibacterial agent[J]. Biomacromolecules,2016,17(7):2472-2478. doi: 10.1021/acs.biomac.6b00642
    [68] 禚晓. 纳米纤维素纸基生物传感器设计[D]. 泰安: 山东农业大学, 2018.

    ZHUO Xiao. Design of nanocellulose paper-based biosensors[D]. Taian: Shandong Agricultural University, 2018(in Chinese).
    [69] 付俊俊. 纳米纤维素/纳米金复合材料的制备及其应用研究[D]. 广州: 华南理工大学, 2018.

    FU Junjun. Preparation and application of nanocellulose/AuNPs nanocomposites[D]. Guangzhou: South China University of Technology, 2018(in Chinese).
    [70] ZHANG L Z, LI Q, ZHOU J P, et al. Synthesis and photophysical behavior of pyrene-bearing cellulose nanocrystals for Fe3+ sensing[J]. Macromolecular Chemistry & Physics,2012,213(15):1612-1617.
    [71] RAM B, JAMWAL S, RANOTE S, et al. Highly selective and rapid naked-eye colorimetric sensing and fluorescent studies of Cu2+ ions derived from spherical nanocellulose[J]. ACS Applied Polymer Materials,2020,2(11):5290-5299. doi: 10.1021/acsapm.0c01025
  • 加载中
图(6)
计量
  • 文章访问数:  1731
  • HTML全文浏览量:  926
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 修回日期:  2021-10-13
  • 录用日期:  2021-11-08
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回