Research and discussion on processing technology of carbon fiber reinforced carbon matrix composites
-
摘要: 碳纤维增强碳基复合材料(C/C)具有热膨胀系数低、耐腐蚀、抗热冲击、耐磨损等特点,在武器装备、航空航天、汽车制造等领域得到日益广泛的应用。传统加工技术难以实现对C/C复合材料的高精度加工。激光加工技术对加工对象的尺寸、材质和形状要求低,易与其他先进加工技术相结合,具有其他加工方法所不具备的优势。本论文主要对C/C复合材料的制备、应用和加工方式进行了论述,详细阐述了激光加工C/C复合材料的原理机制和工艺特点,以及不同应用场合下加工工艺的选择策略。通过传统加工方法和特种加工方法的对比,概述了加工C/C复合材料所面临的问题和挑战,提出了C/C复合材料激光加工与其他先进制造技术相结合的发展趋势。Abstract: Carbon fiber reinforced carbon matrix composites (C/C) have the characteristics of low thermal expansion coefficient, corrosion resistance, thermal shock resistance, and wear resistance, which are widely used in military equipment, aerospace, automobile manufacturing and other fields. But it is difficult to achieve high precision machining of C/C composites by traditional processing technology. Laser processing technology has low requirements for the size, material and shape. It is easy to combine with other advanced processing technologies and has the characteristics that other methods do not have. This paper mainly reviews the preparation, application and processing methods of C/C composites, elaborates the mechanism and process characteristics of laser processing of C/C composites and the selection strategy of processing technology in different applications. Through the comparison of traditional processing methods and special processing methods, the problems and challenges faced by the processing of C/C composites are summarized, and the development trend of the combination of laser processing of C/C composites and other advanced manufacturing technologies is proposed.
-
Key words:
- C/C composites /
- laser processing /
- ultra-short pulse laser /
- mechanism of action /
- combined machining
-
图 18 速度250 mm/s、功率1600 W时不同扫描次数时微槽形貌SEM图像对比[64]: (a) 扫描5次; (b) 扫描10次
Figure 18. SEM images comparison of micro groove morphology under different scanning times at the speed of 250 mm/s and power of 1600 W[64]: (a) Scanning for 5 times; (b) Scanning for 10 times
MEW—Matrix evaporation width; MRW—Matrix recession width; A, B—Thermal damage is more prominent in the region where the fibers are aligned perpendicular to the laser scanning direction
图 20 飞秒激光加工碳纤维增强复合材料的表面形貌图[72]: ((a)~(c)) 功率为1 W,
扫描次数分别为1、3、5次; ((d)~(f)) 功率为0.5 W, 扫描次数分别为1、3、5次 Figure 20. Surface morphology of carbon fiber reinforced composites processed by femtosecond laser[72]: ((a)-(c)) Number of
scanning is 1, 3, 5 times under 1 W power respectively; ((d)-(f)) Number of scanning is 1, 3, 5 times under 0.5 W power respectively -
[1] 李崇俊, 马伯信, 金志浩. 碳/碳复合材料的新发展[J]. 材料科学与工程学报, 1999, 18(3): 135-140.LI Chongjun, MA Boxin, JIN Zhihao. Recent developments of carbon-carbon composites[J]. Materials Science & Engineering, 1999, 18(3): 135-140(in Chinese). [2] GOLECKI I, XUE L, LEUNG R, et al. Properties of high thermal conductivity carbon-carbon composites for thermal management applications[C]. USA: 1998 High-Temperature Electronic Materials, Devices and Sensors Conference, 1998: 190-195. [3] 陈洁, 熊翔, 肖鹏. 高导热C/C复合材料的研究进展[J]. 材料导报, 2006(S2): 431-435.CHEN Jie, XIONG Xiang, XIAO Peng. Research and development of high-thermal conductivity carbon/carbon composites[J]. Materials Reports, 2006(S2): 431-435(in Chinese). [4] KUMAR C V, KANDASUBRAMANIAN B. Advances in ablative composites of carbon based materials: A review[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 22663-22701. [5] 解齐颖, 张祎, 朱阳, 等. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.XIE Qiying, ZHANG Wei, ZHU Yang, et al. Ultra-high temperature ceramics modified carbon/carbon composites[J]. Journal of Materials Engineering, 2021, 49(7): 46-55(in Chinese). [6] ALGHAMDI A, MUMMERY P, SHEIKH M A. Multi-scale 3D image-based modelling of a carbon/carbon composite[J]. Modelling and Simulation in Materials Science and Engi-neering, 2013, 21(8): 1-13. [7] ALGHAMDI A, KHAN A, MUMMERY P, et al. The characterisation and modelling of manufacturing porosity of a 2D carbon/carbon composite[J]. Journal of Composite Materials, 2014, 48(23): 2815-2829. [8] CHOWDHURY P, SEHITOGLU H, RATEICK R. Damage tolerance of carbon-carbon composites in aerospace application[J]. Carbon, 2018, 126: 382-393. [9] 张登科, 王光辉, 方登科, 等. 碳纤维增强树脂基复合材料的应用研究进展[J]. 化工新型材料, 2021, 50(1): 1-5.ZHANG Dengke, WANG Guanghui, FANG Dengke, et al. Progress in application and research of carbon fiber reinforced resin matrix composites[J]. New Chemical Materials, 2021, 50(1): 1-5(in Chinese). [10] 季根顺, 王丽, 贾建刚, 等. CVI法制备C/C复合材料的温度梯度[J]. 兰州理工大学学报, 2018, 44(1): 17-20.JI Genshun, WANG Li, JIA Jiangang, et al. The temperature gradient in preparation of C/C composites with CVI method[J]. Journal of Lanzhou University of Technology, 2018, 44(1): 17-20(in Chinese). [11] WINDHORST T, GORDON B. Carbon-carbon composites: A summary of recent developments and applications[J]. Materials & Design, 1997, 18(1): 11-15. [12] 张哲, 赵鹏, 孙国栋, 等. 酚醛树脂溶液浓度对液相浸渍-碳化法制备C/C复合材料浸渍效率的影响[J]. 固体火箭技术, 2019, 42(6): 771-778.ZHANG Zhe, ZHAO Peng, SUN Guodong, et al. Effect of concentration of phenolic resin on impregnation efficiency of carbon/carbon composites prepared by liquidimpregnation-carbonization method[J]. Journal of Solid Rocket Technology, 2019, 42(6): 771-778(in Chinese). [13] 李铁虎, 杨峥, 郑修麟, 等. 用改进的低压渍浸碳化法制备C/C复合材料的工艺研究[J]. 西北工业大学学报, 1994, 12(2): 155-158.LI Tiehu, YANG Zheng, ZHENG Xiulin, et al. Laboratory production of carbon/carbon composite by improved lpic[J]. Journal of Northwestern Polytechnical University, 1994, 12(2): 155-158(in Chinese). [14] 李文强. 碳纤维增强碳化硅基复合材料烧蚀计算研究[D]. 大连: 大连理工大学, 2021.LI Wenqiang. Numerical calculation research on ablation of carbon fiber reinforced silicon carbide matrix composite[D]. Dalian: Dalian University of Technology, 2021(in Chinese). [15] 徐林, 杨文彬, 陈铮, 等. 高性能二维碳/碳复合材料的制备与性能[J]. 复合材料学报, 2016, 33(12): 2877-2883.XU Lin, YANG Wenbin, CHEN Zheng, et al. Preparation and properties of high performance two-dimensional carbon/carbon composites[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2877-2883(in Chinese). [16] LUO R, LIU T, LI J, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J]. Carbon, 2004, 42(14): 2887-2895. [17] LUO R. Fabrication of carbon/carbon composites by an electrified preform heating CVI method[J]. Carbon, 2002, 40(11): 1957-1963 [18] 乔淑欣. 航天用C/C复合材料及其应用制备工艺[J]. 宇航材料工艺, 2013, 43(2): 18-21.QIAO Shuxin. C/C composites and preparation process in aerospace application[J]. Aerospace Materials & Technology, 2013, 43(2): 18-21(in Chinese). [19] 张磊磊, 胡涛, 李贺军, 等. 炭/炭复合材料人工髋关节磨损颗粒研究[J]. 无机材料学报, 2010, 25(4): 349-353.ZHANG Leilei, HU Tao, LI Hejun, et al. Wear particles of carbon/carbon composite artificial hip joints[J]. Journal of Inorganic Materials, 2010, 25(4): 349-353(in Chinese). [20] 倪昕晔, 熊信柏, 尤瑞金, 等. 碳/碳复合材料表面掺镁羟基磷灰石生物涂层的体外性能[J]. 中国组织工程研究, 2017, 21(34): 5443-5448.NI Xinye, XIONG Xinbo, YOU Ruijin, et al. In vitro properties of magnesium doped hydroxyapatite coating on the surface of carbon/carbon composites[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(34): 5443-5448(in Chinese). [21] 张雨雷, 付艳芹, 付前刚, 等. 纳米管/线多尺度强韧化C/C复合材料研究现状与展望[J]. 航空材料学报, 2021, 41(3): 11-24.ZHANG Yulei, FU Yanqin, FU Qiangang, et al. Research status and prospect on nanotube/nanowire multi-scale-reinforced C/C composites[J]. Journal of Aeronautical Materials, 2021, 41(3): 11-24(in Chinese). [22] GAO B, ZHANG R, HE M, et al. Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 433-440. [23] YI X, TAN Z, YU W, et al. Three dimensional printing of carbon/carbon composites by selective laser sintering[J]. Carbon, 2016, 96: 603-607. [24] ZHANG Y, ZHANG Y, WANG T, et al. Experimental study on performances of carbon seal and finger seal under high-speed and high-pressure condition[J]. IOP Conference Series, Materials Science and Engineering, 2018, 382(2): 22044. [25] 张延超, 刘凯, 周连杰, 等. 基于系统响应特征的指尖密封泄漏特性分析[J]. 航空动力学报, 2013, 28(1): 205-210.ZHANG Yanchao, LIU Kai, ZHOU Lianjie, et al. Analysis of leakage characteristics of finger seal based on system response[J]. Journal of Aerospace Power, 2013, 28(1): 205-210(in Chinese). [26] ZHANG Y C, ZHOU Y M, YIN M H, et al. Experimental investigation on friction and wear performance of C/C composite finger seal[J]. Journal of Tribology, 2020, 144: 021701. [27] YEN B K, ISHIHARA T. An investigation of friction and wear mechanisms of carbon-carbon composites in nitrogen and air at elevated temperatures[J]. Carbon, 1996, 34(4): 489-498. [28] FERREIRA J R, COPPINI N L, LEVY NETO F. Characteristics of carbon-carbon composite turning[J]. Journal of Materials Processing Technology, 2001, 109(1): 65-71. [29] 蒋建纯, 熊翔, 杨文堂, 等. 炭/炭复合材料切削加工试验研究[J]. 新型炭材料, 2000, 15(3): 38-42.JIANG Jianchun, XIONG Xiang, YANG Wentang, et al. An investigation of carbon/carbon composite machining[J]. New Carbon Materials, 2000, 15(3): 38-42(in Chinese). [30] 郭孟, 樊会涛, 李辉. 面向航空航天的C/C复合材料加工技术研究[J]. 装备制造技术, 2014(3): 182-185.GUO Meng, FANG Huitao, LI Hui. C/C composites processing technology research applied in the field of aerospace[J]. Equipment Manufacturing Technology, 2014(3): 182-185(in Chinese). [31] 鞠伟华. C/C复合材料加工工艺及质量评价研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.JU Weihua. Study on the mechanical process and quality evaluating of C/C composite material[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese). [32] SHAN C, LIN X, WANG X, et al. Defect analysis in drilling needle-punched carbon-carbon composites perpendicular to nonwoven fabrics[J]. Advances in Mechanical Engineering, 2015, 7(8): 1-11. [33] 刘琼, 黄国钦. 2D C/C-SiC复合材料钻削加工试验研究[J]. 福建工程学院学报, 2019, 17(1): 7-16.LIU Qiong, HUANG Guoqin. Experimental study on drilling processing of 2D C/C-SiC composites[J]. Journal of Fujian University of Technology, 2019, 17(1): 7-16(in Chinese). [34] 蔺小军, 崔栋鹏, 单晨伟, 等. C/C复合材料钻削轴向力研究[J]. 航空制造技术, 2015(15): 60-64.LIN Xiaojun, CUI Dongpeng, SHAN Chenwei, et al. Experimental study on thrust force in drilling carbon/carbon composites[J]. CNC Machining Technology, 2015(15): 60-64(in Chinese). [35] 周井文, 秦文津, 穆英娟, 等. 碳纤维复合材料铣削与磨削加工对比研究[J]. 金刚石与磨料磨具工程, 2020, 40(4): 76-80.ZHOU Jingwen, QIN Wenjin, MU Yingjuan, et al. Compara-tive study on machining of CFRP by end mill and abrasive router[J]. Diamond & Abrasives Engineering, 2020, 40(4): 76-80(in Chinee). [36] 刘琼, 黄国钦, 徐西鹏. 2D-C/SiC复合材料磨削加工表面形成机制[J]. 福州大学学报, 2018, 46(2): 228-233.LIU Qiong, HUANG Guoqin, XU Xipeng. Surface forming mechanism of grinding 2D-C/SiC composites[J]. Journal of Fuzhou University, 2018, 46(2): 228-233(in Chinese). [37] 张立峰, 王盛, 李战, 等. 纤维方向对单向C/SiC复合材料磨削加工性能的影响[J]. 中国机械工程, 2020, 31(3): 373-377.ZHANG Lifeng, WANG Sheng, LI Zhan, et al. Effects of fiber direction on grinding performances for unidirectional C/SiC composites[J]. China Mechanical Engineering, 2020, 31(3): 373-377(in Chinese). [38] PI V N, LE X H, TUNG L A, et al. Cost optimization of internal grinding[J]. Journal of Materials Science and Engineering, 2016, 6(11/12): 291-296. [39] 蔡志刚, 陈晓川, 王迪, 等. 碳碳复合材料的水射流钻孔技术研究[J]. 机械工程学报, 2019, 55(3): 226-232.CAI Zhigang, CHEN Xiaochuan, WANG Di, et al. Research on water jet drilling technology for carbon-carbon composites[J]. Journal of Mechanical Engineering, 2019, 55(3): 226-232(in Chinese). [40] YIN D Y, ZHU C F, CHEN X C, et al. Finite-element analysis and an experimental study into the water jet reaming process of carbon-carbon composites[J]. Mechanics of Composite Materials, 2021, 57(2): 257-268. [41] 朱超凡, 陈晓川, 鲍劲松. 面向碳-碳复合材料的激光和水射流组合制孔工艺仿真建模和实验研究[J]. 现代制造工程, 2020(1): 10-17.ZHU Chaofan, CHEN Xiaochuan, BAO Jinsong. Simulation modeling and experimental study on hole making process combined laser and water jet for carbon-carbon composite material[J]. Modern Manufacturing Engi-neering, 2020(1): 10-17(in Chinese). [42] GEORGE P M, RAGHUNATH B K, MANOCHA L M, et al. Modelling of machinability parameters of carbon-carbon composite-A response surface approach[J]. Journal of Materials Processing Technology, 2004(153/154): 920-924. [43] GUU Y H, HOCHENG H, TAI N H, et al. Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites[J]. Journal of Materials Science, 2001, 36(8): 2037-2043. [44] 翟兆阳, 梅雪松, 王文君, 等. 碳化硅陶瓷基复合材料激光刻蚀技术研究进展[J]. 中国激光, 2020, 47(6): 24-34.ZHAI Zhaoyang, MEI Xuesong, WANG Wenjun, et al. Research advancement on laser etching technology of silicon carbide ceramic matrix composite[J]. Chinese Journal of Lasers, 2020, 47(6): 24-34(in Chinese). [45] XU L Y, LU J R, LI K M, et al. Removal mechanism of CFRP by laser multi direction interaction[J]. Optics & Laser Technology, 2021, 143: 107281. [46] GENG L, LIU X, FU Q, et al. Laser ablative behavior of C/C modified by Si reactive infiltration[J]. Carbon, 2020, 168: 650-658. [47] ZHAI Z, WANG W, ZHAO J, et al. Influence of surface morphology on processing of C/SiC composites via femtosecond laser[J]. Composites: Part A, Applied Science and Manufacturing, 2017, 102: 117-125. [48] AN Q, CHEN J, MING W, et al. Machining of SiC ceramic matrix composites: A review[J]. Chinese Society of Aeronautics and Astronautics & Beihang University, 2020,1683:1-28. [49] 周一倩. 基于光纤聚焦的激光表面织构加工及其摩擦学行为研究[D]. 北京: 清华大学, 2009.ZHOU Yiqian. Micro laser surface texturing based on optical fiber focusing and tribological behavior of textured surfaces[D]. Beijing: Tsinghua University, 2009(in Chinese). [50] GUREEV D M, KUZNETSOV S I, PETROV A L. Influence of laser treatment on the structure and properties of carbon-carbon composites[J]. Proceedings of SPIE-International Society for Optical Engineering,1999,3688(10):259-265. [51] ZOU L, HUANG B, HUANG Y, et al. An investigation of heterogeneity of the degree of graphitization in carbon-carbon composites[J]. Materials Chemistry and Physics, 2003, 82(3): 654-662. [52] GUREEV D M, KUZNETSOV S I, PETROV A L. Changes in the structure and surface properties of carbon-carbon composites under the action of laser radiation[J]. Russian Laser Research, 2000, 21(3): 274-276. [53] 李艳, 崔红, 嵇阿琳, 等. 热处理对C/C复合材料热膨胀行为的影响[J]. 材料导报, 2012, 26(12): 25-28.LI Yan, CUI Hong, JI Alin, et al. Effects of heat treatment on thermal expansion coefficient of C/C composites[J]. Materials Reports, 2012, 26(12): 25-28(in Chinese). [54] KUZNETSOV S I, GUREEV D M, LEVIN D S, et al. Laser-beam pattern cutting of carbon-carbon composites[C]. Russian Federation: International Conference on Laser & Laser Information Technologies, International Society for Optics and Photonics, 2001, 4644: 83-88. [55] LIU Q, ZHANG L, JIANG F, et al. Laser ablation behaviors of SiC-ZrC coated carbon/carbon composites[J]. Surface and Coatings Technology, 2011, 205(17/18): 4299-4303. [56] AL-SULAIMAN F A, YILBAS B S, AHSAN M. CO2 laser cutting of a carbon/carbon multi-lamelled plain-weave structure[J]. Journal of Materials Processing Technology, 2006, 173(3): 345-351. [57] QIAN J P, LU L P, LI P Y, et al. Thermal shock resistance of graphite and carbon/carbon composites in plasma disruption simulation tests[J]. Nuclear Materials, 1994(212/215): 1183-1188. [58] 花银群, 陈瑞芳, 肖淘, 等. 激光切割碳纤维复合材料的实验研究[J]. 激光技术, 2013, 37(5): 565-570.HUA Yinqun, CHEN Ruifang, XIAO Tao, et al. Experimental study about laser cutting of carbon fiber reinforced polymer[J]. Laser Technology, 2013, 37(5): 565-570(in Chinese). [59] KONONENKO T V, FREITAG C, KOMLENOK M S, et al. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses[J]. Journal of Applied Physics, 2014, 115(10): 103107. [60] 袁根福, 曾晓雁. 硬脆性无机材料激光成形加工研究与应用现状[J]. 激光与光电子学进展, 2002(6): 47-51.YUAN Genfu, ZENG Xiaoyan. Status and prospect of laser machining researches and applications on hard and brickle materials[J]. Laser & Optoelectronics Progress, 2002(6): 47-51(in Chinese). [61] 吴恩启, 石玉芳, 李美华, 等. 编织碳纤维复合材料平面内热传导规律研究[J]. 中国激光, 2016, 43(7): 168-173.WU Enqi, SHI Yufang, LI Meihua, et al. In-plane thermal conduction of woven carbon fiber reinforced polymer[J]. Chinese Journal of Lasers, 2016, 43(7): 168-173(in Chinese). [62] 高燕, 宋怀河, 陈晓红. C/C复合材料的研究进展[J]. 材料导报, 2002, 16(7): 44-47.GAO Yan, SONG Huaihe, CHEN Xiaohong. Progress in research on C/C composites[J]. Materials Reports, 2002, 16(7): 44-47(in Chinese). [63] JUNG K, KAWAHITO Y, KATAYAMA S. Ultra-high speed disk laser cutting of carbon fiber reinforced plastics[J]. Journal of Laser Applications, 2012, 24(1): 12007. [64] OH S, LEE I, PARK Y, et al. Investigation of cut quality in fiber laser cutting of CFRP[J]. Optics & Laser Technology, 2019, 113: 129-140. [65] ZHAI Z, ZHANG R, TANG A, et al. Fabrication of microstructure on C/SiC surface via femtosecond laser diffraction[J]. Materials Letters, 2021, 293: 129711. [66] ZHAI Z, WANG F, DUAN H. Experimental study on 800 nm femtosecond laser cutting of polyamide in air[J]. Optik, 2019, 194: 163080. [67] ZHAI Z, WANG F, MEI X, et al. Preparation of graphene directly on liquid EB curing ink film by femtosecond laser[J]. Optik, 2020, 223: 165485. [68] 蒋翼, 陈根余, 周聪, 等. 碳纤维复合材料皮秒激光切割工艺研究[J]. 激光技术, 2017, 41(6): 821-825.JIANG Yi, CHEN Genyu, ZHOU Cong, et al. Research of carbon fiber reinforced plastic cut by picosecond laser[J]. Laser Technology, 2017, 41(6): 821-825(in Chinese). [69] WANG J, LIU Y, WANG C, et al. Character and mechanism of surface micromachining for C/SiC composites by ultrashort plus laser[J]. Advances in Applied Ceramics, 2017, 116(2): 99-107. [70] 方光武, 宋迎东, 高希光. 针刺C/SiC复合材料应力-应变模型及试验验证[J]. 复合材料学报, 2016, 33(4): 827-832.FANG Guangwu, SONG Yingdong, GAO Xiguang. Model and test validation of stress-strain for needled C/SiC composite[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 827-832(in Chinese). [71] 张若衡. SiC/SiC复合材料的超快激光加工工艺与特性研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2016.ZHANG Ruoheng. Machining technology and properties investigation of SiC/SiC composites by ultra-short pulse laser[D]. Xi’an: Chinese Academy of Sciences(Xi’an Institute of Optics & Precision Mechanics), 2016(in Chinese). [72] ZHAI Z, WANG W, MEI X, et al. Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites[J]. Optics Communications, 2018, 424: 137-144. [73] DITTMAR H, GÄBLER F, STUTE U. UV-laser ablation of fibre reinforced composites with ns-pulses[J]. Physics Proedria, 2013, 41: 266-275. [74] ZHAI Z, ZHANG Y, CUI Y, et al. Investigations on the ablation behavior of C/SiC under femtosecond laser[J]. Optik, 2020, 224: 165719. [75] SUN D, HAN F, YING W. The experimental investigation of water jet-guided laser cutting of CFRP[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(1): 719-729. [76] 刘敬明, 曹凤国. 激光复合加工技术的应用及发展趋势[J]. 电加工与模具, 2006(4): 5-9.LIU Jingming, CAO Fengguo. Application and development trend of laser combined machining technology[J]. Electrical Machining and Mould, 2006(4): 5-9(in Chinese). [77] 张昌娟, 焦锋, 赵波, 等. 激光超声复合切削硬质合金的刀具磨损及其对工件表面质量的影响[J]. 光学精密工程, 2016, 24(6): 1413-1423.ZHANG Changjuan, JIAO Feng, ZHAO Bo, et al. Tool wear in laser ultrasonically assisted cutting cemented carbide and its effect on surface quality[J]. Optics and Precision Engineering, 2016, 24(6): 1413-1423(in Chinese). [78] 段鹏, 焦锋, 牛赢, 等. 激光超声复合加工硬质合金的切削特性研究[J]. 机械科学与技术, 2017, 36(4): 592-597.DUAN Peng, JIAO Feng, NIU Ying, et al. Machinability of tungsten carbide with assistance of laser and ultrasonic vibration[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(4): 592-597(in Chinese). [79] ALAVI S H, HARIMKAR S P. Evolution of geometric and quality features during ultrasonic vibration-assisted continuous wave laser surface drilling[J]. Journal of Materials Processing Technology, 2016, 232: 52-62. [80] FAN Z, WANG K, DONG X, et al. The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5)[J]. Corrosion Science, 2017, 115: 56-67. [81] AL-AHMARIAB A, RASHEEDA M S, MOHAMMEDA M K, et al. A hybrid machining process combining micro-EDM and laser beam machining of nickel-titanium based shape memory alloy[J]. Materials and Manufacturing Processes, 2015,1072:954. [82] BACHMANN M, AVILOV V, GUMENYUK A, et al. About the influence of a steady magnetic field on weld pool dyna-mics in partial penetration high power laser beam welding of thick aluminum parts[J]. International Journal of Heat and Mass Transfer, 2013, 60: 309-321. [83] LU Y, SUN G F, WEN D P, et al. Effects of applying electric and magnetic fields on laser drilling[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(9/12): 2293-2300. [84] KRAY D, FELL A, HOPMAN S, et al. Laser chemical processing (LCP)-A versatile tool for microstructuring applications[J]. Applied Physics A, 2008, 93(1): 99-103. [85] MEHRAFSUN S, MESSAOUDI H. Dynamic process behavior in laser chemical micro machining of metals[J]. Manufacturing and Materials Processing, 2018, 54: 1-18. [86] 陈雪辉, 李翔, 吴超, 等. 水射流辅助激光加工碳化硅的影响研究[J]. 激光与光电子学进展, 2019, 56(1): 225-231.CHEN Xuehui, LI Xiang, WU Chao, et al. Influence of water jet assisted laser processing silicon carbide[J]. Laser & Optoelectronics Progress, 2019, 56(1): 225-231(in Chinese). [87] 刘斌, 戴玉堂, 殷广林, 等. 超声波辅助飞秒激光加工光纤材料的工艺探索[J]. 中国激光, 2016, 43(3): 66-71.LIU Bin, DAI Yutang, YIN Guanglin, et al. Exploration on ultrasonic vibration aided femtosecond laser machining process of fiber optic materials[J]. Chinese Journal of Lasers, 2016, 43(3): 66-71(in Chinese). [88] 徐家乐. 电磁超声复合能场辅助激光熔覆钴基合金涂层组织及性能研究[D]. 镇江: 江苏大学, 2019.XU Jiale. Study on microstructure and properties of co-based coatings by laser cladding coupled with electromagnetic/ultrasonic compound energy field[D]. Zhenjiang: Jiangsu University, 2019(in Chinese).