留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化钒-荧光增白剂-有机聚合物三层多功能复合薄膜

高迎 秦成远 聂永 呼啸 徐慧妍 苗金玲 蒋绪川

高迎, 秦成远, 聂永, 等. 二氧化钒-荧光增白剂-有机聚合物三层多功能复合薄膜[J]. 复合材料学报, 2022, 39(8): 3828-3844. doi: 10.13801/j.cnki.fhclxb.20211027.003
引用本文: 高迎, 秦成远, 聂永, 等. 二氧化钒-荧光增白剂-有机聚合物三层多功能复合薄膜[J]. 复合材料学报, 2022, 39(8): 3828-3844. doi: 10.13801/j.cnki.fhclxb.20211027.003
GAO Ying, QIN Chengyuan, NIE Yong, et al. Three-layer multifunctional vanadium dioxide-fluorescent brightener-organic polymer composite films[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3828-3844. doi: 10.13801/j.cnki.fhclxb.20211027.003
Citation: GAO Ying, QIN Chengyuan, NIE Yong, et al. Three-layer multifunctional vanadium dioxide-fluorescent brightener-organic polymer composite films[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3828-3844. doi: 10.13801/j.cnki.fhclxb.20211027.003

二氧化钒-荧光增白剂-有机聚合物三层多功能复合薄膜

doi: 10.13801/j.cnki.fhclxb.20211027.003
基金项目: 济南大学和山东莘纳智能新材料有限公司资助项目
详细信息
    通讯作者:

    聂永,博士,教授,硕士生导师,研究方向为有机-无机复合功能材料 E-mail:chm_niey@ujn.edu.cn

    蒋绪川,博士,教授,博士生导师,研究方向为光、热、电、磁等外界刺激响应型无机功能材料和隔热节能玻璃的工程化E-mail:ism_jiangxc@ujn.edu.cn

  • 中图分类号: TB332

Three-layer multifunctional vanadium dioxide-fluorescent brightener-organic polymer composite films

  • 摘要: 二氧化钒(VO2)是一种典型的热致变色材料,用于智能窗可有效降低建筑能耗。然而,VO2智能玻璃的颜色和稳定性问题限制了其大规模应用。本文报道一种VO2基三层荧光复合膜,包括VO2@SiO2热致变色层、荧光增白剂分子层和有机聚合物层。VO2@SiO2层可根据外界温度变化,调控太阳光的摄入量,起到冬暖夏凉的作用,其核壳结构有利于提高VO2的稳定性;荧光分子层在太阳光照射下,吸收紫外光,发射蓝色荧光,从而改善VO2涂层固有的棕黄色;有机聚合物层作为最上层,能有效保护下层的VO2@SiO2层和中间的荧光分子层,增加复合薄膜的稳定性。与纯VO2膜相比,这种复合膜不但保持了较高的可见光透过率和太阳光调制能力,而且在太阳光下颜色可逆地从棕黄色变为蓝色,同时稳定性和紫外阻隔能力明显提升,有利于VO2基智能窗的推广和应用。

     

  • 图  1  4, 4-双(2-甲氧基苯乙烯基)联苯(CBS-127)、4, 4-双(2-磺酰苯乙烯基钠)联苯(CBS-X)和KH550的结构式

    Figure  1.  Structures of 4, 4-bis(2-methoxy styrene) biphenyl (CBS-127), 4, 4-bis(2-sulfonyl styrene sodium) biphenyl (CBS-X) and KH550

    图  2  VO2@SiO2-KH550-二苯乙烯基联苯类荧光增白剂(CBS)-polymer薄膜的制备示意图

    Figure  2.  Schematic diagram of the preparation of VO2@SiO2-KH550-stilbenyl biphenyl fluorescent brightener (CBS)-polymer composite film

    图  3  用于制备复合膜的VO2(M)纳米粒子的XRD图谱(a)和DSC曲线(b)

    Figure  3.  XRD pattern (a) and DSC curves (b) of VO2(M) nanoparticles for composite films

    图  4  VO2(M)纳米粒子的SEM图像

    Figure  4.  SEM images of VO2(M) nanoparticles

    图  5  VO2(M)纳米粒子的TEM图像

    Figure  5.  TEM images of VO2(M) nanoparticles

    图  6  改性后纳米粒子的XRD图谱 (a)、TGA曲线 (b)、FTIR图谱 (c)、FTIR图谱中VO2-KH550和VO2@SiO2-KH550部分图谱放大 (d)

    Figure  6.  XRD patterns(a), TGA curves (b), FTIR spectra (c) and magnified images of part of the FTIR spectra of VO2-KH550 and VO2@SiO2-KH550 particles (d)

    图  7  VO2@SiO2 ((a)~(c)) 和VO2@SiO2-KH550 ((d)~(e)) 的TEM图像

    Figure  7.  TEM images of VO2@SiO2 ((a)-(c)) and VO2@SiO2-KH550 particles ((d)-(e))

    图  8  VO2@SiO2 ((a)~(c)) 和VO2@SiO2-KH550 ((d)~(e)) 的SEM图像

    Figure  8.  SEM images of VO2@SiO2 ((a)-(c)) and VO2@SiO2-KH550 particles ((d)-(e))

    图  9  (a) 每张照片从左到右依次为VO2、VO2-KH550、VO2@SiO2和VO2@SiO2-KH550纳米颗粒分散在0.5 mol/L H2SO4溶液中不同时间的变化情况;(b) 不同时间悬浮液在570 nm处的透射率;(c) 经过30 min 0.5 mol/L H2SO4浸泡后VO2-KH550、VO2@SiO2和VO2@SiO2-KH550纳米颗粒的XRD图谱

    Figure  9.  (a) In each picture, from left to right: VO2, VO2-KH550, VO2@SiO2 and VO2@SiO2-KH550 particles being dispersed in 0.5 mol/L H2SO4 against time; (b) Transmission spectra of different suspensions at 570 nm; (c) XRD patterns of VO2-KH550, VO2@SiO2 and VO2@SiO2-KH550 particles after being immersed in 0.5 mol/L H2SO4 for 30 min

    图  10  (a) 纳米颗粒分散在0.1 mol/L H2O2溶液中不同时间的变化情况,每张照片从左到右依次为VO2、VO2-KH550、VO2@SiO2和VO2@SiO2-KH550;(b) 悬浮液在不同时间570 nm处的透射率;(c) 0.1 mol/L H2O2浸泡30 min后VO2-KH550、VO2@SiO2和VO2@SiO2-KH550纳米颗粒的XRD图谱

    Figure  10.  (a) In each picture, from left to right: VO2, VO2-KH550, VO2@SiO2 and VO2@SiO2-KH550 particles being dispersed in 0.1 mol/L H2O2 against time; (b) Transmission spectra of different suspensions at 570 nm; (c) XRD patterns of VO2-KH550, VO2@SiO2 and VO2@SiO2-KH550 particles after being immersed in 0.1 mol/L H2O2 for 30 min

    图  11  在空气中不同温度加热时VO2 (a)、VO2-KH550 (b)、VO2@SiO2 (c)和VO2@SiO2-KH550 (d) 纳米粒子的XRD图谱

    Figure  11.  XRD patterns of VO2(a), VO2-KH550 (b), VO2@SiO2 (c) and VO2@SiO2-KH550 (d) after being heated at different temperatures in the air

    图  12  VO2-CBS、VO2@SiO2-KH550-CBS复合薄膜 ((a)、(c)) 和VO2@SiO2-KH550-CBS-polymer复合薄膜 ((b)、(d)) 在20℃和90℃的紫外-可见-近红外透射光谱

    Figure  12.  UV-Vis-NIR spectra of composite films of VO2-CBS, VO2@SiO2-KH550-CBS ((a), (c)) and VO2@SiO2-KH550-CBS-polymer ((b), (d)) at 20℃ and 90℃

    图  13  VO2、VO2@SiO2薄膜和VO2-CBS、VO2@SiO2-KH550、VO2@SiO2-KH550-CBS-PMMA复合薄膜在室内自然光、365 nm紫外灯及室外太阳光下的照片

    Figure  13.  Pictures of films of VO2, VO2@SiO2 and composite films of VO2-CBS, VO2@SiO2-KH550 and VO2@SiO2-KH550-CBS-PMMA under indoor natural light, UV light of 365 nm and outdoor sunlight

    图  15  VO2-CBS、VO2@SiO2-KH550-CBS和VO2@SiO2-KH550-CBS-PMMA薄膜湿热老化48 h在室内自然光、365 nm紫外灯及室外太阳光下的照片

    Figure  15.  Pictures of films of VO2-CBS, VO2@SiO2-KH550-CBS and VO2@SiO2-KH550-CBS-PMMA under indoor natural light, UV light of 365 nm and outdoor sunlight after damp heat test for 48 h

    图  14  VO2-CBS ((a)、(d))、VO2@SiO2-KH550-CBS ((b)、(e)) 和VO2@SiO2-KH550-CBS-PMMA薄膜 ((c)、(f)) 湿热老化48 h的透射光谱

    Figure  14.  Transmission spectra of films of VO2-CBS ((a), (d)), VO2@SiO2-KH550-CBS ((b), (e)) and VO2@SiO2-KH550-CBS-PMMA ((c), (f)) after damp heat test for 48 h

    图  16  VO2-CBS-127、VO2@SiO2-KH550-CBS-127和VO2@SiO2-KH550-CBS-127-PMMA薄膜最初(左)及紫外老化24 h(右)在室内自然光、365 nm紫外灯及室外太阳光下的照片

    Figure  16.  Pictures of films of VO2-CBS-127, VO2@SiO2-KH550-CBS-127 and VO2@SiO2-KH550-CBS-127-PMMA under indoor natural light, UV light of 365 nm and outdoor sunlight after UV irradiation for 24 h

    图  17  VO2-CBS-127、VO2@SiO2-KH550-CBS-127和VO2@SiO2-KH550-CBS-127-PMMA薄膜紫外老化前后的荧光光谱(最大激发波长λex= 365 nm)

    Figure  17.  Fluorescence emission spectra of films of VO2-CBS-127, VO2@SiO2-KH550-CBS-127 and VO2@SiO2-KH550-CBS-127-PMMA before and after UV irradiation for 24 h (Maximum excitation wavelength λex= 365 nm)

    图  18  VO2-CBS-127 (a)、VO2@SiO2-KH550-CBS-127 (b) 和VO2@SiO2-KH550-CBS-127-PMMA (c) 复合薄膜在0.5 mol/L H2SO4溶液浸泡24 h前后的照片及透射光谱

    Figure  18.  Pictures and transmission spectra of films of VO2-CBS-127 (a), VO2@SiO2-KH550-CBS-127 (b) and VO2@SiO2-KH550-CBS-127-PMMA (c) after being immersed in 0.5 mol/L H2SO4 for 24 h

    表  1  VO2-CBS, VO2@SiO2-KH550-CBS和VO2@SiO2-KH550-CBS-polymer复合薄膜的光学性质

    Table  1.   Optical property of composite films of VO2-CBS, VO2@SiO2-KH550-CBS and VO2@SiO2-KH550-CBS-polymer

    FilmTlum/%Tsol/%ΔTsol/%
    20℃90℃20℃90℃
    VO2-CBS-127 68.80 69.30 71.62 65.11 6.51
    VO2@SiO2-KH550-CBS-127 77.86 76.91 79.26 71.84 7.42
    VO2@SiO2-KH550-CBS-127-PVB 78.94 78.97 80.24 72.55 7.69
    VO2@SiO2-KH550-CBS-127-PVA 79.68 79.63 80.31 72.62 7.69
    VO2@SiO2-KH550-CBS-127-PMMA 78.30 78.87 80.04 72.65 7.39
    VO2-CBS-X 73.42 73.09 75.36 68.66 6.70
    VO2@SiO2-KH550-CBS-X 78.71 78.80 79.32 71.44 7.88
    VO2@SiO2-KH550-CBS-127-PVB 78.23 78.85 79.16 71.74 7.42
    VO2@SiO2-KH550-CBS-127-PVA 78.32 78.79 79.06 71.38 7.68
    VO2@SiO2-KH550-CBS-127-PMMA 78.87 78.65 79.34 72.00 7.34
    Notes: Tlum—Visible transmittance; Tsol—Solar transmittance; ΔTsol—Solar modularity.
    下载: 导出CSV

    表  2  湿热实验前后VO2基复合薄膜的光学性质对比

    Table  2.   Comparison of the optical property of VO2-based composite films before and after the damp heating test

    FilmsTlum/%Tsol/%ΔTsol/%
    20℃90℃20℃90℃
    VO2-CBS-127 73.24 73.83 76.89 70.00 6.89
    After damp heating test 71.54 71.27 76.59 73.57 3.02
    VO2@SiO2-KH550-CBS-127 75.96 75.77 77.78 68.62 9.16
    After damp heating test 72.95 73.40 77.02 69.49 7.53
    VO2@SiO2-KH550-CBS-127-PMMA 74.07 74.70 76.32 67.86 8.46
    After damp heating test 72.82 73.15 76.21 67.73 8.48
    VO2-CBS-X 72.86 72.44 74.84 67.73 7.11
    After damp heating test 74.21 74.92 75.97 73.27 2.70
    VO2@SiO2-KH550-CBS-X 77.15 76.61 78.48 69.39 9.09
    After damp heating test 77.41 77.61 79.89 72.18 7.71
    VO2@SiO2-KH550-CBS-127-PMMA 78.99 77.64 79.73 70.08 9.65
    After damp heating test 78.59 76.79 80.58 71.08 9.50
    下载: 导出CSV
  • [1] LIU M, SU B, TANG Y, et al. Recent advances in nanostructured vanadium oxides and composites for energy conversion[J]. Advanced Energy Materials,2017,7(23):1700885. doi: 10.1002/aenm.201700885
    [2] GAO Y, LUO H, ZHANG Z, et al. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing[J]. Nano Energy,2012,1(2):221-246. doi: 10.1016/j.nanoen.2011.12.002
    [3] GAO L, BRYAN B A. Finding pathways to national-scale land-sector sustainability[J]. Nature,2017,544(7649):217-222. doi: 10.1038/nature21694
    [4] OMER A M. Energy, environment and sustainable development[J]. Renewable and Sustainable Energy Reviews,2008,12(9):2265-2300. doi: 10.1016/j.rser.2007.05.001
    [5] TARANTINI M, LOPRIENO A D, PORTA P L. A life cycle approach to Green Public Procurement of building materials and elements: A case study on windows[J]. Energy,2011,36(5):2473-2482. doi: 10.1016/j.energy.2011.01.039
    [6] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review[J]. Solar Energy Materials and Solar Cells,2010,94(2):87-105. doi: 10.1016/j.solmat.2009.08.021
    [7] KAKLAUSKAS A, ZAVADSKAS E K, RASLANAS S, et al. Selection of low-E windows in retrofit of public buildings by applying multiple criteria method COPRAS: A lithuanian case[J]. Energy and Buildings,2006,38(5):454-462. doi: 10.1016/j.enbuild.2005.08.005
    [8] 王娜, 白云峰, 孟欣, 等. 浅谈我国Low-E玻璃发展现状及趋势[J]. 建材发展导向, 2016, 14(20):24-27.

    WANG N, BAI Y F, MENG X, et al. Briefly discuss the deve-lopment status and trend of low-E glass in China[J]. Deve-lopment Guide to Building Materials,2016,14(20):24-27(in Chinese).
    [9] KAMALISARVESTANI M, SAIDUR R, MEKHILEF S, et al. Performance, materials and coating technologies of thermochromic thin films on smart windows[J]. Renewable and Sustainable Energy Reviews,2013,26:353-364. doi: 10.1016/j.rser.2013.05.038
    [10] WANG S, GAN W, HU X, et al. Supramolecular strategy for smart windows[J]. Chemical Communications,2019,55(29):4137-4149. doi: 10.1039/C9CC00273A
    [11] BABULANAM S M, ERIKSSON T S, NIKLASSON G A, et al. Thermochromic VO2 films for energy-efficient windows[J]. Solar Energy Materials,1987,16(5):347-363. doi: 10.1016/0165-1633(87)90029-3
    [12] 陈长, 曹传祥, 罗宏杰, 等. 二氧化钒智能节能窗: 从镀膜玻璃到节能发电一体化窗[J]. 科学通报, 2016, 61(15):1661-1678. doi: 10.1360/N972015-01403

    CHEN Z, CAO C X, LUO H J, et al. VO2-based thermochromic smart window: From energy savings to generation[J]. Chinese Science Bulletin,2016,61(15):1661-1678(in Chinese). doi: 10.1360/N972015-01403
    [13] 孙蕊, 姚琳, 贺军辉, 等. 热致变色材料智能涂层[J]. 化学进展, 2019, 31:1712-1728.

    SUN R, YAO L, HE J H, et al. Thermochromic smart coatings[J]. Progress in Chemistry,2019,31:1712-1728(in Chinese).
    [14] WANG S, LIU M, KONG L, et al. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties[J]. Progress in Materials Science,2016,81:1-54. doi: 10.1016/j.pmatsci.2016.03.001
    [15] CHANG T, CAO X, BAO S, et al. Review on thermochromic vanadium dioxide based smart coatings: From lab to commercial application[J]. Advances in Manufacturing,2018,6(1):1-19. doi: 10.1007/s40436-017-0209-2
    [16] XU F, CAO X, LUO H, et al. Recent advances in VO2-based thermochromic composites for smart windows[J]. Journal of Materials Chemistry C,2018,6(8):1903-1919. doi: 10.1039/C7TC05768G
    [17] CUI Y, KE Y, LIU C, et al. Thermochromic VO2 for energy-efficient smart windows[J]. Joule,2018,2(9):1707-1746. doi: 10.1016/j.joule.2018.06.018
    [18] TONG K, LI R, ZHU J, et al. Preparation of VO2/Al-O core-shell structure with enhanced weathering resistance for smart window[J]. Ceramics International,2017,43(5):4055-4061. doi: 10.1016/j.ceramint.2016.11.181
    [19] CHEN Y, SHAO Z, YANG Y, et al. Electrons-donating derived dual-resistant crust of VO2 nano-particles via ascorbic acid treatment for highly stable smart windows applications[J]. ACS Applied Materials & Interfaces,2019,11(44):41229-41237.
    [20] JIANG M, BAO S, CAO X, et al. Improved luminous transmittance and diminished yellow color in VO2 energy efficient smart thin films by Zn doping[J]. Ceramics International,2014,40(4):6331-6334. doi: 10.1016/j.ceramint.2013.10.083
    [21] 秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双(苯并噁唑- 2-基)萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10):3412-3423. doi: 10.13801/j.cnki.fhclxb.20210111.002

    QIN C Y, GAO Y, WANG C, et al. Vanadium dioxide-1, 4-bis(benzoxazol-2-yl)naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica,2021,38(10):3412-3423(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210111.002
    [22] GAO Y, QIN C, NIE Y, et al. Color tunable vanadium dio-xide/fluorescent organic small molecule two-layer composite films with thermochromic property[J]. Thin Solid Films,2021,734:138861. doi: 10.1016/j.tsf.2021.138861
    [23] LI Y, JI S, GAO Y, et al. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings[J]. Scientific Reports,2013,3:1370. doi: 10.1038/srep01370
    [24] LAN S D, CHANG C J, HUANG C F, et al. Heteroepitaxial TiO2@W-doped VO2 core/shell nanocrystal films: Preparation, characterization, and application as bifunctional window coatings[J]. RSC Advances,2015,5(90):73742-73751. doi: 10.1039/C5RA11202H
    [25] YAO L, QU Z, PANG Z, et al. Three-layered hollow nanospheres based coatings with ultrahigh-performance of energy-saving, antireflection, and self-cleaning for smart windows[J]. Small,2018,14(34):1801661. doi: 10.1002/smll.201801661
    [26] CHEN Y, ZENG X, ZHU J, et al. High performance and enhanced durability of thermochromic films using VO2@ZnO core-shell nanoparticles[J]. ACS Applied Materials & Interfaces,2017,9(33):27784-27791.
    [27] GAO Y, WANG S, LUO H, et al. Enhanced chemical stabi-lity of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control[J]. Energy & Environmental Science,2012,5(3):6104-6110.
    [28] WANG M, TIAN J, ZHANG H, et al. Novel synthesis of pure VO2@SiO2 core@shell nanoparticles to improve the optical and anti-oxidant properties of a VO2 film[J]. RSC Advances,2016,6(110):108286-108289. doi: 10.1039/C6RA20636K
    [29] QU Z, YAO L, LI J, et al. Bifunctional template-induced VO2@SiO2 dual-shelled hollow nanosphere-based coatings for smart windows[J]. ACS Applied Materials & Interfaces,2019,11(17):15960-15968.
    [30] 建方方, 孙萍萍, 李玉峰, 等. 反式-4, 4'-二(邻甲氧基苯乙烯基)联苯化合物的合成、结构及光物理性能[J]. 化学学报, 2008, 66(17):2006-2010. doi: 10.3321/j.issn:0567-7351.2008.17.013

    JIAN F F, SUN P P, LI Y F, et al. Synthesis, crystal structure and optic properties of trans-4, 4'-bis(o-methoxylstyryl)biphenyl compound[J]. Acta Chimica Sinica,2008,66(17):2006-2010(in Chinese). doi: 10.3321/j.issn:0567-7351.2008.17.013
    [31] JIANG D, CHEN L, FU W, et al. Simultaneous determination of 11 fluorescent whitening agents in food-contact paper and board by ion-pairing high-performance liquid chromatography with fluorescence detection[J]. Journal of Separation Science,2015,38(4):605-611. doi: 10.1002/jssc.201401110
    [32] SONG H, LI W, LIU G, et al. Study on the optical properties of 4, 4′-bis-(2-(substituted-styryl))biphenyl and 1, 4-bis-(2-(substituted-styryl))benzene[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2003,59(9):2041-2048. doi: 10.1016/S1386-1425(03)00003-9
    [33] 冯玉君. 荧光增白剂CBS-127合成工艺研究[J]. 河南化工, 2003(9):18-19. doi: 10.3969/j.issn.1003-3467.2003.01.007

    FENG Y J. Research of synthetic process of fluorescent whitener CBS-127[J]. Henan Chemical Engineering,2003(9):18-19(in Chinese). doi: 10.3969/j.issn.1003-3467.2003.01.007
    [34] KO K Y, LEE C A, CHOI J C, et al. Determination of tinopal CBS-X in rice papers and rice noodles using HPLC with fluorescence detection and LC-MS/MS[J]. Food Additives & Contaminants: Part A,2014,31(9):1451-1459.
    [35] ZHU J, ZHOU Y, WANG B, et al. Vanadium dioxide nanoparticle-based thermochromic smart coating: High luminous transmittance, excellent solar regulation efficiency, and near room temperature phase transition[J]. ACS Applied Materials & Interfaces,2015,7(50):27796-27803.
    [36] 董金美, 李颖, 文静, 等. KH550 硅烷偶联剂的水解工艺研究[J]. 盐湖研究, 2020, 28: 29-33.

    DONG J, LI Y, WEN J, et al. Research on hydrolysis process of KH550 silane coupling agent[J]. Journal of Salt Lake Research, 2020, 28: 29-33(in Chinese).
    [37] CHANG T, CAO X, LONG Y, et al. How to properly evaluate and compare the thermochromic performance of VO2-based smart coatings[J]. Journal of Materials Chemistry A,2019,7(42):24164-24172. doi: 10.1039/C9TA06681K
    [38] CHANG T, CAO X, LI N, et al. Facile and low-temperature fabrication of thermochromic Cr2O3/VO2 smart coatings: Enhanced solar modulation ability, high luminous transmittance and UV-shielding function[J]. ACS Applied Materials & Interfaces,2017,9(31):26029-26037.
    [39] SHAO Z, CAO X, LUO H, et al. Recent progress in the phase-transition mechanism and modulation of vanadium dio-xide materials[J]. NPG Asia Materials,2018,10(7):581-605. doi: 10.1038/s41427-018-0061-2
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  959
  • HTML全文浏览量:  525
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 修回日期:  2021-09-17
  • 录用日期:  2021-10-13
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回