Microstructure and mechanical properties of nacre-inspired TiB2/Al-Cu composites
-
摘要: 陶瓷增强铝基复合材料是轻量化结构件的较理想材料,但随着陶瓷增强相含量的增加,复合材料的韧性会降低,导致复合材料服役过程中安全性的下降。因此如何实现复合材料高强韧性的匹配是制备陶瓷增强铝基复合材料一直存在的难题。根据仿生学思想,采用冷冻铸造及压力浸渗技术制备了不同陶瓷初始固相含量(20vol%、30vol%、40vol%)的TiB2/Al-Cu层状复合材料。采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射分析(XRD)和力学性能测试研究了不同陶瓷初始固相含量对于TiB2/Al-Cu层状复合材料微观组织和力学性能的影响。实验结果表明,随着陶瓷初始固相含量的提升,复合材料中陶瓷片层厚度增加,金属片层厚度减小,复合材料的抗压强度有所提升但抗弯强度和断裂韧性下降。其中,20vol%陶瓷初始固相含量的TiB2/Al-Cu层状复合材料拥有较优的断裂韧性,达到了(20.59±1.5) MPa·m1/2;40vol%陶瓷初始固相含量制备的TiB2/Al-Cu层状复合材料拥有较优的抗压强度,达到了(670±20) MPa。这主要是因为随着复合材料中陶瓷初始固相含量的提升,层状复合材料更容易发生界面脱层,层状复合材料通过合金塑性变形等增韧效果减弱;同时,裂纹偏折、界面剥落、裂纹分支等增韧效果也降低。Abstract: Ceramic-reinforced aluminum-based composites are ideal materials for lightweight structural parts. However, as the content of the ceramic reinforcement phase increases, the toughness of the composites will decrease, resulting in a decrease in the safety of the composites during service. Therefore, how to achieve the matching of high strength and toughness of composite materials is a problem that has always existed in the preparation of ceramic reinforced aluminum matrix composites. According to the idea of bionics, the nacre-inspired TiB2/Al-Cu composites with different ceramic initial solid contents (20vol%, 30vol%, 40vol%) were successfully prepared by freezing casting and pressure infiltration. The microstructures and mechanical properties of nacre-inspired TiB2/Al-Cu composites were studied by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and mechanical testing. The experimental results show that with the increase of the initial solid content of the ceramic, the thickness of the ceramic sheet in the composite material increases, while the thickness of the metal sheet layer decreases. The compressive strength of the composite material is improved, but the bending strength and fracture toughness decrease. The nacre-inspired TiB2/Al-Cu composites with 20vol% ceramic initial solid content has the better fracture toughness, reaching (20.59±1.5) MPa·m1/2. The nacre-inspired TiB2/Al-Cu composites with 40vol% ceramic initial solid content has the better compressive strength, reaching (670±20) MPa. This is mainly because as the initial solid content of the ceramic in the composite material increases, the nacre-inspired composite material are more prone to interface delamination, the toughening effect of the layered composite material through alloy plastic deformation is weakened. At the same time, the toughening effect of crack deflection, interface peeling, and crack branching is reduced.
-
图 5 不同陶瓷初始固相含量TiB2/Al-Cu层状复合材料试样的强度、应力-应变曲线和断裂韧性:(a)压缩应力-应变曲线;(b)三点弯曲应力-应变曲线;(c)单边缺口梁(SENB)试样力-位移曲线; (d)强度与断裂韧性
Figure 5. Stress-strain curves and strength and crack-initiation toughness of the nacre-inspired TiB2/Al-Cu composites with different ceramic initial solid contents: (a) Compressive stress-strain curves; (b) Three-point bending stress-strain curves; (c) Load-displacement curves of the SENB samples; (d) Strength and crack-initiation toughness
图 6 不同陶瓷初始固相含量的TiB2/Al-Cu层状复合材料弯曲试样断口形貌:((a)、(b)) 20vol%;((c)、(d)) 30vol%;((e)、(f)) 40vol%
Figure 6. Fracture surfaces of the samples after bending tests of the nacre-inspired TiB2/Al-Cu composites with different ceramic initial solid contents: ((a), (b)) 20vol%; ((c), (d)) 30vol%; ((e), (f)) 40vol%
表 1 Al-Cu合金化学成分
Table 1. Al-Cu alloy chemical composition
at% Element Cu Mn Mg Ti Al Content 5.04 0.56 0.1 0.08 Others 表 2 不同陶瓷初始固相含量TiB2/Al-Cu层状复合材料及其他仿贝壳珍珠层状陶瓷增强铝基复合材料 (AMCs)的力学性能
Table 2. The mechanical properties of nacre-inspired TiB2/Al-Cu composites with different ceramic initial solid contents and the other reported nacre-inspired lamellar structure AMCs
Alloy Direction Compressive strength/MPa Bending strength/MPa Breaking tenacity KIC /(MPa·m1/2) Ref. 0vol% TiB2/Al-Cu − 410±10 − − In this study 20vol% TiB2/Al-Cu Longitudinal 560±5 574±4 20.59±1.5 In this study 30vol% TiB2/Al-Cu Longitudinal 615±8 578±2 20.32±1.15 In this study 40vol% TiB2/Al-Cu Longitudinal 670±20 551±15 14.13±1.3 In this study 18vol% TiC/Al Longitudinal − 355 13.6 [20] 35vol% Al2O3/Al Longitudinal − 345 17 [27] 30vol% Al2O3/6061 Longitudinal 538-854 278-350 7.6-9.2 [28] 30vol% TiB2/Al-Si Longitudinal 710 629 16.4 [25] 20vol% SiC/ZL205A Longitudinal − 760±10 14.7±0.3 [29] 30vol% SiC/ZL205A Longitudinal − 626±12 12.9±0.6 [29] 40vol% SiC/ZL205A Longitudinal − 445±15 7.3±0.4 [29] -
[1] 聂金凤, 范勇, 赵磊, 等. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9):9009-9015.NIE Jinfeng, FAN Yong, ZHAO Lei, et al. Latest research progress on the strengthening and toughening mechanism of particle reinforced aluminum matrix composites[J]. Materials Reports,2021,35(9):9009-9015(in Chinese). [2] HAN B, LIU S, WANG X, et al. Simultaneously improving strength and ductility of hybrid Al-Si matrix composite with polyphasic and multi-scale ceramic particles[J]. Materials Science and Engineering: A,2021,804:140517. doi: 10.1016/j.msea.2020.140517 [3] 曹遴, 陈彪, 郭柏松, 等. 碳纳米管增强铝基复合材料分散方法研究进展[J]. 精密成形工程, 2021, 13(3):9-24. doi: 10.3969/j.issn.1674-6457.2021.03.002CAO Lin, CHEN Biao, GUO Bosong, et al. A review of carbon nanotube dispersion methods in carbon nanotube reinforced aluminium matrix composites manufacturing process[J]. Journal of Netshape Forming Engineering,2021,13(3):9-24(in Chinese). doi: 10.3969/j.issn.1674-6457.2021.03.002 [4] LEE T, LEE J, LEE D, et al. Effects of particle size and surface modification of SiC on the wear behavior of high volume fraction Al/SiCp composites[J]. Journal of Alloys and Compounds,2020,813:154647. [5] 刘宝玺, 林曾孟, 殷福星. 多级结构的金属材料强韧化机理研究进展[J]. 精密成形工程, 2021, 13(3):49-61. doi: 10.3969/j.issn.1674-6457.2021.03.005LIU Baoxi, LIN Zengmeng, YIN Fuxing. Research on the strengthening and toughening mechanism of metallic materials with multiscale hierarchical structure[J]. Journal of Netshape Forming Engineering,2021,13(3):49-61(in Chinese). doi: 10.3969/j.issn.1674-6457.2021.03.005 [6] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials,2015,14(1):23-36. doi: 10.1038/nmat4089 [7] 朱德举, 张超慧, 刘鹏. 天然和仿生柔性生物结构的设计[J]. 复合材料学报, 2018, 35(6):1636-1645.ZHU Deju, ZHANG Chaohui, LIU Peng. Study on the design of natural and biomimetic flexible biological structures[J]. Acta Materiae Compositae Sinica,2018,35(6):1636-1645(in Chinese). [8] PODSIADLO P, KAUSHIK A K, ARRUDA E M, et al. Ultrastrong and stiff layered polymer nanocomposites[J]. Science,2007,318:80-83. doi: 10.1126/science.1143176 [9] 张学骜, 刘长利, 王建方, 等. 仿珍珠层自组装制备有机/无机纳米复合薄膜[J]. 复合材料学报, 2006, 23(4):47-51. doi: 10.3321/j.issn:1000-3851.2006.04.009ZHANG Xueao, LIU Changli, WANG Jianfang, et al. Self-assembled organic/inorganic nanocomposite thin film of mimic nacre[J]. Acta Materiae Compositae Sinica,2006,23(4):47-51(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.009 [10] DAS P, MALHO J M, RAHIMI K, et al. Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios[J]. Nature Communications,2015,6:5967. doi: 10.1038/ncomms6967 [11] 周宏明, 曾麟, 易丹青, 等. 电泳沉积制备BG/BG-FHA复合涂层[J]. 复合材料学报, 2011, 28(6):194-199.ZHOU Hongming, ZENG Lin, YI Danqing, et al. BG/BG-FHA composite coatings prepared by electrophoretic deposition method[J]. Acta Materiae Compositae Sinica,2011,28(6):194-199(in Chinese). [12] DEVILLE S, SAI E, NALLA R K, et al. Freezing as a path to build complex composites[J]. Science, 2006, 311(5760): 515–518. [13] 张勋, 刘书海, 肖华平. 冷冻铸造技术制备仿贝壳层状结构陶瓷复合材料研究进展[J]. 材料导报, 2017, 31(13):99-112. doi: 10.11896/j.issn.1005-023X.2017.013.013ZHANG Xun, LIU Shuhai, XIAO Huaping. Applying freeze-casting technique to the fabrication of nacre-like lamellar structured ceramic composites: A state-of-the-art review[J]. Materials Reports,2017,31(13):99-112(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.013.013 [14] LI Y L, SHEN P, YANG L K, et al. A novel approach to the fabrication of hierarchical Al2O3/6061Al composites with high-volume fractions of hard phases[J]. Materials Science and Engineering: A,2019,754:75-84. doi: 10.1016/j.msea.2019.03.065 [15] LIU Q, YE F, GAO Y, et al. Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties[J]. Journal of Alloys and Compounds,2014,585:146-153. [16] GUO R F, SHEN P, SUN C, et al. Processing and mechanical properties of lamellar-structured Al-7Si-5Cu/TiC composites[J]. Materials & Design,2016,106:446-453. [17] WANG Y, SHEN P, GUO R F, et al. Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration[J]. Ceramics International,2017,43(4):3831-3838. doi: 10.1016/j.ceramint.2016.12.038 [18] SCHULTZ B F, FERGUSON J B, ROHATGI P K. Microstructure and hardness of Al2O3 nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing[J]. Materials Science and Engineering: A,2011,530:87-97. [19] TONG H T, QIU F, ZUO R, et al. The effect and mechanism of alloying elements on Al/SiC interfacial reaction in Al melt[J]. Applied Surface Science,2020,501:144265. [20] GUO R F, WANG Y, SHEN P, et al. Influence of matrix property and interfacial reaction on the mechanical performance and fracture mechanism of TiC reinforced Al matrix lamellar composites[J]. Materials Science and Engineering: A,2020,775:138956.1-138956.8. [21] GENG J W, LIU G, HONG T, et al. Tuning the microstructure features of in-situ nano TiB2/Al-Cu-Mg composites to enhance mechanical properties[J]. Journal of Alloys and Compounds,2019,775:193-201. [22] ZHAO B, YANG Q, WU L, et al. Effects of nanosized particles on microstructure and mechanical properties of an aged in-situ TiB2/Al-Cu-Li composite[J]. Materials Science and Engineering: A,2019,742:573-583. [23] RAKHMONOV J, LIU K, PAN L, et al. Enhanced mechanical properties of high-temperature-resistant Al-Cu cast alloy by microalloying with Mg[J]. Journal of Alloys and Compounds,2020,827:154305. doi: 10.1016/j.jallcom.2020.154305 [24] SHEN P, XI J, FU Y, et al. Preparation of high-strength Al-Mg-Si/Al2O3 composites with lamellar structures using freeze casting and pressureless infiltration techniques[J]. Acta Metallurgica Sinica (English Letters),2014,27(5):944-950. doi: 10.1007/s40195-014-0157-9 [25] ZHANG W X, LIN B, TANG Y, et al. Microstructures and mechanical properties of high-performance nacre-inspired Al-Si/TiB2 composites prepared by freeze casting and pressure infiltration[J]. Ceramics International,2021,47(12):16891-16901. doi: 10.1016/j.ceramint.2021.03.001 [26] MAO H R, SHEN P, LIU Y H, et al. Nacre-inspired lightweight and high-strength AZ91D/Mg2B2O5w composites prepared by ice templating and pressureless infiltration[J]. Journal of Materials Science,2018,53(17):12167-12177. doi: 10.1007/s10853-018-2491-1 [27] SUN M Q, SHEN P, JIANG Q C. Microstructures and mechanical characterizations of high-performance nacre-inspired Al/Al2O3 composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 465-473. [28] LI Y L, SHEN P, YANG L K, et al. A novel approach to the fabrication of lamellar Al2O3/6061Al composites with high-volume fractions of hard phases[J]. Materials Science & Engineering A,2019,754:75-84. [29] SHAGA A, SHEN P, XIAO L G, et al. High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure[J]. Materials Science & Engineering A,2017,708:199-207. [30] LIU B X, HUANG L J, WANG B, et al. Effect of pure Ti thickness on the tensile behavior of laminated Ti-TiBw/Ti composites[J]. Materials Science and Engineering A,2014,617:115-120. doi: 10.1016/j.msea.2014.08.065 [31] MA Y, ADDAD A, JI G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J]. Acta Materialia,2020,185:287-299. doi: 10.1016/j.actamat.2019.11.068 [32] KOSEKI T, INOUE J, NAMBU S. Development of multilayer steels for improved combinations of high strength and high ductility[J]. Materials Transactions,2014,55(2):227-237. doi: 10.2320/matertrans.M2013382 [33] GUO R F, WANG Y, SHEN P, et al. Influence of matrix property and interfacial reaction on the mechanical performance and fracture mechanism of TiC reinforced Al matrix lamellar composite[J]. Materials Science and Engineering A,2020,775:138956. doi: 10.1016/j.msea.2020.138956 [34] HUANG Y, ZHANG H W, WU F. Multiple cracking in metal-ceramic laminates[J]. International Journal of Solids & Structures, 1994, 31(20): 2753–2768.