留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿贝壳TiB2/Al-Cu层状复合材料的组织及其力学性能

林波 王明辉 张文馨 肖华强 赵愈亮 张卫文

林波, 王明辉, 张文馨, 等. 仿贝壳TiB2/Al-Cu层状复合材料的组织及其力学性能[J]. 复合材料学报, 2022, 39(7): 3554-3563. doi: 10.13801/j.cnki.fhclxb.20211020.001
引用本文: 林波, 王明辉, 张文馨, 等. 仿贝壳TiB2/Al-Cu层状复合材料的组织及其力学性能[J]. 复合材料学报, 2022, 39(7): 3554-3563. doi: 10.13801/j.cnki.fhclxb.20211020.001
LIN Bo, WANG Minghui, ZHANG Wenxin, et al. Microstructure and mechanical properties of nacre-inspired TiB2/Al-Cu composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3554-3563. doi: 10.13801/j.cnki.fhclxb.20211020.001
Citation: LIN Bo, WANG Minghui, ZHANG Wenxin, et al. Microstructure and mechanical properties of nacre-inspired TiB2/Al-Cu composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3554-3563. doi: 10.13801/j.cnki.fhclxb.20211020.001

仿贝壳TiB2/Al-Cu层状复合材料的组织及其力学性能

doi: 10.13801/j.cnki.fhclxb.20211020.001
基金项目: 国家自然科学基金项目(52074131;51704084);贵州省千层次创新型人才项目(贵大“千”层次[2018]03);贵州省自然科学基金一般项目(黔科合基础-ZK[2021]一般267);贵州省科技成果应用及产业化项目(黔科合成果[2021]一般067);贵州大学培育项目(2019[23])
详细信息
    通讯作者:

    林波,博士,副教授,硕士生导师,研究方向为铝基层状复合材料 E-mail: linbo1234@126.com

    张文馨,硕士,研究方向为铝基复合材料 E-mail: 18813094070@163.com

  • 中图分类号: TB333

Microstructure and mechanical properties of nacre-inspired TiB2/Al-Cu composites

  • 摘要: 陶瓷增强铝基复合材料是轻量化结构件的较理想材料,但随着陶瓷增强相含量的增加,复合材料的韧性会降低,导致复合材料服役过程中安全性的下降。因此如何实现复合材料高强韧性的匹配是制备陶瓷增强铝基复合材料一直存在的难题。根据仿生学思想,采用冷冻铸造及压力浸渗技术制备了不同陶瓷初始固相含量(20vol%、30vol%、40vol%)的TiB2/Al-Cu层状复合材料。采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射分析(XRD)和力学性能测试研究了不同陶瓷初始固相含量对于TiB2/Al-Cu层状复合材料微观组织和力学性能的影响。实验结果表明,随着陶瓷初始固相含量的提升,复合材料中陶瓷片层厚度增加,金属片层厚度减小,复合材料的抗压强度有所提升但抗弯强度和断裂韧性下降。其中,20vol%陶瓷初始固相含量的TiB2/Al-Cu层状复合材料拥有较优的断裂韧性,达到了(20.59±1.5) MPa·m1/2;40vol%陶瓷初始固相含量制备的TiB2/Al-Cu层状复合材料拥有较优的抗压强度,达到了(670±20) MPa。这主要是因为随着复合材料中陶瓷初始固相含量的提升,层状复合材料更容易发生界面脱层,层状复合材料通过合金塑性变形等增韧效果减弱;同时,裂纹偏折、界面剥落、裂纹分支等增韧效果也降低。

     

  • 图  1  冷冻铸造实验装置示意图

    Figure  1.  Schematic diagram of the freeze casting process

    PTFE—Poly tetra fluoroethylene

    图  2  不同陶瓷初始固相含量的TiB2/Al-Cu层状复合材料的XRD图谱

    Figure  2.  XRD patterns of the TiB2/Al-Cu composites corresponding with different ceramic initial solid contents

    图  3  TiB2/Al-Cu层状复合材料30vol%陶瓷初始固相含量试样的SEM图像(a)和EDS能谱图((b)~(g))

    Figure  3.  SEM image (a) and EDS mappings ((b)-(g)) of the TiB2/Al-Cu composites corresponding with 30vol% ceramic initial solid content

    图  4  不同陶瓷初始固相含量的TiB2/Al-Cu层状复合材料试样光学显微镜图像:(a) 20vol%;(b) 30vol%;(c) 40vol%

    Figure  4.  Optical microscope images of nacre-inspired TiB2/Al-Cu composites with different ceramic initial solid contents: (a) 20vol%; (b) 30vol%; (c) 40vol%

    图  5  不同陶瓷初始固相含量TiB2/Al-Cu层状复合材料试样的强度、应力-应变曲线和断裂韧性:(a)压缩应力-应变曲线;(b)三点弯曲应力-应变曲线;(c)单边缺口梁(SENB)试样力-位移曲线; (d)强度与断裂韧性

    Figure  5.  Stress-strain curves and strength and crack-initiation toughness of the nacre-inspired TiB2/Al-Cu composites with different ceramic initial solid contents: (a) Compressive stress-strain curves; (b) Three-point bending stress-strain curves; (c) Load-displacement curves of the SENB samples; (d) Strength and crack-initiation toughness

    图  6  不同陶瓷初始固相含量的TiB2/Al-Cu层状复合材料弯曲试样断口形貌:((a)、(b)) 20vol%;((c)、(d)) 30vol%;((e)、(f)) 40vol%

    Figure  6.  Fracture surfaces of the samples after bending tests of the nacre-inspired TiB2/Al-Cu composites with different ceramic initial solid contents: ((a), (b)) 20vol%; ((c), (d)) 30vol%; ((e), (f)) 40vol%

    图  7  不同陶瓷初始固相含量TiB2/Al-Cu层状复合材料SENB试样裂纹扩展路径:((a)、(b)) 20vol%;((c)、(d)) 30vol%;((e)、(f)) 40vol%

    Figure  7.  Crack propagation path of SENB sample of nacre-inspired TiB2/Al-Cu composite with different ceramic initial solid contents: ((a), (b)) 20vol%; ((c), (d)) 30vol%; ((e), (f)) 40vol%

    表  1  Al-Cu合金化学成分

    Table  1.   Al-Cu alloy chemical composition at%

    ElementCuMnMgTiAl
    Content5.040.560.10.08Others
    下载: 导出CSV

    表  2  不同陶瓷初始固相含量TiB2/Al-Cu层状复合材料及其他仿贝壳珍珠层状陶瓷增强铝基复合材料 (AMCs)的力学性能

    Table  2.   The mechanical properties of nacre-inspired TiB2/Al-Cu composites with different ceramic initial solid contents and the other reported nacre-inspired lamellar structure AMCs

    AlloyDirectionCompressive strength/MPaBending strength/MPaBreaking tenacity KIC /(MPa·m1/2)Ref.
    0vol% TiB2/Al-Cu410±10In this study
    20vol% TiB2/Al-CuLongitudinal560±5574±420.59±1.5In this study
    30vol% TiB2/Al-CuLongitudinal615±8578±220.32±1.15In this study
    40vol% TiB2/Al-CuLongitudinal670±20551±1514.13±1.3In this study
    18vol% TiC/AlLongitudinal35513.6[20]
    35vol% Al2O3/AlLongitudinal34517[27]
    30vol% Al2O3/6061Longitudinal538-854278-3507.6-9.2[28]
    30vol% TiB2/Al-SiLongitudinal71062916.4[25]
    20vol% SiC/ZL205ALongitudinal760±1014.7±0.3[29]
    30vol% SiC/ZL205ALongitudinal626±1212.9±0.6[29]
    40vol% SiC/ZL205ALongitudinal445±157.3±0.4[29]
    下载: 导出CSV
  • [1] 聂金凤, 范勇, 赵磊, 等. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9):9009-9015.

    NIE Jinfeng, FAN Yong, ZHAO Lei, et al. Latest research progress on the strengthening and toughening mechanism of particle reinforced aluminum matrix composites[J]. Materials Reports,2021,35(9):9009-9015(in Chinese).
    [2] HAN B, LIU S, WANG X, et al. Simultaneously improving strength and ductility of hybrid Al-Si matrix composite with polyphasic and multi-scale ceramic particles[J]. Materials Science and Engineering: A,2021,804:140517. doi: 10.1016/j.msea.2020.140517
    [3] 曹遴, 陈彪, 郭柏松, 等. 碳纳米管增强铝基复合材料分散方法研究进展[J]. 精密成形工程, 2021, 13(3):9-24. doi: 10.3969/j.issn.1674-6457.2021.03.002

    CAO Lin, CHEN Biao, GUO Bosong, et al. A review of carbon nanotube dispersion methods in carbon nanotube reinforced aluminium matrix composites manufacturing process[J]. Journal of Netshape Forming Engineering,2021,13(3):9-24(in Chinese). doi: 10.3969/j.issn.1674-6457.2021.03.002
    [4] LEE T, LEE J, LEE D, et al. Effects of particle size and surface modification of SiC on the wear behavior of high volume fraction Al/SiCp composites[J]. Journal of Alloys and Compounds,2020,813:154647.
    [5] 刘宝玺, 林曾孟, 殷福星. 多级结构的金属材料强韧化机理研究进展[J]. 精密成形工程, 2021, 13(3):49-61. doi: 10.3969/j.issn.1674-6457.2021.03.005

    LIU Baoxi, LIN Zengmeng, YIN Fuxing. Research on the strengthening and toughening mechanism of metallic materials with multiscale hierarchical structure[J]. Journal of Netshape Forming Engineering,2021,13(3):49-61(in Chinese). doi: 10.3969/j.issn.1674-6457.2021.03.005
    [6] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials,2015,14(1):23-36. doi: 10.1038/nmat4089
    [7] 朱德举, 张超慧, 刘鹏. 天然和仿生柔性生物结构的设计[J]. 复合材料学报, 2018, 35(6):1636-1645.

    ZHU Deju, ZHANG Chaohui, LIU Peng. Study on the design of natural and biomimetic flexible biological structures[J]. Acta Materiae Compositae Sinica,2018,35(6):1636-1645(in Chinese).
    [8] PODSIADLO P, KAUSHIK A K, ARRUDA E M, et al. Ultrastrong and stiff layered polymer nanocomposites[J]. Science,2007,318:80-83. doi: 10.1126/science.1143176
    [9] 张学骜, 刘长利, 王建方, 等. 仿珍珠层自组装制备有机/无机纳米复合薄膜[J]. 复合材料学报, 2006, 23(4):47-51. doi: 10.3321/j.issn:1000-3851.2006.04.009

    ZHANG Xueao, LIU Changli, WANG Jianfang, et al. Self-assembled organic/inorganic nanocomposite thin film of mimic nacre[J]. Acta Materiae Compositae Sinica,2006,23(4):47-51(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.009
    [10] DAS P, MALHO J M, RAHIMI K, et al. Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios[J]. Nature Communications,2015,6:5967. doi: 10.1038/ncomms6967
    [11] 周宏明, 曾麟, 易丹青, 等. 电泳沉积制备BG/BG-FHA复合涂层[J]. 复合材料学报, 2011, 28(6):194-199.

    ZHOU Hongming, ZENG Lin, YI Danqing, et al. BG/BG-FHA composite coatings prepared by electrophoretic deposition method[J]. Acta Materiae Compositae Sinica,2011,28(6):194-199(in Chinese).
    [12] DEVILLE S, SAI E, NALLA R K, et al. Freezing as a path to build complex composites[J]. Science, 2006, 311(5760): 515–518.
    [13] 张勋, 刘书海, 肖华平. 冷冻铸造技术制备仿贝壳层状结构陶瓷复合材料研究进展[J]. 材料导报, 2017, 31(13):99-112. doi: 10.11896/j.issn.1005-023X.2017.013.013

    ZHANG Xun, LIU Shuhai, XIAO Huaping. Applying freeze-casting technique to the fabrication of nacre-like lamellar structured ceramic composites: A state-of-the-art review[J]. Materials Reports,2017,31(13):99-112(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.013.013
    [14] LI Y L, SHEN P, YANG L K, et al. A novel approach to the fabrication of hierarchical Al2O3/6061Al composites with high-volume fractions of hard phases[J]. Materials Science and Engineering: A,2019,754:75-84. doi: 10.1016/j.msea.2019.03.065
    [15] LIU Q, YE F, GAO Y, et al. Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties[J]. Journal of Alloys and Compounds,2014,585:146-153.
    [16] GUO R F, SHEN P, SUN C, et al. Processing and mechanical properties of lamellar-structured Al-7Si-5Cu/TiC composites[J]. Materials & Design,2016,106:446-453.
    [17] WANG Y, SHEN P, GUO R F, et al. Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration[J]. Ceramics International,2017,43(4):3831-3838. doi: 10.1016/j.ceramint.2016.12.038
    [18] SCHULTZ B F, FERGUSON J B, ROHATGI P K. Microstructure and hardness of Al2O3 nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing[J]. Materials Science and Engineering: A,2011,530:87-97.
    [19] TONG H T, QIU F, ZUO R, et al. The effect and mechanism of alloying elements on Al/SiC interfacial reaction in Al melt[J]. Applied Surface Science,2020,501:144265.
    [20] GUO R F, WANG Y, SHEN P, et al. Influence of matrix property and interfacial reaction on the mechanical performance and fracture mechanism of TiC reinforced Al matrix lamellar composites[J]. Materials Science and Engineering: A,2020,775:138956.1-138956.8.
    [21] GENG J W, LIU G, HONG T, et al. Tuning the microstructure features of in-situ nano TiB2/Al-Cu-Mg composites to enhance mechanical properties[J]. Journal of Alloys and Compounds,2019,775:193-201.
    [22] ZHAO B, YANG Q, WU L, et al. Effects of nanosized particles on microstructure and mechanical properties of an aged in-situ TiB2/Al-Cu-Li composite[J]. Materials Science and Engineering: A,2019,742:573-583.
    [23] RAKHMONOV J, LIU K, PAN L, et al. Enhanced mechanical properties of high-temperature-resistant Al-Cu cast alloy by microalloying with Mg[J]. Journal of Alloys and Compounds,2020,827:154305. doi: 10.1016/j.jallcom.2020.154305
    [24] SHEN P, XI J, FU Y, et al. Preparation of high-strength Al-Mg-Si/Al2O3 composites with lamellar structures using freeze casting and pressureless infiltration techniques[J]. Acta Metallurgica Sinica (English Letters),2014,27(5):944-950. doi: 10.1007/s40195-014-0157-9
    [25] ZHANG W X, LIN B, TANG Y, et al. Microstructures and mechanical properties of high-performance nacre-inspired Al-Si/TiB2 composites prepared by freeze casting and pressure infiltration[J]. Ceramics International,2021,47(12):16891-16901. doi: 10.1016/j.ceramint.2021.03.001
    [26] MAO H R, SHEN P, LIU Y H, et al. Nacre-inspired lightweight and high-strength AZ91D/Mg2B2O5w composites prepared by ice templating and pressureless infiltration[J]. Journal of Materials Science,2018,53(17):12167-12177. doi: 10.1007/s10853-018-2491-1
    [27] SUN M Q, SHEN P, JIANG Q C. Microstructures and mechanical characterizations of high-performance nacre-inspired Al/Al2O3 composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 465-473.
    [28] LI Y L, SHEN P, YANG L K, et al. A novel approach to the fabrication of lamellar Al2O3/6061Al composites with high-volume fractions of hard phases[J]. Materials Science & Engineering A,2019,754:75-84.
    [29] SHAGA A, SHEN P, XIAO L G, et al. High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure[J]. Materials Science & Engineering A,2017,708:199-207.
    [30] LIU B X, HUANG L J, WANG B, et al. Effect of pure Ti thickness on the tensile behavior of laminated Ti-TiBw/Ti composites[J]. Materials Science and Engineering A,2014,617:115-120. doi: 10.1016/j.msea.2014.08.065
    [31] MA Y, ADDAD A, JI G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J]. Acta Materialia,2020,185:287-299. doi: 10.1016/j.actamat.2019.11.068
    [32] KOSEKI T, INOUE J, NAMBU S. Development of multilayer steels for improved combinations of high strength and high ductility[J]. Materials Transactions,2014,55(2):227-237. doi: 10.2320/matertrans.M2013382
    [33] GUO R F, WANG Y, SHEN P, et al. Influence of matrix property and interfacial reaction on the mechanical performance and fracture mechanism of TiC reinforced Al matrix lamellar composite[J]. Materials Science and Engineering A,2020,775:138956. doi: 10.1016/j.msea.2020.138956
    [34] HUANG Y, ZHANG H W, WU F. Multiple cracking in metal-ceramic laminates[J]. International Journal of Solids & Structures, 1994, 31(20): 2753–2768.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1573
  • HTML全文浏览量:  644
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-09-23
  • 录用日期:  2021-10-10
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回