留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原儿茶酸环氧树脂的制备与应用性能测试

曹兆林 姚玉成 谈继淮 程振朔 程存照 朱新宝

曹兆林, 姚玉成, 谈继淮, 等. 原儿茶酸环氧树脂的制备与应用性能测试[J]. 复合材料学报, 2022, 39(7): 3224-3231. doi: 10.13801/j.cnki.fhclxb.20211018.006
引用本文: 曹兆林, 姚玉成, 谈继淮, 等. 原儿茶酸环氧树脂的制备与应用性能测试[J]. 复合材料学报, 2022, 39(7): 3224-3231. doi: 10.13801/j.cnki.fhclxb.20211018.006
CAO Zhaolin, YAO Yucheng, TAN Jihuai, et al. Preparation and application of epoxy resin derived from protocatechuic acid[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3224-3231. doi: 10.13801/j.cnki.fhclxb.20211018.006
Citation: CAO Zhaolin, YAO Yucheng, TAN Jihuai, et al. Preparation and application of epoxy resin derived from protocatechuic acid[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3224-3231. doi: 10.13801/j.cnki.fhclxb.20211018.006

原儿茶酸环氧树脂的制备与应用性能测试

doi: 10.13801/j.cnki.fhclxb.20211018.006
基金项目: 江苏省重点研发计划项目(BE2019111);国家重点研发计划项目(2018YFD0600402)
详细信息
    通讯作者:

    朱新宝,硕士,教授,博士生导师,研究方向为精细有机合成 E-mail: zhuxinbao@njfu.com.cn

  • 中图分类号: TB332

Preparation and application of epoxy resin derived from protocatechuic acid

  • 摘要: 环氧树脂质脆需要增韧才能满足应用要求,以天然原儿茶酸(Protocatechuic acid,PA)和环氧氯丙烷为原料,通过两步法反应合成原儿茶酸环氧树脂(PA-EP),并将其作为特种环氧树脂用于双酚A环氧树脂(E-51)的改性研究。采用傅里叶红外光谱仪(FTIR)、核磁共振(1HNMR)、电位滴定仪和黏度仪对产物进行结构表征和性能测试。FTIR和1HNMR分析表明成功合成目标产物,环氧值为0.73 eq/100 g,25℃下黏度为43.2 Pa·s。力学性能分析表明,当PA-EP与E-51质量比为10%时,PA-EP/E-51固化物的力学性能最佳,拉伸强度、弯曲强度和冲击强度比纯E-51分别提升了37.4%、17.2%和82.9%。冲击断面的扫描电子显微镜(SEM)结果表明,10%PA-EP/E-51固化物呈现良好的韧性断裂特征。动态机械分析(DMA)和热重分析(TG)结果表明,随着PA-EP含量的增加,固化物的玻璃化转变温度(Tg)由纯E-51的116.0℃提高到12.5%PA-EP/E-51的137.3℃,失重10%的温度和最大分解速率的温度都略微下降,但800℃残渣量由纯E-51的5.9%提高到12.5% PA-EP/E-51的9.8%。

     

  • 图  1  原儿茶酸环氧树脂(PA-EP)的反应方程

    Figure  1.  Chemical equation of protocatechuic acid-epoxy resin (PA-EP)

    TEBAC—Benzyltriethylammonium chloride

    图  2  PA-EP合成及PA-EP/E-51固化物制备

    Figure  2.  Schematic synthetic route of PA-EP and typical preparation process of PA-EP/E-51 thermosets

    PA—Protocatechuic acid; EP—Epoxy resin; DETA—Diethylenetriamine; E-51—Diglycidyl ether of bisphenol A

    图  3  PA和PA-EP的FTIR图谱

    Figure  3.  FTIR spectras of PA and PA-EP

    图  4  不同PA-EP质量比的PA-EP/E-51固化物的FTIR图谱

    Figure  4.  FTIR spectras of PA-EP/E-51 cured products with different PA-EP mass ratios

    图  5  PA和PA-EP的1HNMR图谱

    Figure  5.  1HNMR spectras of PA and PA-EP

    图  6  不同PA-EP质量比的PA-EP/E-51固化物的损耗角正切tanδ曲线

    Figure  6.  Loss tangent tanδ curves of PA-EP/E-51 cured products with different PA-EP mass ratios

    图  7  PA-EP/E-51固化物的拉伸强度(a)、弯曲强度(b)和冲击强度(c)

    Figure  7.  Tensile strength (a) , flexural strength (b) and impact strength (c) of PA-EP/E-51 cured products

    图  8  纯E-51 (a)和10%PA-EP/E-51 (b)冲击断面SEM图像

    Figure  8.  SEM images of impact section of pure E-51 (a) and 10%PA-EP/E-51 (b)

    图  9  PA-EP/E-51固化物的TG (a)和DTG (b)曲线

    Figure  9.  TG (a) and DTG (b) curves of PA-EP/E-51 cured products

    表  1  PA-EP/E-51固化物的玻璃化转变温度Tg

    Table  1.   Glass transition temperature Tg of PA-EP/E-51 cured products

    SampleTg/℃
    E-51 116.0
    2.5%PA-EP/E-51 121.4
    5%PA-EP/E-51 129.9
    7.5%PA-EP/E-51 130.0
    10%PA-EP/E-51 130.5
    12.5%PA-EP/E-51 137.3
    下载: 导出CSV

    表  2  不同PA-EP质量比的PA-EP/E-51固化物热失重数据

    Table  2.   Thermogravimetric date of PA-EP/E-51 cured products with different PA-EP mass ratios

    SampleT10%/℃Tmax/℃Residual mass/%
    E-51349.5370.15.9
    2.5%PA-EP/E-51345.9368.06.3
    5%PA-EP/E-51344.8367.57.6
    7.5%PA-EP/E-51343.3369.48.4
    10%PA-EP/E-51341.9367.19.1
    12.5%PA-EP/E-51337.1364.29.8
    Notes:T10%—Temperature at which the weight loss rate of the cured substance is 10%; Tmax—Temperature at the maximum decomposition rate.
    下载: 导出CSV
  • [1] LIU X F, LIU B W, LUO X, et al. A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin[J]. Chemical Engineering Journal,2020,380:122471.
    [2] FENG A L, HOU T Q, JIA Z R, et al. Preparation and characterization of epoxy resin filled with Ti3C2Tx MXene nanosheets with excellent electric conductiity[J]. Nanomaterials,2020,10(1):162. doi: 10.3390/nano10010162
    [3] AUVERGNE R, CAILLOL S, DAVID G, et al. Biobased thermosetting epoxy: Present and future[J]. Chemical Reviews,2014,114(2):1082-1115. doi: 10.1021/cr3001274
    [4] YOURDKHANI M, HUBERT P. A systematic study on dispersion stability of carbon nanotube-modified epoxy resins[J]. Carbon,2015,81:251-259. doi: 10.1016/j.carbon.2014.09.056
    [5] HAMERTON I, MCNAMARA L T, HOWLIN B J, et al. Toughening mechanisms in aromatic polybenzoxazines using thermoplastic oligomers and telechelics[J]. Macromolecules,2014,47(6):1946-1958.
    [6] VIJAYAN P P, HARIKRISHNAN M G, PUGLIA D, et al. Solvent uptake of liquid rubber toughened epoxy/clay nanocomposites[J]. Advances in Polymer Technology,2016,35(1):1-7.
    [7] LI S P, WU Q S, ZHU H J, et al. Impact resistance enhancement by adding core-shell particle to epoxy resin modified with hyperbranched polymer[J]. Polymers,2017,9(12):684. doi: 10.3390/polym9120684
    [8] ZHENG J Y, ZHANG X W, CAO J, et al. Behavior of epoxy resin filled with nano-SiO2 treated with a Eugenol epoxy silane[J]. Journal of Applied Polymer Science,2020,138(14):50138.
    [9] MA S Q, LIU X Q, JIANG Y H, et al. Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers[J]. Green Chemistry,2013,15:245-254. doi: 10.1039/C2GC36715G
    [10] TAKASHI T, KOHEI T, HIROSHI U. Bio-based epoxy resins from epoxidized plant oils and their shape memory behaviors[J]. Journal of the American Oil Chemists’ Society,2016,93(12):1663-1669. doi: 10.1007/s11746-016-2907-5
    [11] XIN J N, LI M, LI R, et al. Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt[J]. ACS Sustainable Chemistry & Engineering,2016,4:2754-2761.
    [12] 胡芳芳. 柔韧型桐油基环氧热固单体的制备及其结构与性能的调控[D]. 北京: 中国林业科学研究院, 2019.

    HU Fangfang. Preparation and regulation of structure and properties of flexible tung-oil-based epoxy thermosetting monomers[D]. Beijing: Chinese Academy of Forestry, 2019(in Chinese).
    [13] NIKAFSHAR S, ZABIHI O, HAMIDI S, et al. A renewable bio-based epoxy resin with improved mechanical performance that can compete with DGEBA[J]. RSC Advances,2017,7(14):8694-8701. doi: 10.1039/C6RA27283E
    [14] NILOY B, DUA T K, RITU K, et al. Protocatechuic acid, a phenolic from sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation[J]. Frontiers in Pharmacology,2017,8:251. doi: 10.3389/fphar.2017.00251
    [15] YOSWARIS S, PATCHAREEWAN P, CHATTIPAKORN S C, et al. Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine[J]. Evidence-Based Complementray and Alternative Medicine,2015,2015:593902.
    [16] CHEN X R, HOU J R, GU Q, et al. A non-bisphenol-A epoxy resin with high Tg derived from the bio-based protocatechuic acid: Synthesis and properties[J]. Polymer,2020,195:122443. doi: 10.1016/j.polymer.2020.122443
    [17] TAO Y Q, FANG L X, DAI M L, et al. Sustainable alternative to bisphenol A epoxy resin: High-performance recyclable epoxy vitrimers derived from protocatechuic acid[J]. Polymer Chemistry,2020,11:4500. doi: 10.1039/D0PY00545B
    [18] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Test methods for properties of resin casting boby: GB/T 2567—2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [19] 中国国家标准化管理委员会. 塑料 环氧化合物 环氧当量的测定: GB/T 4612—2008 [S]. 北京: 中国标准出版社, 2008

    Standardization Administration of the People’s Republic of China. Plastics-epoxy compounds determination of epoxy equivalent: GB/T 4612—2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [20] 中国国家标准化管理委员会. 塑料 环氧树脂 黏度测定方法: GB/T 22314—2008 [S]. 北京: 中国标准出版社, 2008

    Standardization Administration of the People’s Republic of China. Plastics-epoxide resins-determination of viscosity: GB/T 22314—2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [21] JIANG H, SUN L, ZHANG Y R, et al. Novel biobased epoxy resin thermosets derived from eugenol and vanillin[J]. Polymer Degradation and Stability,2019,160:45-52. doi: 10.1016/j.polymdegradstab.2018.12.007
    [22] 李庆. 反应诱导相分离增韧双酚A环氧树脂交联网络的制备及性能研究[D]. 北京: 北京化工大学, 2019.

    LI Qing. Preparation and properties of reaction-induced phase separation toughtened bisphenol A epoxy resin crosslinking network[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).
    [23] JIN X L, LI W Z, LIU Y Y, et al. Self-constructing thermal conductive filler network via reaction-induced phase separation in BNNSs/epoxy/polyetherimide composites[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105727. doi: 10.1016/j.compositesa.2019.105727
    [24] HU D, ZHENG S X. Reaction-induced microphase separation in epoxy resin containing polystyrene-block-poly(ethylene oxide) alternating multiblock copolymer[J]. European Polymer Journal,2009,45(12):3326-3338.
    [25] WANG S, MA S Q, XU C X, et al. Vanillin-derived high-performance flame retardant epoxy resins: Facile synthesis and properties[J]. Macromolecules,2017,50(5):1892-1901. doi: 10.1021/acs.macromol.7b00097
    [26] SHANG L, ZHANG X P, ZHANG M J, et al. A highly active bio-based epoxy resin with multi-functional group: Synthesis, characterization, curing and properties[J]. Journal of Materials Science,2018,53:5402-5417. doi: 10.1007/s10853-017-1797-8
    [27] 王一鸣. 基于刚性单体的生物基环氧复合材料的制备及其性能研究[D]. 石家庄: 石家庄铁道大学, 2020.

    WANG Y M. Preparation and properties of bio-based epoxy composites based on rigid monomers[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020(in Chinese).
    [28] 尚垒. 基于白藜芦醇的生物基环氧树脂合成、固化及其碳纤维复合材料性能研究[D]. 长春: 长春工业大学, 2018.

    SHANG Lei. Synthesis, curing and properties of bio-epoxy resin based on resveratrol and carbon fiber composites[D]. Changchun: Changchun University of Technology, 2018(in Chinese).
    [29] ZHANG T T, TAN J H, HAN X, et al. Novel epoxy-ended hyperbranched polyether derived from xylitol as sustainable tougheners for epoxy resin[J]. Polymer Testing,2021,94:107053. doi: 10.1016/j.polymertesting.2021.107053
    [30] YU M, FU Q H, ZHANG T T, et al. Properties and curing kinetics of epoxy resin toughened by dimer acid diglycidyl ester[J]. Thermochimica Acta,2021,699:178910. doi: 10.1016/j.tca.2021.178910
    [31] ZHAO Q, WANG X Y, HU Y H. The application of highly soluble amine-terminated aromatic polyimides with pendent tert-butyl groups as a tougher for epoxy resin[J]. Chinese Journal of Polymer Science,2015,33(10):1359-1372. doi: 10.1007/s10118-015-1685-0
    [32] LIU T, NIE Y, CHEN R, et al. Hyperbranched polyether as an all-purpose epoxy modifier: controlled synthesis and toughening mechanisms[J]. Journal of Materials Chemistry A,2014,3(3):1188-1198.
    [33] TOMUTA A, FERRANDO F, SERRA A, et al. New aromatic–aliphatic hyperbranched polyesters with vinylic end groups of different length as modifiers of epoxy/anhydride thermosets[J]. Reactive & Functional Polymers,2012,72(9):556-563.
    [34] JIN Q F, MISASI J M, WIGGINS J S, et al. Simultaneous reinforcement and toughness improvement in an aromatic epoxy network with an aliphatic hyperbranched epoxy modifier[J]. Polymer,2015,73:174-182. doi: 10.1016/j.polymer.2015.07.031
    [35] FEI X M, TANG Y Y, WEI W, et al. One-pot synthesis of tetramethyl biphenyl backboned hyperbranched epoxy resin as an efficient toughening modifier for two epoxy curing systems[J]. Polymer Bulletin,2018,75:4571-4586.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1103
  • HTML全文浏览量:  443
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-09-30
  • 录用日期:  2021-10-10
  • 网络出版日期:  2021-10-19
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回