留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨基硫脲/季铵木质素对铂的吸附

张恒 张保平 肖煜坤 王尹

张恒, 张保平, 肖煜坤, 等. 氨基硫脲/季铵木质素对铂的吸附[J]. 复合材料学报, 2022, 39(10): 4674-4684. doi: 10.13801/j.cnki.fhclxb.20211018.004
引用本文: 张恒, 张保平, 肖煜坤, 等. 氨基硫脲/季铵木质素对铂的吸附[J]. 复合材料学报, 2022, 39(10): 4674-4684. doi: 10.13801/j.cnki.fhclxb.20211018.004
ZHANG Heng, ZHANG Baoping, XIAO Yukun, et al. Adsorption of platinum by thiosemicarbazide/quaternary ammonium lignin[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4674-4684. doi: 10.13801/j.cnki.fhclxb.20211018.004
Citation: ZHANG Heng, ZHANG Baoping, XIAO Yukun, et al. Adsorption of platinum by thiosemicarbazide/quaternary ammonium lignin[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4674-4684. doi: 10.13801/j.cnki.fhclxb.20211018.004

氨基硫脲/季铵木质素对铂的吸附

doi: 10.13801/j.cnki.fhclxb.20211018.004
基金项目: 国家自然科学基金 (U1960108)
详细信息
    通讯作者:

    张保平,博士,副教授,硕士生导师,研究方向为木质素复合材料的应用 E-mail: zhangbaoping@wust.edu.cn

  • 中图分类号: TF833

Adsorption of platinum by thiosemicarbazide/quaternary ammonium lignin

  • 摘要: 木质素及其衍生物因具有经济高效和无污染等特点,在有价金属提取和有毒金属离子去除等领域具有广阔的应用前景。本研究采用氨基硫脲/季铵木质素吸附铂,通过FTIR分析揭示了吸附过程的机制,考察了盐酸浓度、Pt(IV)初始浓度、吸附时间和吸附剂用量对吸附效果的影响。结果表明,改性木质素中含有大量的酚羟基、胺基和季铵官能团,PtCl62−被氨基硫脲/季铵木质素中的酚羟基还原成PtCl42−后与胺基发生配合反应和氯离子发生离子交换反应,在盐酸浓度为0.5 mol·L−1、Pt(IV)初始浓度为1 170 mg·L−1和吸附时间为120 min的条件下,1 g·L−1氨基硫脲/季铵木质素对Pt(IV)的饱和吸附容量为267.80 mg·g−1,7 g·L−1时的最大吸附率为88.50%。吸附过程遵循Freundlich模型和准二级动力学模型,表明吸附过程为单分子层非均质的化学吸附。

     

  • 图  1  氨基硫脲木质素合成过程

    Figure  1.  Synthesis of thiosemicarbazide lignin

    图  2  氨基硫脲/季铵木质素合成过程

    Figure  2.  Synthesis of thiosemicarbazide/quaternary ammonium lignin

    DMF—Dimethyl formamide

    图  3  稻草木质素与氨基硫脲/季铵木质素FTIR图谱

    Figure  3.  FTIR spectra of rice straw lignin and thiosemicarbazide/ quaternary ammonium lignin

    图  4  稻草木质素 (a) 与氨基硫脲/季铵木质素 (b) 的SEM图像

    Figure  4.  SEM images of rice straw lignin (a) and thiosemicarbazide/ quaternary ammonium lignin (b)

    图  5  Pt(IV)初始浓度对氨基硫脲/季铵木质素吸附容量的影响

    Figure  5.  Effect of Pt(IV) initial concentration on the adsorption capacity of thiosemicarbazide/quaternary ammonium lignin

    图  6  氨基硫脲/季铵木质素吸附PtCl62−的吸附等温线

    Figure  6.  Adsorption isotherm of PtCl62− adsorbed by thiosemicarbazide/quaternary ammonium lignin

    图  7  吸附时间对氨基硫脲/季铵木质素吸附容量的影响

    Figure  7.  Effect of adsorption time on the adsorption capacity of thiosemicarbazide/quaternary ammonium lignin

    图  8  氨基硫脲/季铵木质素对PtCl62−吸附的动力学拟合曲线

    Figure  8.  Kinetic fitting curves of PtCl62− adsorption by thiosemicarbazide/quaternary ammonium lignin

    图  9  盐酸浓度对氨基硫脲/季铵木质素吸附容量的影响

    Figure  9.  Effect of the concentration of hydrochloric acid on adsorption capacity of thiosemicarbazide/quaternary ammonium lignin

    图  10  吸附剂用量对氨基硫脲/季铵木质素吸附效果的影响

    Figure  10.  Effect of the adsorbent dosage on the adsorption of thiosemicarbazide/quaternary ammonium lignin

    图  11  解吸次数对解吸率的影响

    Figure  11.  Effect of desorption times on desorption ratio

    图  12  氨基硫脲/季铵木质素吸附前和吸附后的红外图谱

    Figure  12.  FTIR spectra of thiosemicarbazide/quaternary ammonium lignin before and after adsorption

    图  13  氨基硫脲/季铵木质素对PtCl62−的吸附机制

    Figure  13.  Adsorption mechanism of PtCl62− by thiosemicarbazide/quaternary ammonium lignin

    表  1  不同种类吸附剂对Pt(IV)的吸附容量

    Table  1.   Adsorption capacities of different kinds of adsorbents for Pt(IV)

    AdsorbentsAdsorption
    capacities/(mg·g−1)
    Ref.
    Magnetic cellulose functionalized with thiol and amine40.48[28]
    Macrocyclic polyphenol resin44.85[20]
    Silicon dioxide and copolymer of 4-vinylpyridine and 2-hydroxyethylmethacrylate188.00[22]
    Ion recognition rice straw lignin218.75[29]
    Thiosemicarbazide/quaternary ammonium lignin267.80This work
    下载: 导出CSV

    表  2  氨基硫脲/季铵木质素对PtCl62−的等温吸附模型参数

    Table  2.   Parameters of adsorption isotherm models for the adsorption of PtCl62− by thiosemicarbazide/quaternary ammonium lignin

    Adsorption isotherm modelsParameters
    Langmuirqm/(mg·g−1)KL/(L·mg−1)R2
    270.400.008590.894
    Freundlich1/nKF/(L·mg−1)R2
    0.4512.0340.978
    TemkinRTb−1KTR2
    76.860.03070.949
    Notes: qm—Maximum adsorption capacity; KL—Langmuir equilibrium constant of adsorption; R2—Linear regression coefficient; 1/n—Inverse of the concentration index; KF—Freundlich adsorption equilibrium constant; R—Thermodynamic gas constant(8.314 J·mol−1·K−1); T—Temperature; b—Related constant; KT—Temkin adsorption equilibrium constant.
    下载: 导出CSV

    表  3  氨基硫脲/季铵木质素吸附PtCl62−的动力学模型参数

    Table  3.   Kinetic model parameters of PtCl62− adsorption by thiosemicarbazide/quaternary ammonium lignin

    Kinetic modelsParameters
    Pseudo first order K1/(min−1) qe,cal/(mg·g−1) R2
    0.0608 227.77 0.938
    Pseudo second order K2/(g·mg−1·min−1) qe,cal/(mg·g−1) R2
    0.000759 106.00 0.998
    W-M K31/(mg·g−1·min−1/2) A1 R12
    5.74 41.68 0.966
    K32/(mg·g−1·min−1/2) A2 R22
    0.55 90.15 0.652
    Elovich K41/(mg·g−1·min−1/2) B1 R12
    20.91 1.59 0.993
    K42/(mg·g−1·min−1/2) B2 R22
    3.04 81.68 0.718
    Notes: K1—Pseudo-first-order rate constant; qe,cal—Adsorption capacity at equilibrium; R2—Linear regression coefficient; K2—Pseudo-second-order rate constant; K31—Diffusion rate constants in the first stage; K32—Diffusion rate constant in the second stage; A1—First stage boundary layer thickness constant; A2—Second stage boundary layer thickness constant; R12—First stage linear regression coefficient; R22—Second stage linear regression coefficient; K41—First stage of the surface distribution of heterogeneous rate constant; K42—Second stage of the surface distribution of heterogeneous rate constant; B1—First stage Elovich constant; B2—Second stage Elovich constant.
    下载: 导出CSV
  • [1] GUAN H L, CHEN Y, RUAN C Y, et al. Versatile application of wet-oxidation for ambient CO abatement over Fe(OH)x supported subnanometer platinum group metal catalysts[J]. Chinese Journal of Catalysis,2020,41(4):613-621. doi: 10.1016/S1872-2067(19)63489-3
    [2] OSMIERI L, PARK J, CULLEN D A, et al. Status and challenges for the application of platinum group metal-free catalysts in proton-exchange membrane fuel cells[J]. Current Opinion in Electrochemistry,2021,25:23-26. doi: 10.1016/j.coelec.2020.08.009
    [3] MCCORMICK W, MCCRUDDEN D. Development of a highly nanoporous platinum screen-printed electrode and its application in glucose sensing[J]. Journal of Electroanalytical Chemistry,2020,860:11-18. doi: 10.1016/j.jelechem.2020.113912
    [4] YANG X M, LEZA D S, PORCEL E, et al. A facile one-pot synthesis of versatile pegylated platinum nanoflowers and their application in radiation therapy[J]. International Journal of Molecular Sciences,2020,21(5):1619. doi: 10.3390/ijms21051619
    [5] ZHANG L, LI S B, XIN J J, et al. A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Appliction to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine[J]. Microchimica Acta,2019,186(1):8-9. doi: 10.1007/s00604-018-3136-4
    [6] KRAEMER D, JUNGE M, BAU M. Oxidized ores as future resource for platinum group metals: Current state of research[J]. Chemie Ingenieur Technik,2017,89(1-2):53-63. doi: 10.1002/cite.201600092
    [7] 郭利果, 刘玉平, 苏文超, 等. 四川大岩子铂族元素低温成矿特征: BSE微区分析证据[J]. 矿物学报, 2006, 26(2):203-209. doi: 10.3321/j.issn:1000-4734.2006.02.014

    GUO Liguo, LIU Yuping, SU Wenchao, et al. Low temperature metallogenic characteristics of platinum group elements in Dayanzi, Sichuan: Evidence from BSE microanalysis[J]. Journal of Mineralogy,2006,26(2):203-209(in Chinese). doi: 10.3321/j.issn:1000-4734.2006.02.014
    [8] DING Y J, ZHENG H D, ZHANG S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection[J]. Resources, Conservation and Recycling,2020,155:104644. doi: 10.1016/j.resconrec.2019.104644
    [9] ARSENOV P V, VLASOV I S, EFIMOV A A, et al. Aerosol jet printing of platinum microheaters for the application in gas sensors[J]. IOP Conference Series: Materials Science and Engineering,2019,473(8):012042.
    [10] WANG J H, ZHONG Y Q, TONG Y, et al. Removal of aluminum nitride from secondary aluminum ash by fire process[J]. Journal of Central South University,2021,28(2):386-397. doi: 10.1007/s11771-021-4610-4
    [11] BOUDESOCQUE S, MOHAMADOU A, CONREUX A, et al. The recovery and selective extraction of gold and platinum by novel ionic liquids[J]. Separation and Purification Technology,2019,210(15):824-834. doi: 10.1016/j.seppur.2018.09.002
    [12] KWAK I S, BAE M A, WON S W. Sequential process of sorption and incineration for recovery of gold from cyanide solutions: Comparison of ion exchange resin, activated carbon and biosorbent[J]. Chemical Engineering Journal,2010,165(2):440-446. doi: 10.1016/j.cej.2010.09.027
    [13] HUANG C D, SHI X F, WANG C, et al. Boosted selectivity and enhanced capacity of As(V) removal from polluted water by triethylenetetramine activated lignin-based adsorbents[J]. International Journal of Biological Macromolecules,2019,140:1167-1174. doi: 10.1016/j.ijbiomac.2019.08.230
    [14] WU F F, CHEN L, HU P, et al. Industrial alkali lignin-derived biochar as highly efficient and low-cost adsorption material for Pb(II) from aquatic environment[J]. Bioresource Technology,2021,322:124539. doi: 10.1016/j.biortech.2020.124539
    [15] CHEN X, SUN S N, WANG X L, et al. One-pot preparation and characterization of lignin-based cation exchange resin and its utilization in Pb(II) removal[J]. Bioresource Technology,2020,295:1-5. doi: 10.1016/j.biortech.2019.122297
    [16] SHI X F, WANG C, DONG B B, et al. Cu/N doped lignin for highly selective efficient removal of As(V) from polluted water[J]. International Journal of Biological Macromolecules,2020,161:147-154. doi: 10.1016/j.ijbiomac.2020.06.016
    [17] 白成玲, 王磊, 朱振亚, 等. 氧化石墨烯/海藻酸钙水凝胶复合膜对水中Cd(II)的吸附[J]. 复合材料学报, 2020, 37(6):1458-1465. doi: 10.13801/j.cnki.fhclxb.20191016.001

    BAI Chengling, WANG Lei, ZHU Zhenya, et al. Adsorption of Cd(II) in water by graphene oxide/calcium alginate hydrogel composite membrane[J]. Acta Materiae Compo-sitae Sinica,2020,37(6):1458-1465(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191016.001
    [18] 张保平, 马钟琛, 刘运, 等. 木质素的化学改性及其对AuCl4-的吸附[J]. 化工学报, 2017, 68(5):1946-1953.

    ZHANG Baoping, MA Zhongchen, LIU Yun, et al. Chemical modification of lignin and adsorption of AuCl4-[J]. Journal of Chemical Industry,2017,68(5):1946-1953(in Chinese).
    [19] PARAJULI D, KHUNATHAI K, ADHIKARI C R, et al. Total recovery of gold, palladium, and platinum using lignophenol derivative[J]. Minerals Engineering,2009,22(13):1173-1178. doi: 10.1016/j.mineng.2009.06.003
    [20] PRIASTOMO Y, MORISADA S, KAWAKITA H, et al. Synthesis of macrocyclic polyphenol resin by methylene crosslinked calix[4]arene (MC-[4]H) for the adsorption of palladium and platinum ions[J]. New Journal of Chemistry,2019,43(21):8015-8023. doi: 10.1039/C9NJ00435A
    [21] LEBEDEVA O V, SIPKINA E I, POZHIDAEV Y N. Adsorption of platinum(IV) by a composite based on silicon dioxide and copolymer of 4-vinylpyridine and 2-hydroxyethylmethacrylate[J]. Protection of Metals and Physical Chemistry of Surfaces,2017,53(1):80-84. doi: 10.1134/S2070205117010130
    [22] LOSEV V N, ELSUFIEV E V, BUYKO O V, et al. Extraction of precious metals from industrial solutions by the pine (Pinus sylvestris) sawdust-based biosorbent modified with thiourea groups[J]. Hydrometallurgy,2018,176:118-128. doi: 10.1016/j.hydromet.2018.01.016
    [23] 张保平, 杨芳, 马钟琛, 等. 稻草木质素的硫酸法提取与表征[J]. 河北大学学报: 自然科学版, 2016, 36(5): 474-479, 486. ZHANG Baoping, YANG Fang, MA Zhongchen, et al. Extraction and characterization of rice straw lignin by sulfuric acid method[J]. Journal of Hebei University: Natural Science Edition, 2016, 36(5): 474-479, 486(in Chinese).
    [24] DUVAL A, LANGE H, LAWOKO M, et al. Reversible crosslinking of lignin via the furan-maleimide Diels-Alder reaction[J]. Green Chemistry,2015,17(11):4991-5000. doi: 10.1039/C5GC01319D
    [25] ZHANG B P, MA Z C, YANG F, et al. Adsorption properties of ion recognition rice straw lignin on PdCl42−: Equilibrium, kinetics and mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,514:260-268. doi: 10.1016/j.colsurfa.2016.11.069
    [26] 高秀清, 刘俊峰, 樊慧菊, 等. 五乙烯六胺改性活性炭对Cd离子的吸附效能[J]. 复合材料学报, 2019, 36(7):1769-1775. doi: 10.13801/j.cnki.fhclxb.20181023.002

    GAO Xiuqing, LIU Junfeng, FAN Huiju, et al. Adsorption efficiency of Cd ion on activated carbon modified by pentethylene hexamine[J]. Acta Materiae Compositae Sinica,2019,36(7):1769-1775(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181023.002
    [27] BIROL I, VOLKAN U. Adsorption of methylene blue on sodium alginate–flax seed ash beads: Isotherm, kinetic and thermodynamic studies[J]. International Journal of Biological Macromolecules,2021,167(3):1156-1167. doi: 10.1016/j.ijbiomac.2020.11.070
    [28] ANBIA M, RAHIMI F. Adsorption of platinum(IV) from an aqueous solution with magnetic cellulose functionalized with thiol and amine as a nano-active adsorbent[J]. Jour-nal of Applied Polymer Science,2017,134(39):1-8. doi: 10.1002/app.45361
    [29] ZHANG B P, SHEN B W, GUO M C, et al. Adsorption of PtCl62- from hydrochloric acid solution by chemically modified lignin based on rice straw[J]. Australian Journal of Chemistry,2018,71(12):931-938. doi: 10.1071/CH18282
    [30] LI H, WANG F H, LI J N, et al. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation[J]. Chemosphere,2021,264(P2):128556. doi: 10.1016/j.chemosphere.2020.128556
    [31] POPOVIC A L, RUSMIROVIC L D, VELICKOVIC L, et al. Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized lignin microspheres[J]. Journal of Industrial and Engineering Chemistry,2021,93:302-314. doi: 10.1016/j.jiec.2020.10.006
    [32] HASSAN K, UDDIN A S M I, CHUNG G S. Fast-response hydrogen sensors based on discrete Pt/Pd bimetallicultra-thin films[J]. Sensors and Actuators B: Chemical,2016,234:435-445. doi: 10.1016/j.snb.2016.05.013
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1053
  • HTML全文浏览量:  490
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 修回日期:  2021-09-28
  • 录用日期:  2021-10-10
  • 网络出版日期:  2021-10-18
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回