留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene及其复合吸波材料的制备与性能研究进展

吴梦 饶磊 张建峰 李月霞 纪子影 应国兵

吴梦, 饶磊, 张建峰, 等. MXene及其复合吸波材料的制备与性能研究进展[J]. 复合材料学报, 2022, 39(3): 942-955. doi: 10.13801/j.cnki.fhclxb.20211018.001
引用本文: 吴梦, 饶磊, 张建峰, 等. MXene及其复合吸波材料的制备与性能研究进展[J]. 复合材料学报, 2022, 39(3): 942-955. doi: 10.13801/j.cnki.fhclxb.20211018.001
WU Meng, RAO Lei, ZHANG Jianfeng, et al. Research progress in preparation and performance of MXene and its composite absorbing materials[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 942-955. doi: 10.13801/j.cnki.fhclxb.20211018.001
Citation: WU Meng, RAO Lei, ZHANG Jianfeng, et al. Research progress in preparation and performance of MXene and its composite absorbing materials[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 942-955. doi: 10.13801/j.cnki.fhclxb.20211018.001

MXene及其复合吸波材料的制备与性能研究进展

doi: 10.13801/j.cnki.fhclxb.20211018.001
基金项目: 国家自然科学基金 (11872171;51775167)
详细信息
    通讯作者:

    应国兵,博士,教授,博士生导师,研究方向为特种复合材料与力学行为 E-mail: yinggb2010@126.com

  • 中图分类号: TB34

Research progress in preparation and performance of MXene and its composite absorbing materials

  • 摘要: 信息时代迅猛发展的同时也给人们带来了日益严重的电磁污染问题,发展先进微波吸收材料不仅可以减少电磁波污染,也对军事安全有着重要意义。MXene是一种新型二维材料,独特的二维结构、丰富且可控的表面官能团、高比表面积、高导电率和低密度等特点使其成为一种理想的高性能微波吸收材料。本文讨论了MXene及其复合吸波材料的制备方法,介绍了和吸波性能密切相关的MXene的电磁性能,然后按照损耗机制对MXene及其复合材料的吸波性能进行总结与分析。最后从种类、结构、应用方面对MXene及其复合吸波材料的发展方向进行了展望。

     

  • 图  1  Web of Science上发表的MXene文章数量总结(2011~2020)

    Figure  1.  Number of MXene papers published on Web of Science (2011-2020)

    Inside is a summary of the number of MXene papers in the field of wave absorption (left) and electromagnetic shielding (right)

    图  2  MXene微波吸收复合材料的分类:MXene、MXene/电损耗材料、MXene/磁损耗材料、MXene/多组分损耗材料

    Figure  2.  Classification of MXene microwave absorbing composites: Pure MXene, MXene/electric loss materials, MXene/magnetic loss materials, MXene/multicomponent loss materials

    RGO—Reduced graphene oxide; SiCnw—SiC nanowire; PPy—Polypyrrole; FCI—Flaky carbonyl iron

    图  3  MAX和对应的MXene的电子结构图(a)[39]和 SEM图(b)[40]

    Figure  3.  Electronic structure (a)[39] and SEM images (b) of MAX phase and the corresponding MXene[40]

    图  4  静电自组装法制备聚偏二氟乙烯(PVDF)/SiCnw/MXene的示意图[50]

    Figure  4.  Schematic illustrations of the preparation process of poly(vinylidene fluoride) (PVDF)/SiCnw/MXene by electrostatic self-assembly method[50]

    PDDA—Poly(diallyl dimethylammonium chloride); DI—Deionized; DMF—N, N-Dimethylformamide; PVDF—Poly(vinylidene fluoride)

    图  5  溶剂热法制备CoS@Ti3C2Tx的示意图[53]

    Figure  5.  Schematic illustrations of the preparation process of CoS@Ti3C2Tx by solvothermal method[53]

    图  6  冷冻干燥法制备Ni/MXene/RGO气凝胶 (a)[56]和Ti3C2Tx@RGO气凝胶 (b) [57]的流程示意图

    Figure  6.  Schematic illustrations of the preparation process of Ni/MXene/RGO aerogel (a)[56] and Ti3C2Tx@RGO aerogel (b)[57] by freeze drying method

    图  7  原位聚合制备的Ti3C2Tx/PPy (a)[60]、CVD法制备的Ti3C2Tx/CNT (b)[62]和交替抽滤或喷涂法制备的Ti3C2Tx/TMO (c)[64]的工艺流程图

    Figure  7.  Schematic illustrations of the preparation process of Ti3C2Tx/PPy by in-situ polymerization (a)[60], Ti3C2Tx/CNT by CVD (b)[62] and Ti3C2Tx/TMO[64] by alternating filtration or spray coating methods (c)

    APS—Ammonium persulfate; CVD—Chemical vapor deposition; TMO—Transition metal oxide

    图  8  C-MCM-3的微波吸收性能测试:(a) 反射损耗; (b) 有效吸收宽带[90]

    Figure  8.  Microwave absorption properties of C-MCM-3: (a) Reflection loss; (b) Effective absorption band[90]

    图  9  (a) Ti3C2Tx@PPy的RL[93]; (b) MXene/PANI的RL值;(c) 微波吸收机制图[59]

    Figure  9.  (a) RL values of Ti3C2Tx@PPy[93]; (b) RL values of MXene/PANI ; (c) Microwave absorbing mechanism[59]

    EM—Electromagnetic; PANI—Polyaniline

    图  10  MXene/Ni的电磁波损耗机制示意图[34]

    Figure  10.  Schematic illustration of EM wave loss mechanism of MXene/Ni[34]

    Z0—Impedance of free space; Zin—Intrinsic impedance of sample

    表  1  MXene及其复合材料的吸波性能

    Table  1.   Microwave absorption properties of MXene and its composite materials

    Type Materials Methods Microwave absorbing performance Ref.
    RLmin/dB Band width/GHz Thickness/mm
    MXene Ti3C2Tx Etching MAX phase −17 5.6 (12.4-18) 1.4 [80]
    Ti3C2Tx Etching MAX phase −34.4 4.7 (12.4-17.1) 1.7 [81]
    Ti3C2Tx Etching MAX phase −45.2 3.66 1.68 [83]
    C/TiO2 Annealing process −50.3 4.7 2.1 [85]
    Ti3C2Tx/TiO2 Annealing process −40.07 3.6 1.5 [86]
    MXene/electric
    loss materials
    Ti3C2Tx/CNTs Ultrasonic spray −45 4.9 1.9 [90]
    Ti3C2/CNTs Chemical vapor deposition −52.9 4.46 1.55 [62]
    Ti3C2Tx@GO Electrostatic-spinning + Freeze drying −49.1 2.9 (12.9-15.8) 1.2 [91]
    Ti3C2Tx@RGO Hydrothermal method + Freeze drying −31.2 5.4 (11.4-16.8) 2.05 [57]
    Ti3C2Tx/SiCnw Electrostatic self-assembly+
    Freeze drying
    −55.7 4.2 (8.2-12.4) 3.5-3.8 [92]
    Ti3C2Tx/SiCnw Electrostatic self-assembly+
    Solution casting+
    Hot-pressing
    −75.8 5.0 1.5 [50]
    Ti3C2Tx@PPy In-situ polymerization −49.5 6.63 (8.55-15.18) 2.7 [93]
    Ti3C2Tx/PANI In-situ polymerization −56.3 5.95 2.4 [59]
    MXene/magnetic
    loss materials
    Ti3C2/Ni Electroless plating −24.3 2.6 (8.66-11.26) 2.2 [94]
    Ti3C2Tx@Ni Co-solvothermal −52.6 6.1 3.0 [34]
    Ti3C2Tx/Ni chain Hydrothermal method −49.9 2.1 1.75 [96]
    FeCo−Ti3C2 Hydrothermal method −17.86 8.8 (9.2-18.0) 1.6 [95]
    Fe3O4@Ti3C2Tx Solvothermal method −57.2 1.4 4.2 [98]
    NiFe2O4−Ti3C2Tx Chemical coprecipitation −24.7 7.68 (10.32-18.0) 1.5 [100]
    CoFe2O4−Ti3C2 In-situ solvothermal −30.9 8.5 (8.3-16.8) 1.5 [102]
    Ti3C2/FCI Ultrasonic mixing −15.52 8.16 (9.84-18) 1.0 [103]
    MXene/
    multicomponent
    loss materials
    Ti3C2/Fe3O4/PANI Coprecipitation + In-situ polymerization −40.3 5.2 (12.8-18) 1.9 [104]
    RGO/Nb2CTx/Fe3O4 Hydrothermal method +
    Electrostatic self-assembly
    −59.17 6.8 (9.76-16.56) 2.5 [105]
    PVB/Ti3C2/Ba3Co2Fe24O41 Tape casting −46.3 1.6 (4.9-6.5) 2.8 [106]
    Ni/TiO2/C Microwave heating −39.91 3.04 (14.24-17.28) 1.5 [107]
    Fe&TiO2@C Microwave heating +
    Heat treatment
    −51.8 6.5 (11.5-18) 1.6 [108]
    Notes: RLmin—Minimum reflection loss; GO—Graphene oxide; CNTs—Carbon nanotubes; PVB—Polyvinyl butyral.
    下载: 导出CSV
  • [1] 刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料[M]. 第二版. 北京: 化学工业出版社, 2013.

    LIU Shunhua, LIU Junmin, DONG Xinglong, et al. Electromagnetic shielding and absorbing materials[M]. 2th ed. Beijing: Chemical Industry Press, 2013(in Chinese).
    [2] YU G, YANG C, CHI H J, et al. Facile synthesis of FeCo/Fe3O4 nanocomposite with high wave-absorbing properties[J]. International Journal of Molecular Sciences,2013,14(7):14204-14213. doi: 10.3390/ijms140714204
    [3] SUI M X, SUN X D, LOU H F, et al. Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: Effect of reactant concentration, reaction temperature and reaction time[J]. Journal of Materials Science: Materials in Electronics,2018,29(9):7539-7550. doi: 10.1007/s10854-018-8746-4
    [4] PAN Y, MA G, LIU X, et al. Electromagnetic and microwave absorption properties of coatings based on spherical and flaky carbonyl iron[J]. Journal of Materials Science: Materials in Electronics,2019,30(19):18123-18134. doi: 10.1007/s10854-019-02165-4
    [5] ONO K, SHINTANI H, YANO O, et al. Absorption of 10-MHz to 110-MHz ultrasonic waves by solutions of polystyrene[J]. Polymer Journal,1973,5(2):164-175. doi: 10.1295/polymj.5.164
    [6] YE Z, LI Z, ROBERTS J A, et al. Electromagnetic wave absorption properties of carbon nanotubes-epoxy compo-sites at microwave frequencies[J]. Journal of Applied Physics,2010,108(5):054315. doi: 10.1063/1.3477195
    [7] GREEN M, LIU Z, XIANG P, et al. Doped, conductive SiO2 nanoparticles for large microwave absorption[J]. Light: Science & Applications,2018,7(1):87-96.
    [8] MEI H, ZHAO X, ZHOU S, et al. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption[J]. Chemical Engineering Journal,2019,372(31):940-945.
    [9] CUI L, HAN X, WANG F, et al. A review on recent advances in carbon-based dielectric system for microwave absorption[J]. Journal of Materials Science,2021,56(18):10782-10811. doi: 10.1007/s10853-021-05941-y
    [10] LI B, JI Z, XIE S, et al. Electromagnetic wave absorption properties of carbon black/cement-based composites filled with porous glass pellets[J]. Journal of Materials Science: Materials in Electronics,2019,30(13):12416-12425. doi: 10.1007/s10854-019-01600-w
    [11] XU J, QI X, LUO C, et al. Synthesis and enhanced microwave absorption properties: A strongly hydrogenated TiO2 nanomaterial[J]. Nanotechnology,2017,28(42):425701. doi: 10.1088/1361-6528/aa81ba
    [12] DOSOUDIL R, FRANEK J, SLAMA J, et al. Electromagnetic wave absorption performances of metal alloy/spinel ferrite/polymer composites[J]. IEEE Transactions on Magnetics,2012,48(4):1524-1527. doi: 10.1109/TMAG.2011.2172779
    [13] ABDALLA I, ELHASSAN A, YU J, et al. A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption[J]. Carbon,2020,157(14):703-713.
    [14] YE Z, LIU W, LIU Z, et al. The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids[J]. Ceramics International,2017,43(16):13146-13153. doi: 10.1016/j.ceramint.2017.07.007
    [15] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201190147
    [16] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y, et al. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): 1581
    [17] LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Materials Science and Engineering: B,2015,191:33-40. doi: 10.1016/j.mseb.2014.10.009
    [18] XIE Y, NAGUIB M, MOCHALIN V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. Journal of the American Chemical Society,2014,136(17):6385-6394. doi: 10.1021/ja501520b
    [19] KHAZAEI M, RANJBAR A, ARAI M, et al. Electronic pro-perties and applications of MXenes: A theoretical review[J]. Journal of Materials Chemistry C,2017,5(10):2488-2503. doi: 10.1039/C7TC00140A
    [20] LIU F, JIE Z, WANG S, et al. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries[J]. Journal of the Electrochemical Society,2017,164(4):709-713. doi: 10.1149/2.0641704jes
    [21] SUN D, HU Q, CHEN J, et al. Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: A first-principles investigation[J]. ACS Applied Materials & Interfaces,2016,8(1):74-81.
    [22] ZHANG C J, KREMER M P, SERAL-ASCASO A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene lnks[J]. Advanced Functional Materials,2018,28(9):1705506. doi: 10.1002/adfm.201705506
    [23] HE H, XIA Q, WANG B, et al. Two-dimensional vanadium carbide (V2CTx) MXene as supercapacitor electrode in seawater electrolyte[J]. Chinese Chemical Letters,2020,31(4):984-987. doi: 10.1016/j.cclet.2019.08.025
    [24] LIU S, LIU J, LIU X, et al. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature[J]. Nature Nanotechnology,2021,16(3):331-336. doi: 10.1038/s41565-020-00818-8
    [25] YADAV A, DASHORA A, PATEL N, et al. Study of 2D MXene Cr2C material for hydrogen storage using density functional theory[J]. Applied Surface Science,2016,389:88-95. doi: 10.1016/j.apsusc.2016.07.083
    [26] WANG B, ZHOU A, LIU F, et al. Carbon dioxide adsorption of two-dimensional carbide MXenes[J]. Journal of Advanced Ceramics,2018,7(3):237-245. doi: 10.1007/s40145-018-0275-3
    [27] ZHANG Y J, ZHOU Z J, LAN J H, et al. Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene[J]. Applied Surface Science,2017,426:572-578. doi: 10.1016/j.apsusc.2017.07.227
    [28] DING L, WEI Y, WANG Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition,2017,56(7):1825-1829. doi: 10.1002/anie.201609306
    [29] WANG K, LOU Z, WANG L, et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors[J]. ACS Nano,2019,13(8):9139-9147. doi: 10.1021/acsnano.9b03454
    [30] LIU L, WANG L, LIU X, et al. High-performance wearable strain sensor based on MXene@cotton fabric with network structure[J]. Nanomaterials,2021,11(4):889-899. doi: 10.3390/nano11040889
    [31] KIM S J, KOH H J, REN C E, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio[J]. ACS Nano,2018,12(2):986-993. doi: 10.1021/acsnano.7b07460
    [32] WU M, HE M, HU Q, et al. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room tempera-ture[J]. ACS Sensors,2019,4(10):2763-2770. doi: 10.1021/acssensors.9b01308
    [33] JIA X, SHEN B, ZHANG L, et al. Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity[J]. Carbon,2021,173(5):932-940.
    [34] LIU Q, HE X, YI C, et al. Fabrication of ultra-light nickel/graphene composite foam with 3D interpenetrating network for high-performance electromagnetic interference shielding[J]. Composites Part B: Engineering,2020,182(11):107614.
    [35] LIANG L, YANG R, HAN G, et al. Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene[J]. ACS Applied Materials & Interfaces,2020,12(2):2644-2654.
    [36] ZHANG Z, CAI Z, ZHANG Y, et al. The recent progress of MXene-based microwave absorption materials[J]. Carbon,2021,174(2):484-499.
    [37] PAN F, YU L, XIANG Z, et al. Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite[J]. Carbon,2021,172(19):506-515.
    [38] WU M, AN Y, YANG R, et al. V2CTx and Ti3C2Tx MXenes nanosheets for gas sensing[J]. ACS Applied Nano Materials,2021,4(6):6257-6268. doi: 10.1021/acsanm.1c01059
    [39] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th Anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [40] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
    [41] GHIDIU M, LUKATSKAYA M, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [42] WANG L, ZHANG H, WANG B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process[J]. Electronic Materials Letters,2016,12(5):702-710. doi: 10.1007/s13391-016-6088-z
    [43] WANG L, LIU D, LIAN W, et al. The preparation of V2CTx by facile hydrothermal-assisted etching processing and its performance in lithium-ion battery[J]. Journal of Materials Research and Technology,2020,9(1):984-993. doi: 10.1016/j.jmrt.2019.11.038
    [44] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale,2016,8(22):11385-11391. doi: 10.1039/C6NR02253G
    [45] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society,2019,141(11):4730-4737. doi: 10.1021/jacs.9b00574
    [46] LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edition,2018,57(21):6115-6119. doi: 10.1002/anie.201800887
    [47] YANG S, ZHANG P, WANG F, et al. Fluoride-free synthe-sis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie International Edition,2018,130(47):15717-15721. doi: 10.1002/ange.201809662
    [48] HU K, WANG H, ZHANG X, et al. Ultralight Ti3C2Tx MXene foam with superior microwave absorption performance[J]. Chemical Engineering Journal,2021,408:127283. doi: 10.1016/j.cej.2020.127283
    [49] LI X, WEN C, YANG L, et al. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy[J]. Carbon,2021,175(28):509-518.
    [50] MA L, HAMIDINEJAD M, LIANG C, et al. Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites[J]. Carbon,2021,179(6304):408-416.
    [51] DENG B, LIU Z, PAN F, et al. Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching[J]. Journal of Materials Chemistry A,2021,9(6):3500-3510. doi: 10.1039/D0TA10551A
    [52] HOU T, JIA Z, WANG B, et al. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber[J]. Chemical Engineering Jour-nal,2021,414(3):128875.
    [53] LIU H, LI L, CUI G, et al. Heterostructure composites of CoS nanoparticles decorated on Ti3C2Tx nanosheets and their enhanced electromagnetic wave absorption performance[J]. Nanomaterials,2020,10(9):1666-1681. doi: 10.3390/nano10091666
    [54] QIAN Y, WEI H, DONG J, et al. Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption[J]. Ceramics International,2017,43(14):10757-10762. doi: 10.1016/j.ceramint.2017.05.082
    [55] SONG Q, YE F, KONG L, et al. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range[J]. Advanced Functional Materials,2020,30(31):2000475. doi: 10.1002/adfm.202000475
    [56] LIANG L, LI Q, YAN X, et al. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance[J]. ACS Nano,2021,15(4):6622-6632. doi: 10.1021/acsnano.0c09982
    [57] WANG L, LIU H, LV X, et al. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2020,828:154251. doi: 10.1016/j.jallcom.2020.154251
    [58] YANG M, YUAN Y, LI Y, et al. Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels[J]. ACS Applied Materials & Interfaces,2020,12(29):33128-33138.
    [59] WEI H, DONG J, FANG X, et al. Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption[J]. Composites Science and Technology,2019,169(8):52-59.
    [60] TONG Y, HE M, ZHOU Y, et al. Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption[J]. Applied Surface Science,2018,434:283-293. doi: 10.1016/j.apsusc.2017.10.140
    [61] TAN K H, SAMYLINGAM L, ASLFATTAHI N, et al. Optical and conductivity studies of polyvinyl alcohol-MXene (PVA-MXene) nanocomposite thin films for electronic applications[J]. Optics & Laser Technology,2021,136:106772.
    [62] LI X, YIN X, HAN M, et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C,2017,5(16):4068-4074. doi: 10.1039/C6TC05226F
    [63] WANG Z, YANG L, ZHOU Y, et al. NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces,2021,13(14):16713-16721.
    [64] ZHAO M Q, TORELLI M, REN C E, et al. 2D Titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage[J]. Nano Energy,2016,30:603-613. doi: 10.1016/j.nanoen.2016.10.062
    [65] HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes’ electronic properties through termination and intercalation[J]. Nature Communications,2019,10(1):522-532. doi: 10.1038/s41467-018-08169-8
    [66] LIPATOV A, ALHABEB M, LUKATSKAYA M, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials,2016,2(12):1600255. doi: 10.1002/aelm.201600255
    [67] DU F, TANG H, PAN L, et al. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries[J]. Electrochimica Acta,2017,235:690-699. doi: 10.1016/j.electacta.2017.03.153
    [68] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials,2014,26(7):2374-2381. doi: 10.1021/cm500641a
    [69] KHAZAEI M, ARAI M, SASAKI T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides[J]. Advanced Functional Materials,2013,23(17):2185-2192. doi: 10.1002/adfm.201202502
    [70] ZHU J, HA E, ZHAO G, et al. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption[J]. Coordination Chemistry Reviews,2017,352:306-327. doi: 10.1016/j.ccr.2017.09.012
    [71] XIONG K, WANG P, YANG G, et al. Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities[J]. Scientific Reports,2017,7(1):15095. doi: 10.1038/s41598-017-15233-8
    [72] CUI G, SUN X, ZHANG G, et al. Electromagnetic absorption performance of two-dimensional MXene Ti3C2Tx exfoliated by HCl + LiF etchant with diverse etching times[J]. Materials Letters,2019,252:8-10. doi: 10.1016/j.matlet.2019.05.053
    [73] ZHANG Z, HE Y, LV Y, et al. Effect of surface structure and composition on the electromagnetic properties of Ti3C2Tx MXenes for highly efficient electromagnetic wave absorption[J]. The Journal of Physical Chemistry C,2020,124(36):19666-19674. doi: 10.1021/acs.jpcc.0c06115
    [74] HAN M, YIN X, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band[J]. ACS Applied Materials & Interfaces,2016,8(32):21011-21019.
    [75] TONG Y, HE M, ZHOU Y, et al. Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time[J]. Journal of Materials Science Materials in Electronics, 2018, 29(10): 8078–8088.
    [76] XIE Y, KENT P R C. Hybrid density functional study of structural and electronic properties of functionalized Ti(n+1)X(n) (X=C, N) monolayers[J]. Physical Review B,2013,87(23):235441. doi: 10.1103/PhysRevB.87.235441
    [77] ZHANG Y, LI F. Robust half-metallic ferromagnetism in Cr3C2 MXene[J]. Journal of Magnetism and Magnetic Materials,2017,433:222-226. doi: 10.1016/j.jmmm.2017.03.031
    [78] AKINOLA O, CHAKRABORTY I, CELIO H, et al. Synthesis and characterization of Cr2C MXenes[J]. Journal of Materials Research,2021,36(10):1980-1989. doi: 10.1557/s43578-021-00258-7
    [79] ZHANG K, DI M, FU L, et al. Enhancing the magnetism of 2D carbide MXene Ti3C2Tx by H2 annealing[J]. Carbon,2020,157:90-96. doi: 10.1016/j.carbon.2019.10.016
    [80] QING Y, ZHOU W, LUO F, et al. Titanium carbide (MXene) nanosheets as promising microwave absorbers[J]. Ceramics International,2016,42(14):16412-16416. doi: 10.1016/j.ceramint.2016.07.150
    [81] ZHANG J, XUE W, CHEN X Y. Ti3C2Tx MXenes as thin broadband absorbers[J]. Nanotechnology,2020,31(27):275301. doi: 10.1088/1361-6528/ab80fd
    [82] FAN B, LI N, DAI B, et al. Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes[J]. Advanced Powder Technology,2020,31(2):808-815. doi: 10.1016/j.apt.2019.11.035
    [83] CUI G, ZHENG X, LV X, et al. Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature[J]. Ceramics International, 2019, 45(17): 23600-23610.
    [84] XU G, GONG S, WEI S, et al. Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption[J]. Nanotechnology,2018,29(35):355201. doi: 10.1088/1361-6528/aac8f6
    [85] LI X, YIN X, HAN M, et al. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene[J]. Journal of Materials Chemistry C,2017,5(30):7621-7628. doi: 10.1039/C7TC01991B
    [86] FAN B, SHANG S, DAI B, et al. 2D-Layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption[J]. Ceramics International,2020,46(10):17085-17092. doi: 10.1016/j.ceramint.2020.04.004
    [87] IQBAL A, SHAHZAD F, HANTANASIRISAKUL K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene)[J]. Science,2020,369(6502):446-450. doi: 10.1126/science.aba7977
    [88] FENG W, LUO H, WANG Y, et al. Ti3C2 MXene: A promi-sing microwave absorbing material[J]. RSC Advances,2018,8(5):2398-2403. doi: 10.1039/C7RA12616F
    [89] WANG Y, YANG J, CHEN Z, et al. A new flexible and ultralight carbon foam/Ti3C2Tx MXene hybrid for high-performance electromagnetic wave absorption[J]. RSC Advances,2019,9(70):41038-41049. doi: 10.1039/C9RA09817H
    [90] CUI Y, WU F, WANG J, et al. Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties[J]. Composites Part A: Applied Science and Manufacturing,2021,145:106378. doi: 10.1016/j.compositesa.2021.106378
    [91] LI Y, MENG F, MEI Y, et al. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption[J]. Chemical Engineering Journal,2020,391:123512. doi: 10.1016/j.cej.2019.123512
    [92] LI X, YIN X, XU H, et al. Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band[J]. ACS Applied Materials & Interfaces,2018,10(40):34524-34533.
    [93] LIU T, LIU N, AN Q, et al. Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance[J]. Journal of Alloys and Compounds,2019,802:445-457. doi: 10.1016/j.jallcom.2019.06.243
    [94] LIU Y, ZHANG S, SU X, et al. Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles[J]. Journal of Materials Science,2020,55(24):10339-10350. doi: 10.1007/s10853-020-04739-8
    [95] HE J, SHAN D, YAN S, et al. Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance[J]. Journal of Magnetism and Magnetic Materials,2019,492:165639. doi: 10.1016/j.jmmm.2019.165639
    [96] LIANG L, HAN G, LI Y, et al. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity[J]. ACS Applied Materials & Interfaces,2019,11(28):25399-25409.
    [97] HAN X, HUANG Y, DING L, et al. Ti3C2Tx MXene nanosheet/metal–organic framework composites for microwave absorption[J]. ACS Applied Nano Materials,2021,4(1):691-701. doi: 10.1021/acsanm.0c02983
    [98] ZHANG X, WANG H, HU R, et al. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles[J]. Applied Surface Science,2019,484:383-391. doi: 10.1016/j.apsusc.2019.03.264
    [99] GAO Y, DU H, LI R, et al. Multi-phase heterostructures of flower-like Ni(NiO) decorated on two-dimensional Ti3C2Tx/TiO2 for high-performance microwave absorption properties[J]. Ceramics International,2021,47(8):10764-10772. doi: 10.1016/j.ceramint.2020.12.193
    [100] SHAN D, HE J, DENG L, et al. The underlying mecha-nisms of enhanced microwave absorption performance for the NiFe2O4-decorated Ti3C2Tx MXene[J]. Results in Physics,2019,15:102750. doi: 10.1016/j.rinp.2019.102750
    [101] HOU T, WANG B, MA M, et al. Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 compo-sites to achieve excellent microwave absorption properties[J]. Composites Part B: Engineering,2020,180:107577. doi: 10.1016/j.compositesb.2019.107577
    [102] HE J, LIU S, DENG L, et al. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites[J]. Applied Surface Science,2020,504:144210. doi: 10.1016/j.apsusc.2019.144210
    [103] YAN S, CAO C, HE J, et al. Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites[J]. Journal of Materials Science: Materials in Electronics,2019,30(7):6537-6543. doi: 10.1007/s10854-019-00959-0
    [104] WANG Y, GAO X, ZHANG L, et al. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber[J]. Applied Surface Science,2019,480:830-838. doi: 10.1016/j.apsusc.2019.03.049
    [105] CUI C, GUO R, REN E, et al. MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave[J]. Chemical Engineering Journal,2021,405(3):126626.
    [106] YANG H, DAI J, LIU X, et al. Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range[J]. Materials Chemistry and Physics,2017,200:179-186. doi: 10.1016/j.matchemphys.2017.05.057
    [107] ZHOU C, WANG X, LUO H, et al. Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption[J]. Chemical Engineering Journal,2020,383:123095. doi: 10.1016/j.cej.2019.123095
    [108] DENG B, XIANG Z, XIONG J, et al. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption[J]. Nano-Micro Letters,2020,12(1):55-71. doi: 10.1007/s40820-020-0398-2
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  3735
  • HTML全文浏览量:  1353
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-08-19
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-10-18
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回