Preparation of spindle-shaped hydroxyl ferric oxide@polypyrrole composite nanoparticles and its application in photothermal therapy of tumors
-
摘要: 肿瘤是世界上死亡率最高的疾病,研制新型肿瘤药物也是一项极具开发性的研究。首先制备纺锤状羟基氧化铁纳米粒子(FeOOH NPs)并作为模板,与吡咯(Py)聚合得到纺锤状羟基氧化铁@聚吡咯(FeOOH@PPy)复合纳米粒子。采用FTIR、DLS、TEM和UV-vis等测试方法对FeOOH@PPy进行了结构、性质表征,通过光热转换实验证明了该复合纳米粒子具有优异的光热转换性能,探究了复合纳米粒子的生物相容性以及肿瘤治疗中的应用潜力。结果表明,所得到的复合纳米粒子平均粒径100 nm左右,且分布均一,粒子呈纺锤状结构,在水溶液中具有良好的稳定性。FeOOH@PPy复合纳米粒子可以吸收808 nm的近红外光,并将其转化为足够的热量,使肿瘤细胞凋亡;在为期14天的4T1细胞的小鼠模型体内治疗实验中,FeOOH@PPy复合纳米粒子治疗组表现出优异的治疗肿瘤效果,组织分析表明FeOOH@PPy复合纳米粒子对小鼠正常组织无明显影响,具有作为光热治疗剂的潜力。Abstract: Cancer is a disease with the highest mortality rate in the world, developing new cancer drugs is also a very exploratory research. In this paper, spindle-shaped iron hydroxyl oxide (FeOOH NPs) was firstly prepared as a nanocarrier to polymerise pyrrole (Py) to get iron hydroxyl oxide @polypyrrole (FeOOH@PPy) composite nano-material. The structure and properties of FeOOH@PPy were characterized by FTIR, DLS, TEM and UV-vis, etc. The photothermal conversion experiments proved that the composite nanoparticles had excellent photothermal conversion properties, and the biocompatibility and application potential of the composite nanomaterial in tumor therapy were explored. The results show that the average particle size of the obtained nanoparticles is about 100 nm, and has good stability in the aqueous solution. The results of the photothermal performance test show that FeOOH@PPy composite nanoparticles can absorb 808 nm near-infrared light and convert it into enough heattotrigger the apoptosis of tumor cells. In a 14 days treatment on 4T1 breast cancer mouse model, FeOOH@PPy composite nanoparticles show excellent antitumor effect. Tissue analysis show that the composite nanoparticles have no significant effect on normal tissues of mice, suggesting that the composite nanoparticles have the potential as photothermal therapy agent.
-
Key words:
- nanomaterials /
- polypyrrole /
- photothermal performance /
- biocompatibility /
- tumor therapy
-
图 6 FeOOH@PPy分散在去离子水、PBS、生理盐水和DMEM照片(a);7天内FeOOH@PPy在PBS(b)、生理盐水(c)、DMEM (d)中的粒径对比图
Figure 6. Digital photos of FeOOH@PPy dispersions in water, PBS, saline and DMEM (a); DLS analysis of the size change of FeOOH@PPy in PBS (b), saline (c) and DMEM (d) in 7 days.
PBS—Phosphate buffered solution; DMEM—Dulbecco's modified eagle medium
图 8 (a)不同浓度下的FeOOH@PPy的紫外-可见吸收图谱;(b)不同浓度FeOOH@PPy在808 nm处的吸光度的线性拟合曲线,附图为相关FeOOH@PPy分散体的照片;(c)不同浓度FeOOH@PPy在近红外激光(808 nm,1.5 W/cm2)照射10 min的温度变化曲线;(d)不同浓度对应样品的热成像
Figure 8. (a) UV-vis absorbance spectrum of FeOOH@PPy under different concentrations in water; (b) Liner fitting of the concentration of FeOOH@PPy to their absorbance at 808 nm, and the inset shows the digital photos of relevant FeOOH@PPy dispersions; (c) Temperature elevation of various concentrations of FeOOH@PPy under the NIR laser irradiation (808 nm,1.5 W/cm2) for 10 min; (d) Thermal imaging of corresponding samples under different concentrations
图 11 空白对照组(PBS)、激光照射对照组(PBS(+))、FeOOH@PPy对照组(FeOOH@PPy)、FeOOH@PPy激光照射组(FeOOH@PPy(+)):(a)不同处理后的体重变化图;(b)不同治疗后肿瘤相对体积变化图
Figure 11. Blank control group (PBS), laser irradiation control group (PBS(+)), FeOOH@PPy control group (FeOOH@PPy), FeOOH@PPy laser irradiation group (FeOOH@PPy(+)): (a) Relative body weight after different treatment; (b) Relative tumor volume change after different treatment
-
[1] LUO L, ZHU C, YIN H, et al. Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors[J]. ACS Nano,2018,12(8):7647-7662. doi: 10.1021/acsnano.8b00204 [2] SUN L, LI Q, HOU M, et al. Light-activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer[J]. Biomaterials Science,2018,6(11):2881-2895. doi: 10.1039/C8BM00812D [3] ZHANG J, YANG J, ZUO T, et al. Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy[J]. Biomaterials,2021,266:12042. [4] ANUSHA K, CHAD K, GRAHAM M. et al. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma[J]. Clinical Cancer Research,2017,23(1):137-148. doi: 10.1158/1078-0432.CCR-16-0870 [5] SHANMUGAM V, SELVAKUMAR S, YEH C. Near-infrared light-responsive nanomaterials in cancer therapeutics[J]. Chemical Society Reviews,2014,43(17):6254-6287. doi: 10.1039/C4CS00011K [6] WANG R, YANG H, FU R, et al. Biomimetic upconversion nanoparticles and gold nanoparticles for novel simultaneous dual-modal imaging-guided photothermal therapy of cancer[J]. Cancers,2020,12(11):3136. doi: 10.3390/cancers12113136 [7] GÜRBÜZ B, AYAN S, BOZLAR M, et al. Carbonaceous nanomaterials for phototherapy: A review[J]. Emergent Materials,2020,3:479-502. doi: 10.1007/s42247-020-00118-w [8] LU J, CAI L, DAI Y, et al. Polydopamine-based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment[J]. The Chemical Record,2021,21(4):781-796. doi: 10.1002/tcr.202000170 [9] YU C, XU L, ZHANG Y, et al. Polymer-based nanomaterials for noninvasive cancer photothermal therapy[J]. ACS Applied Polymer Materials,2020,2(10):4289-4305. doi: 10.1021/acsapm.0c00704 [10] AKAKURU O U, XU C, LIU C, et al. Metal-free organo-theranostic nanosystem with high nitroxide stability and loading for image-guided targeted tumor therapy[J]. ACS Nano,2021,15(2):3079-3097. doi: 10.1021/acsnano.0c09590 [11] LIU X, ZHANG M, YAN D, et al. A smart theranostic agent based on Fe-HPPy@Au/DOX for CT imaging and PTT/chemotherapy/CDT combined anticancer therapy[J]. Biomaterials Science,2020,8(15):4067-4072. doi: 10.1039/D0BM00623H [12] YIN Y, HAO Y, WANG N, et al. PPy nanoneedle based nanoplatform capable of overcoming biological barriers for synergistic chemo-photothermal therapy[J]. RSC Advances,2020,10(13):7771-7779. doi: 10.1039/C9RA09917D [13] BLANCO E, SHEN H, FERRARI M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nature Biotechnology,2015,33(9):941-951. doi: 10.1038/nbt.3330 [14] OZAKI M, KRATOHVIL S, MATIJEVIC E. Formation of monodispersed spindle-type hematite particles[J]. Academic Press,1984,102(1):146-151. [15] LIU H, HU Y, SUN Y, et al. Co-delivery of bee venom melittin and a photosensitizer with an organic-inorganic hybrid nanocarrier for photodynamic therapy and immunotherapy[J]. ACS Nano,2019,13(11):12638-12652. doi: 10.1021/acsnano.9b04181 [16] 张书海. 集核磁共振成像与光热治疗于一体的硫化铜纳米粒子的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.ZHANG Shuhai. Study of copper sulfide nanoparticles with magnetic resonance imaging and photothermal therapy[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese). [17] ZHAI Y, WANG J, QIU L. Drug-driven self-assembly of pH-sensitive nano-vesicles with high loading capacity and anti-tumor efficacy.[J]. Biomaterials Science,2021,9(9):3348-3361. doi: 10.1039/D0BM01987A [18] GENG S, ZHAO H, ZHAN G, et al. Injectable in situ forming hydrogels of thermosensitive polypyrrole nanoplatforms for precisely synergistic photothermo- chemotherapy[J]. ACS Applied Materials & Interfaces,2020,12(7):7995-8005. [19] WU H, CHENG K, HE Y, et al. Fe3O4-based multifunctional nanospheres for amplified magnetic targeting photothermal therapy and Fenton reaction[J]. ACS Biomaterials Science & Engineering,2018,5(2):1045-1056. [20] KONG G, BRAUN R D, DEWHIRST M W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature[J]. Cancer Research,2001,61(7):3027-3032.