Research advances of MOF-based catalyst for photohydrolysis for hydrogen production
-
摘要: 随着能源枯竭和环境污染问题日益严重,人们不得不将目光转向更加清洁环保的氢能源。光解水制氢技术是一种获取氢能源经济且清洁的理想方式,通过光催化手段将太阳能转化为化学能也是一种很有前景的技术手段。然而如何选取高效、经济的光催化剂是制氢最关键的环节。金属-有机框架(Metal-organic frameworks, MOFs)由于比表面积大、孔尺寸可调节、结构易于修饰及活性位点丰富等特点,使其成为光解水制氢理想的光催化剂候选材料。国内外学者就MOFs光解水制氢开展了大量的研究,并且取得了丰硕的成果。本论文综述了MOF基材料作为催化剂在光解水制氢领域的研究进展,总结了MOFs作为催化剂的优点和局限性,并对MOFs及其相关材料在光催化水解制氢领域的发展前景提出展望,以期对未来研究提供参考。Abstract: The increasingly serious energy exhaustion and environmental pollution accelerates the development of clean hydrogen energy. Water splitting via photocatalysis technology provides an economical and clean way for the hydrogen production, converting solar energy into chemical energy through photocatalytic means is also a promising technical means. The rational selection of photocatalyst is the critical step for obtaining hydrogen energy in an efficient and economical way. Featuring the traits of large specific surface area, adjustable pore size, easy structure modification and abundant active sites, metal-organic frameworks (MOFs) are ideal candidates for photocatalytic hydrogen production scientists from domestic and foreign have carried out numerous researches on the water splitting with MOF-based photocatalysts. Currently, fruitful progresses have been achieved. In this paper, the state-of-the-art advances for the MOF-based materials as catalysts in the field of hydrogen production from splitting water was reviewed, and the advantages and limitations of MOFs as catalysts were summarized. The development prospect of MOFs and related materials in the field of photocatalytic hydrogen production was proposed, providing a valuable guideline for developing future photocatalysts.
-
Key words:
- metal-organic frameworks /
- photocatalysis /
- catalyst /
- water splitting /
- hydrogen production
-
图 3 Al3(OH)3(HTCS)2 (AlTCS-1)在水和三乙醇胺(TEOA)混合溶剂中光催化裂解水的机制[24]
Figure 3. Mechanism of the photocatalytic water splitting process of Al3(OH)3(HTCS)2 (AlTCS-1) in mixed solvents of H2O and triethanolamine (TEOA)[24]
NHE—Normal hydrogen electrode; TCS—Tetrakis (4-oxycarbonylphenyl) silane; CB—Conduction band; VB—Valence band; Eg—Energy gap
图 13 Cu3P@CoP的曙红Y (EY) 敏化剂p-n异质结在可见光照射下水分解制氢过程机制图[78]
Figure 13. Mechanism diagram of the hydrogen production process by water decomposition of Eosin Y (EY) sensitizer p-n heterojunction of Cu3P@CoP under visible light irradiation[78]
SCE—Saturated calomel electrode; Ef—Fermi level; ISC—Inter system crossing
表 1 有关MOF/纳米颗粒复合材料作为可见光照射下的光催化析氢反应的催化剂
Table 1. MOF/nanoparticle composites as catalysts for photocatalytic hydrogen evolution under visible light irradiation
Photocatalyst Bandgap Eg/eV Sacrificial agents Co-catalysts H2 Production rate/(mmol·h−1 ·g−1) Recycled
timesSolution
stability/hRef. TiO2@ZIF-8 3.28 Methanol — 0.25 4 24 [56] MOF-199/Ni — Triethanolamine Pt 24.40 3 9 [57] Ru-Pt-UiO-67 — N, N-Dimethylacetamide — 34.00 3 30 [58] Pt@MIL-125/Au — Triethanolamine — 1.74 3 6 [59] Calix-3/Pt@UiO-66-NH2 — Methanol — 1.53 3 9 [60] Ni-MOF-74-CdS/Co3O4 1.97 Lactic acid — 0.58 4 20 [61] ZIF-9/Zn0.8Cd0.2S — Triethanolamine — 6.42 — — [62] 表 2 部分用于可见光催化析氢反应的MOFs衍生物
Table 2. Some MOFs derivatives used in visible light catalytic hydrogen evolution reaction
Photocatalyst MOF precursors Bandgap Eg/eV Sacrificial
agentsCo-catalysts H2 Production rate/(mmol·h−1·g−1) Recycled times Solution stability/h Cu0.9Co2.1S4@MoS2 ZIF-67(Cu/Co) — Triethanolamine — 40.16 3 30 FeO3.3C0.2H1.0 MIL-101(Fe) 1.61 — — 125.00 4 24 Pt-Zn3P2-CoP ZnCoZIF-8 — Methanol — 9.15 4 24 Co-Zn0.5Cd0.5S ZnCoZIF-8 — $ {\mathrm{S}\mathrm{O}}_{3}^{2-} $/$ {\mathrm{S}}^{2-} $ — 17.36 6 30 Hollow Cu-TiO2/C SiO2@HKUST-1 — Methanol Pt 14.05 3 18 Hollow CdS nanoboxes Cd-MOF-74 2.30 Lactic acid Pt 21.65 4 16 Co/NGC@ZnIn2S4 ZIF-8@ZIF-67 2.10 Triethanolamine — 11.27 5 20 Notes: NGC—N-Doped graphitic carbon; HKUST-1—Hong Kong University of Science and Technology-1. -
[1] SOHAIL M, KIM H, KIM T W. Enhanced photocatalytic performance of a Ti-based metal-organic framework for hydrogen production: Hybridization with ZnCr-LDH nanosheets[J]. Scientific Reports,2019,9(1):1-11. [2] PARIDA B, INIYAN S, GOIC R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews,2011,15(3):1625-1636. doi: 10.1016/j.rser.2010.11.032 [3] TACHIBANA Y, VAYSSIERES L, DURRANT J R. Artificial photosynthesis for solar water-splitting[J]. Nature Photonics,2012,6(8):511-518. doi: 10.1038/nphoton.2012.175 [4] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews,2009,38(1):253-278. doi: 10.1039/B800489G [5] LI Y, XU H, OUYANG S, et al. Metal-organic frameworks for photocatalysis[J]. Physical Chemistry Chemical Physics,2016,18(11):7563-7572. doi: 10.1039/C5CP05885F [6] FUJISHIMA A, HONDA K J N. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38. doi: 10.1038/238037a0 [7] WEI J W, WEI S M, CHANG N, et al. Construction of Z-scheme Ag/In2S3/ZnO nanorods composite photocatalysts for degradation of 4-nitrophenol[J]. Nanotechnology,2021,32(10):105706. doi: 10.1088/1361-6528/abcd63 [8] LOPEZ-VASQUEZ A, DELGADO-NINO P, SALAS-SIADO D. Photocatalytic hydrogen production by strontium titanate-based perovskite doped europium (Sr0.97Eu0.02-Zr0.1Ti0.9O3)[J]. Environmental Science and Pollution Research International,2019,26(5):4202-4214. doi: 10.1007/s11356-018-3116-6 [9] NAWAZ A, SARAVANAN P. C-Dot TiO2 nanorod composite for enhanced quantum efficiency under direct sunlight[J]. RSC Advances,2020,10(33):19490-19500. doi: 10.1039/D0RA03157G [10] HUA X L, LI H G, TAN B E. COFs-based porous materials for photocatalytic applications[J]. Chinese Journal of Polymer Science,2020,38(7):673-684. doi: 10.1007/s10118-020-2394-x [11] LI S S, HU C, PENG Y N, et al. One-step scalable synthesis of honeycomb-like g-C3N4 with broad sub-band gap absorption for superior visible-light-driven photocatalytic hydrogen evolution[J]. RSC Advances,2019,9(56):32674-32682. doi: 10.1039/C9RA07068K [12] LIU X P, QIN H, FAN W L. Enhanced visible-light photocatalytic activity of a g-C3N4/m-LaVO4 heterojunction: Band offset determination[J]. Science Bulletin,2016,61(8):645-655. doi: 10.1007/s11434-016-1053-7 [13] CONTRERAS D, MELIN V, PÉREZ-GONZÁLEZ G, et al. Advances and challenges in BiOX (X: Cl, Br, I)-based materials for harvesting sunlight[J]. Green Photocatalysts,2020,34:235-282. [14] ZHONG Y, MA S, CHEN K, et al. Controlled growth of plasmonic heterostructures and their applications[J]. Science China Materials,2020,63(8):1398-1417. doi: 10.1007/s40843-019-1262-6 [15] SONG Y, CHO D, VENKATESWARLU S, et al. Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal-organic framework for enzymatic glucose sensor[J]. RSC Advances,2017,7(17):10592-10600. doi: 10.1039/C7RA00115K [16] LIU S J, ZHANG C, SUN Y D, et al. Design of metal-organic framework-based photocatalysts for hydrogen generation[J]. Coordination Chemistry Reviews,2020,413:213266. doi: 10.1016/j.ccr.2020.213266 [17] HALL J N, BOLLINI P. Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks[J]. Reaction Chemistry & Engineering,2019,4(2):207-222. [18] DUAN C X, YU Y, XIAO J, et al. Water-based routes for synthesis of metal-organic frameworks: A review[J]. Science China Materials,2020,63(5):667-685. doi: 10.1007/s40843-019-1264-x [19] BAVYKINA A, KOLOBOV N, KHAN I S, et al. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives[J]. Chemical Reviews,2020,120(16):8468-8535. doi: 10.1021/acs.chemrev.9b00685 [20] ZHU S S, WANG D W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities[J]. Advanced Energy Materials,2017,7(23):1700841. [21] YU D Y, LI L B, WU M H, et al. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework[J]. Applied Catalysis B: Environmental,2019,251:66-75. doi: 10.1016/j.apcatb.2019.03.050 [22] ALVARO M, CARBONELL E, FERRER B, et al. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chemistry,2007,13(18):5106-5112. doi: 10.1002/chem.200601003 [23] GOMES S C, LUZ I, LLABRES I X X, et al. Water stable Zr-benzene dicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation[J]. Chemistry,2010,16(36):11133-11138. doi: 10.1002/chem.200903526 [24] LAN Y Q, GUO Y Y, ZHANG J, et al. Syntheses of exceptionally stable Al(III) metal-organic frameworks: How to grow high quality large single crystals?[J]. Chemistry,2017,61(23):15518-15528. [25] FENG Y N, CHEN C, LIU Z G, et al. Application of a Ni mercaptopyrimidine MOF as highly efficient catalyst for sunlight-driven hydrogen generation[J]. Journal of Materials Chemistry A,2015,3(13):7163-7169. doi: 10.1039/C5TA00136F [26] HU X L, SUN C Y, QIN C, et al. Iodine-templated assembly of unprecedented 3d-4f metal-organic frameworks as photocatalysts for hydrogen generation[J]. Chemical Communications,2013,49(34):3564-3566. doi: 10.1039/c3cc39173f [27] SANTACLARA J G, OLIVOS-SUAREZ A, FOSSÉ I, et al. Harvesting the photoexcited holes on a photocatalytic proton reduction metal-organic framework[J]. Faraday Discussions,2017,201:71-86. doi: 10.1039/C7FD00029D [28] GUESH K, CAIUBY C A D, MAYORAL Á, et al. Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water[J]. Crystal Growth & Design,2017,17(4):1806-1813. [29] LIU M, QIAO L Z, DONG B B, et al. Photocatalytic coproduction of H2 and industrial chemical over MOF-derived direct Z-scheme heterostructure[J]. Applied Catalysis B: Environmental,2020,273:119066. doi: 10.1016/j.apcatb.2020.119066 [30] CHEN Y J, JI S F, WANG Y G, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie International Edition,2017,56(24):6937-6941. doi: 10.1002/anie.201702473 [31] FANG X Z, SHANG Q C, WANG Y, et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis[J]. Advanced Materials,2018,30(7):1705112. doi: 10.1002/adma.201705112 [32] LI J, HUANG H L, LIU P, et al. Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution[J]. Journal of Catalysis,2019,375:351-360. doi: 10.1016/j.jcat.2019.06.024 [33] ZUO Q, LIU T T, CHEN C S, et al. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution[J]. Angewandte Chemie International Edition,2019,58(30):10198-101203. doi: 10.1002/anie.201904058 [34] HE T. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms[J]. Angewandte Chemie International Edition,2018,57(13):3493-3498. doi: 10.1002/anie.201800817 [35] JIAO L, JIANG H L. Metal-organic-framework-based single-atom catalysts for energy applications[J]. Chem,2019,5(4):786-804. doi: 10.1016/j.chempr.2018.12.011 [36] YANG S J, CHOI J Y, CHAE H K. Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite[J]. Chemistry of Materials,2009,21(9):1893-1897. doi: 10.1021/cm803502y [37] ZHU Q L, XU Q. Metal-organic framework composites[J]. Chemical Society Reviews,2014,43(16):5468-5512. doi: 10.1039/C3CS60472A [38] BUSO D, JASIENIAK J, LAY M D, et al. Highly luminescent metal-organic frameworks through quantum dot doping[J]. Small,2012,8(1):80-88. doi: 10.1002/smll.201100710 [39] TIAN L, YANG X F, LIU Q Q, et al. Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution[J]. Applied Surface Science,2018,455:403-409. doi: 10.1016/j.apsusc.2018.06.014 [40] PAN Y T, LI D D, JIANG H L. Sodium-doped C3N4/MOF heterojunction composites with tunable band structures for photocatalysis: Interplay between light harvesting and electron transfer[J]. Chemistry,2018,24(69):18403-18407. doi: 10.1002/chem.201803555 [41] SHI X F, ZHANG J H, CUI G W, et al. Photocatalytic H2 evo-lution improvement for H free-radical stabilization by electrostatic interaction of a Cu-BTC MOF with ZnO/GO[J]. Nano Research, 2017, 11(2):979-987. [42] SU Y, ZHANG Z, LIU H, et al. Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction[J]. Applied Catalysis B Environmental,2017,200:448-457. doi: 10.1016/j.apcatb.2016.07.032 [43] ZHANG H, JIN M S, XIA Y N. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd[J]. Chemical Society Reviews,2012,41(24):8035-8049. doi: 10.1039/c2cs35173k [44] MEILIKHOV M, YUSENKO K, ESKEN D, et al. Metals@MOFs-loading MOFs with metal nanoparticles for hybrid functions[J]. European Journal of Inorganic Chemistry,2010(24):3701-3714. doi: 10.1002/ejic.201000473 [45] CLAUDIA Z, RENATO C, FERMIN C, et al. Pd Nanoparticles embedded into a metal-organic framework: Synthesis, structural characteristics, and hydrogen sorption properties[J]. Journal of the American Chemical Society,2010,132(9):2991-2997. doi: 10.1021/ja9084995 [46] SABO M, HENSCHEL A, FRÖDE H, et al. Solution infiltration of palladium into MOF-5: Synthesis, physisorption and catalytic properties[J]. Journal of Materials Chemistry,2007,17(36):3827. doi: 10.1039/b706432b [47] SCHROEDER F, ESKEN D, COKOJA M, et al. Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: A solid-state reference system for surfactant-stabilized ruthenium colloids[J]. Journal of the American Chemical Society,2008,130(19):6119-6130. doi: 10.1021/ja078231u [48] GREATHOUSE J A, ALLENDORF M D. The interaction of water with MOF-5 simulated by molecular dynamics[J]. Journal of the American Chemical Society,2006,128(33):10678-10679. doi: 10.1021/ja063506b [49] CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523-527. doi: 10.1038/nature02311 [50] PROCH S, HERRMANNSDÖRFER J, KEMPE R, et al. Pt@MOF-177: Synthesis, room-temperature hydrogen storage and oxidation catalysis[J]. Chemistry A European Journal,2008,27(14):8204-8212. [51] ESKEN D, TURNER S, LEBEDEV O I, et al. Au@ZIFs: Stabilization and encapsulation of cavity-size matching gold clusters inside functionalized zeolite imidazolate frameworks ZIFs[J]. Chemistry of Materials, 2010, 22(23): 6393–6401. [52] JIANG H L, AKITA T, ISHIDA T, et al. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework[J]. Journal of the American Chemical Society,2011,133(5):1304-1306. doi: 10.1021/ja1099006 [53] JIANG H L, LIU B, AKITA T, et al. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework[J]. Journal of the American Chemical Society,2009,131(32):11302-11303. doi: 10.1021/ja9047653 [54] LI P Z, ARANISHI K, XU Q. ZIF-8 immobilized nickel nanoparticles: Highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Chemical Communications,2012,26(48):3173-3175. [55] HORIUCHI Y, TOYAO T, SAITO M, et al. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal-organic framework[J]. Journal of Physical Chemistry C,2012,116(39):20848-20853. doi: 10.1021/jp3046005 [56] ZHANG M, SHANG Q G, WAN Y Q, et al. Self-template synthesis of double-shell TiO2@ ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation[J]. Applied Catalysis B: Environmental,2019,241:149-158. doi: 10.1016/j.apcatb.2018.09.036 [57] ZHAO J S, WANG Y, ZHOU J W, et al. A copper(II)-based MOF film for highly efficient visible-light-driven hydrogen production[J]. Journal of Materials Chemistry A,2016,4(19):7174-7177. doi: 10.1039/C6TA00431H [58] YANG S Z, FAN D H, HU W H, et al. Elucidating charge separation dynamics in a hybrid metal-organic framework photocatalyst for light-driven H2 evolution[J]. Journal of Physical Chemistry C,2018,122(6):3305-3311. doi: 10.1021/acs.jpcc.8b00471 [59] XIAO J D, HAN L L, LOU J, et al. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis[J]. Angewandte Chemie International Edition,2018,130(4):1115-1119. doi: 10.1002/ange.201711725 [60] CHEN Y F, TAN L L, LIU J M, et al. Calix[4]arene based dye-sensitized Pt@UiO-66-NH2 metal-organic framework for efficient visible-light photocatalytic hydrogen production[J]. Applied Catalysis B Environmental,2017,206(8):426-433. [61] ZHANG Y K, WANG G R, MA W, et al. CdS p-n heterojunction co-boosting with Co3O4 and Ni-MOF-74 for photocatalytic hydrogen evolution[J]. Dalton Transactions,2018,47(32):11176-11189. doi: 10.1039/C8DT02294A [62] RAN J R, QU J T, ZHANG H P, et al. Atomically dispersed single Co sites in zeolitic imidazole frameworks promoting high-efficiency visible-light-driven hydrogen production[J]. Chemistry-A European Journal,2019,25(41):9670-9677. doi: 10.1002/chem.201901250 [63] ZHANG J, ZHANG J X, JIANG Z Q, et al. Assembling polyoxo-titanium clusters and CdS nanoparticles to a porous matrix for efficient and tunable H2 evolution activities with visible light[J]. Advanced Materials,2017,29(5):1603369. [64] ZHANG Z M, ZHANG T, WANG C, et al. Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate[J]. Journal of the American Chemical Society,2015,137(9):3197-3200. doi: 10.1021/jacs.5b00075 [65] LI Z, XIAO J D, JIANG H L. Encapsulating a Co(II) molecular photocatalyst in metal-organic framework for visible-light-driven H2 production: Boosting catalytic efficiency via spatial charge separation[J]. ACS Catalysis,2016,6(8):5359-5365. doi: 10.1021/acscatal.6b01293 [66] ZHANG F M, SHENG J L, YANG Z D, et al. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors[J]. Angewandte Chemie International Edition,2018,57(37):12106-12110. doi: 10.1002/anie.201806862 [67] LI F, WANG D K, XING Q J, et al. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance[J]. Applied Catalysis B: Environmental,2019,243:621-628. doi: 10.1016/j.apcatb.2018.10.043 [68] DEKRAFFT K E, WANG C, LIN W B. Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production[J]. Advanced Materials,2012,24(15):2014-2018. doi: 10.1002/adma.201200330 [69] YAN B L, SU X T, ZHANG L J, et al. Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2-MIL-125(Ti) as a robust photocatalyst for hydrogen evolution[J]. Applied Catalysis B: Environmental,2017,218:743-750. [70] VALERO-ROMERO M J . Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis[J]. Chemical Engineering Journal,2019,360:75-88. doi: 10.1016/j.cej.2018.11.132 [71] ZHAI L Z, QIAN Y H, WANG Y X, et al. In situ formation of micropore-rich titanium dioxide from metal-organic framework templates[J]. ACS Applied Msterials & Interfaces,2018,10(43):36933-36940. [72] ZHAO X X, FENG J R, LIU J, et al. An efficient, visible-light-driven, hydrogen evolution catalyst NiS/ZnxCd1-xS nanocrystal derived from a metal-organic framework[J]. Angewandte Chemie International Edition,2018,130(31):9938-9942. doi: 10.1002/ange.201805425 [73] WANG S B, GUAN B Y, WANG X, et al. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution[J]. Journal of the American Chemical Society,2018,140(45):15145-15148. doi: 10.1021/jacs.8b07721 [74] ZHUANG G X, FANG Q H, WEI J X, et al. Branched In2O3 mesocrystal of ordered architecture derived from the oriented alignment of a metal-organic framework for accelerated hydrogen evolution over In2O3-ZnIn2S4[J]. ACS Applied Materials & Interfaces,2021,13(8):9804-9813. [75] WEI S, ZHAO X X, FENG J R, et al. An efficient, visible-light-driven, hydrogen evolution catalyst NiS/ZnxCd1-xS nanocrystal derived from a metal-organic framework[J]. Angewandte Chemie International Edition, 2018, 130(31): 9938-9942. [76] XU J X, QI Y H, WANG C, et al. NH2-MIL-101(Fe)/Ni(OH)2-derived C, N-codoped Fe2P/Ni2P cocatalyst modified g-C3N4 for enhanced photocatalytic hydrogen evolution from water splitting[J]. Applied Catalysis B Environmental,2019,241:178-186. doi: 10.1016/j.apcatb.2018.09.035 [77] HU C Y, ZHOU J, SUN C Y, et al. HKUST-1 derived hollow C-Cu2xS nanotube/g-C3N4 composites for visible-light CO2 photoreduction with H2O vapor[J]. Chemistry A European Journal,2019,25(1):379-385. doi: 10.1002/chem.201804925 [78] ZHANG L J, WANG G R, HAO X Q, et al. MOFs-derived Cu3P@CoP p-n heterojunction for enhanced photocataly-tic hydrogen evolution[J]. Chemical Engineering Journal,2020,395(4):125113. [79] MA B, CHEN T T, LI Q Y, et al. Bimetal-organic-framework-derived nanohybrids Cu0.9Co2.1S4@MoS2 for high-perfor-mance visible-light-catalytic hydrogen evolution reaction[J]. ACS Applied Energy Materials,2019,2(2):1134-1148. doi: 10.1021/acsaem.8b01691 [80] XU J Y, ZHAI X P, GAO L F, et al. In situ preparation of a MOF-derived magnetic carbonaceous catalyst for visible-light-driven hydrogen evolution[J]. RSC Advances,2016,6(3):2011-2018. doi: 10.1039/C5RA23838B [81] TANG X, ZHAO J H, LI Y H, et al. Co-Doped Zn1-xCdxS nanocrystals from metal-organic framework precur-sors: Porous microstructure and efficient photocatalytic hydrogen evolution[J]. Dalton Transactions,2017,46(32):10553-10557. doi: 10.1039/C7DT01970J [82] LI Y L, JIN T, MA G, et al. Metal-organic framework assisted and in situ synthesis of hollow CdS nanostructures with highly efficient photocatalytic hydrogen evolution[J]. Dalton Transactions, 2019, 48(17): 5649-5655. [83] LAN M, GUO R M, DOU Y B, et al. Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation[J]. Nano Energy,2017,33:238-246. doi: 10.1016/j.nanoen.2017.01.046 [84] CHEN H, GU Z G, MIRZA S, et al. Hollow Cu-TiO2/C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A,2018,6(16):7175-7181. doi: 10.1039/C8TA01034J [85] SU B, HUANG L J, XIONG Z, et al. Branch-like ZnS-DETA/CdS hierarchical heterostructures as an efficient photocatalyst for visible light CO2 reduction[J]. Journal of Materials Chemistry A,2019,7(47):26877-26883. doi: 10.1039/C9TA10470D