Preparation and property optimization of road basic energy-absorbing materials based on balanced control
-
摘要: 为进一步开拓吸能材料在道路领域的全新应用,调控制备了兼具优异力学性能与吸能缓力特性的新型路用吸能材料,确定了材料适宜养生时间,明确了不同类型路用吸能材料的力学性能、吸能特性与缓力功效,在此基础上,建立了基于多指标决策的路用吸能材料综合性能评价体系,采用Ⅱ型弹性体聚合物(EP-Ⅱ)作为基础吸能材料,推荐了路用吸能材料组成配比最佳方案,为吸能材料在道路工程中的进一步推广应用奠定坚实基础。结果表明:聚乙烯醇(PVA)纤维与超高分子量聚乙烯(UHMWPE)微粉均能有效改善Ⅱ型弹性体聚合物材料的力学性能与吸能特性,但后者效果更佳;两者能够协同增强基础吸能材料的各项性能,对于拉伸、撕裂、吸能等性能分别提升127.4%~129.11%、34.04%与101.65%;综合考虑工作性能及经济效益,推荐路用吸能材料最佳配方为:1.0wt%PVA-3wt%UHMWPE/EP-Ⅱ,其相应各项工作性能指标为:拉伸强度14.29 MPa、断裂伸长率703.36%、撕裂强度79.27 N/mm、吸收转化能量1.73 J、最小缓冲系数10.21。Abstract: The purpose is to further develop the new application of energy-absorbing materials in the field of road. A new type of road energy-absorbing material with excellent mechanical properties, energy absorbing property and cushion property was prepared. The suitable curing time was determined. The mechanical properties, energy absorption characteristics and cushion effect of different types of road energy-absorbing materials were clarified. On this basis, the comprehensive property evaluation system of road energy-absorbing materials based on multi index decision-making was established. Type II elastomeric polymer (EP-Ⅱ) was used as the basic energy-absorbing material. The optimum scheme of composition ratio of road energy-absorbing materials was recommended. It lays a solid foundation for the further popularization and application of energy-absorbing materials in road engineering. The results show that both polyvinyl alcohol (PVA) fiber and ultra high molecular weight polyethylene (UHMWPE) micropowder can effectively improve the mechanical properties and energy absorption properties of Type Ⅱ elastomeric polymer, but the effect of the latter is more significant; Both of them can enhance the performance of basic energy absorbing materials. The tensile properties, tearing properties and energy absorption properties are improved by 127.4%-129.11%, 34.04% and 101.65% respectively; Considering the working properties and economic benefits, the optimum scheme of the recommended road energy-absorbing material is 1.0wt% PVA-3wt% UHMWPE/EP-Ⅱ. The corresponding working property indicators are: tensile strength 14.29 MPa, elongation at break 703.36%, tear strength 79.27 N/mm, absorbed conversion energy 1.73 J, and the minimum buffer factor 10.21.
-
表 1 弹性体聚合物(EP)技术参数
Table 1. Technical parameters of elastomer polymer (EP)
Project EP-Ⅰ EP-Ⅱ EP-Ⅲ Solid content/% 100 100 100 Density/(g∙cm−3) 1.02 1.02 1.02 Gel time/s 20-25 15-20 10-15 Surface drying time/s 40-45 30-35 30-35 Low temperature bending property/℃ −35 −35 −35 Impact resistance/(kg∙m) 1.0 1.0 1.0 Water permeability
(0.4 MPa, 2 h)Impervious Impervious Impervious Hardness(Shore A) 90-95 85-90 85-90 Wear resistance
(750 g/500 r)/mg13.0 5.0 5.2 表 2 聚乙烯醇(PVA)纤维技术参数
Table 2. Technical parameters of polyvinyl alcohol (PVA) fiber
Project Technical parameter Diameter/m 17 Length/mm 6 Aspect ratio 35.29 Density/(g∙cm−3) 1.3 Flash point/℃ 79 Melting point/℃ 230-240 Elastic modulus/GPa 35 Tensile strength/MPa 1600 Elongation at break/% 7 表 3 超高分子量聚乙烯(UHMWPE)微粉技术参数
Table 3. Technical parameters of ultra high molecular weight polyethylene (UHMWPE) micropowder
Density/(g∙cm−3) Granularity/m Melting point/℃ Molecular mass Heat distortion temperature/℃ 0.920-0.964 125 130-136 (2-3)×106 80 表 4 EP-Ⅱ、PVA/EP-Ⅱ与UHMWPE/EP-Ⅱ的性能指标样本数据
Table 4. Sample data of performance index of EP-Ⅱ, PVA/EP-Ⅱ and UHMWPE/EP-Ⅱ
No. Material Tensile strength/
MPaElongation
at break/%Tearing strength/
(N·mm−1)Absorbed
energy/JMinimum
buffer factor1 EP-Ⅱ 6.281 307.04 59.14 0.8583 9.6718 2 1.0wt%PVA/EP-Ⅱ 10.292 435.24 78.28 1.4252 10.5601 3 1.5wt%PVA/EP-Ⅱ 9.257 358.00 79.29 1.4441 10.1920 4 2.0wt%PVA/EP-Ⅱ 8.056 270.54 79.26 1.5571 10.4637 5 1wt%UHMWPE/EP-Ⅱ 10.472 512.10 76.28 1.4365 8.8668 6 3wt%UHMWPE/EP-Ⅱ 11.422 579.67 74.67 1.7347 9.6755 7 5wt%UHMWPE/EP-Ⅱ 11.296 597.96 69.73 1.7802 9.1756 表 5 EP-Ⅱ、PVA/EP-Ⅱ与UHMWPE/EP-Ⅱ的评价指标标准化处理
Table 5. Standardization of evaluation index of EP-Ⅱ, PVA/EP-Ⅱ and UHMWPE/EP-Ⅱ
Evaluation index Satisfaction value Value not allowed Average value Tensile strength/MPa 11.422 6.281 9.582 Elongation at break/% 597.96 270.54 437.22 Tearing strength/(N·mm−1) 79.29 59.14 73.81 Absorbed energy/J 1.7802 0.8583 1.4623 Minimum buffer factor 8.8668 10.5601 9.8008 表 6 EP-Ⅱ、PVA/EP-Ⅱ与UHMWPE/EP-Ⅱ的各项评价指标的单项功效系数
Table 6. Single efficacy coefficient of each evaluation index of EP-Ⅱ, PVA/EP-Ⅱ and UHMWPE/EP-Ⅱ
Evaluation index No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 Materials EP-Ⅱ 1.0wt%
PVA/EP-Ⅱ1.5wt%
PVA/EP-Ⅱ2.0wt%
PVA/EP-Ⅱ1wt%UHMWPE/
EP-Ⅱ3wt%UHMWPE/
EP-Ⅱ5wt%UHMWPE/
EP-ⅡTensile strength 0.6000 0.9121 0.8316 0.7381 0.9261 1.000 0.9902 Elongation at break 0.6446 0.8012 0.7068 0.6000 0.8951 0.9777 1.000 Tearing strength 0.6000 0.9800 1.000 0.9994 0.9402 0.9083 0.8102 Absorbed energy 0.6000 0.8460 0.8542 0.9032 0.8509 0.9803 1.000 Minimum buffer factor 0.8098 0.6000 0.6870 0.6228 1.000 0.8090 0.9271 表 7 EP-Ⅱ、PVA/EP-Ⅱ与UHMWPE/EP-Ⅱ的评价指标权重
Table 7. Weight of evaluation index of EP-Ⅱ, PVA/EP-Ⅱ and UHMWPE/EP-Ⅱ
Evaluation index Weight Tensile strength 0.2253 Elongation at break 0.3457 Tearing strength 0.1140 Absorbed energy 0.2395 Minimum buffer factor 0.0755 表 8 EP-Ⅱ、PVA/EP-Ⅱ与UHMWPE/EP-Ⅱ的总功效系数
Table 8. Total efficiency coefficient of each scheme of EP-Ⅱ, PVA/EP-Ⅱ and UHMWPE/EP-Ⅱ
No. Materials Total efficiency coefficient No.1 EP-Ⅱ 0.6313 No.2 1.0wt%PVA/EP-Ⅱ 0.8421 No.3 1.5wt%PVA/EP-Ⅱ 0.8021 No.4 2.0wt%PVA/EP-Ⅱ 0.7510 No.5 1wt%UHMWPE/EP-Ⅱ 0.9046 No.6 3wt%UHMWPE/EP-Ⅱ 0.9627 No.7 5wt%UHMWPE/EP-Ⅱ 0.9706 -
[1] 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10):1-66. doi: 10.3969/j.issn.1001-7372.2020.10.001Editorial Department of China Journal of Highway and Transport. Review on China’s pavement engineering research·2020[J]. China Journal of Highway and Transport,2020,33(10):1-66(in Chinese). doi: 10.3969/j.issn.1001-7372.2020.10.001 [2] CUI P, WU S, XU H, et al. Silicone resin polymer used in preventive maintenance of asphalt mixture based on fog seal[J]. Polymers,2019,11:1814. doi: 10.3390/polym11111814 [3] 冯德成, 王东升, 易军艳, 等. 梯度功能复合路面设计原理与实现方法[J]. 科学通报, 2020, 65(30):3270-3286. doi: 10.1360/TB-2020-0200FENG Decheng, WANG Dongsheng, YI Junyan, et al. Designation principle and method for functionally graded composite pavement[J]. Chinese Science Bulletin,2020,65(30):3270-3286(in Chinese). doi: 10.1360/TB-2020-0200 [4] 陈谦, 王朝辉, 傅豪, 等. 基于性能演变的水性环氧沥青开普封层施工方法优化[J]. 中国公路学报, 2021, 34(7):236-245. doi: 10.3969/j.issn.1001-7372.2021.07.020CHEN Qian, WANG Chaohui, FU Hao, et al. Optimization of construction method of waterborne epoxy asphalt cape seal based on performance evolution[J]. China Journal of Highway and Transport,2021,34(7):236-245(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.07.020 [5] KOKS E, ROZENBERG J, ZORN C, et al. A global multi-hazard risk analysis of road and railway infrastructure assets[J]. Nature Communications,2019,10:2677. doi: 10.1038/s41467-019-10442-3 [6] LUO Y, ZHANG K, XIE X, et al. Performance evaluation and material optimization of micro-surfacing based on cracking and rutting resistance[J]. Construction and Building Materials,2019,206:193-200. doi: 10.1016/j.conbuildmat.2019.02.066 [7] GU X, ZHANG X, LV J, et al. Laboratory performance evaluation of reinforced basalt fiber in sealing asphalt chips[J]. Journal of Testing and Evaluation,2018,46(3):1269-1279. [8] CAO C, MUKHERJEE S, HOWE J, et al. Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers[J]. Science Advances,2018,4(4):eaao7202. doi: 10.1126/sciadv.aao7202 [9] MA L, ZHU Y, WANG M, et al. Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface[J]. Composites Science and Technology,2019,51(170):148-156. [10] CHIANG T, LIU H, TSAI L, et al. Improvement of the mechanical property and thermal stability of polypropylene/recycled rubber composite by chemical modification and physical blending[J]. Scientific Reports,2020,10:2432. doi: 10.1038/s41598-020-59191-0 [11] LIU Q, NIAN G, YANG C, et al. Bonding dissimilar polymer networks in various manufacturing processes[J]. Nature Communications,2018,9:846. doi: 10.1038/s41467-018-03269-x [12] ZAPICO G, OHTAKE N, AKASAKA H, et al. Epoxy toughening through high pressure and shear rate preprocessing[J]. Scientific Reports,2019,9:17343. doi: 10.1038/s41598-019-53881-0 [13] GHIDINI T. Materials for space exploration and settlement[J]. Nature Materials,2018,17:846-850. doi: 10.1038/s41563-018-0184-4 [14] ZHOU Y, LIU Q, CHEN F, et al. Improving breakdown strength and energy storage efficiency of poly (vinylidene fluoride-co-chlorotrifluoroethylene) and polyurea blend films by double layer structure design[J]. Polymer Testing,2020,81:106261. doi: 10.1016/j.polymertesting.2019.106261 [15] 顾善群, 刘燕峰, 李军, 等. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8):110-117. doi: 10.11868/j.issn.1001-4381.2018.000501GU Shanqun, LIU Yanfeng, LI Jun, et al. High speed impact properties of carbon fiber/epoxy resin composites[J]. Journal of Materials Engineering,2019,47(8):110-117(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000501 [16] KWAN M, BRACCINI M, LANE M, et al. Frequency-tunable toughening in a polymer-metal-ceramic stack using an interfacial molecular nanolayer[J]. Nature Communications,2018,9:5249. doi: 10.1038/s41467-018-07614-y [17] LIBONATI F, VELLWOCK A, IELMINI F, et al. Bone-inspired enhanced fracture toughness of de novo fiber reinforced composites[J]. Scientific Reports,2019,9:3142. doi: 10.1038/s41598-019-39030-7 [18] ZHANG Y, XUE Z, LIN Z, et al. Testing the explosion resistance and energy absorption of a polyurethane-foamed aluminum composite structure[J]. Advances in Civil Engineering,2018,2018:4186943. [19] 梁龙强, 黄微波, 武迪, 等. 聚氨酯-橡胶复合阻尼材料减振优化设计[J]. 工程科学与技术, 2020, 1:184-190.LIANG Longqiang, HUANG Weibo, WU Di, et al. Optimization design for vibration reduction of polyurethane-rubber composite damping material[J]. Advanced Engineering Sciences,2020,1:184-190(in Chinese). [20] 陈艺顺, 王波, 周健南, 等. 冲击载荷作用下蒸压加气混凝土动态力学性能研究[J]. 振动与冲击, 2019, 38(18):201-206.CHEN Yishun, WANG Bo, ZHOU Jiannan, et al. Dynamic mechanical properties of AACs under impact loading[J]. Journal of Vibration and Shock,2019,38(18):201-206(in Chinese). [21] LI H, ATTARD T, ZHOU H, et al. Integrating energy transferability into the connection-detail of coastal bridges using reinforced interfacial epoxy-polyurea reaction matrix composite[J]. Composite Structures,2019,216:89-103. doi: 10.1016/j.compstruct.2019.02.094 [22] 杨璐璐, 牛永平, 杜三明, 等. 增韧环氧树脂的研究进展[J]. 热固性树脂, 2021, 36(1):55-60.YANG Lulu, NIU Yongping, DU Sanming, et al. Review on toughening technology of epoxy resin[J]. Thermosetting Resin,2021,36(1):55-60(in Chinese). [23] DEHGHANI A, ASLANI F. The synergistic effects of shape memory alloy, steel, and carbon fibres with polyvinyl alcohol fibres in hybrid strain-hardening cementitious composites[J]. Construction and Building Materials,2020,252:119061. doi: 10.1016/j.conbuildmat.2020.119061 [24] SON M, KIM G, KIM H, et al. Effects of the strain rate and fiber blending ratio on the tensile behavior of hooked steel fiber and polyvinyl alcohol fiber hybrid reinforced cementitious composites[J]. Cement and Concrete Composites,2020,106:103482. doi: 10.1016/j.cemconcomp.2019.103482 [25] CHRISTAKOPOULOS F, TROISI E, SOLOGUBENKO A, et al. Melting kinetics, ultra-drawability and micro-structure of nascent ultra-high molecular weight polyethylene powder[J]. Polymer,2021,222:123633. doi: 10.1016/j.polymer.2021.123633 [26] 张文阳, 吴正文, 王新威. 超高分子量聚乙烯树脂颗粒形态与结构性能的关系[J]. 高分子材料科学与工程, 2020, 36(12):69-75.ZHANG Wenyang, WU Zhengwen, WANG Xinwei. Relationship between particle morphology and structure, properties of ultra-high molecular weight polyethylene resin[J]. Polymer Materials Science & Engineering,2020,36(12):69-75(in Chinese). [27] 中国国家标准化管理委员会. 树脂浇注体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Test method for properties of resin casting boby: GB/T 2567—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [28] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-determination of tear strength (Trouser, angle and crescent test pieces): GB/T 529—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [29] ISO. Plastics—Determination of charpy impact properties—Part Non-instrumented impact test: ISO 179-1—2010[S]. London: British Standards Institution, 2010. [30] 中国国家标准化管理委员会. 包装用缓冲材料静态压缩试验方法: GB/T 8168—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Testing method of static compression for for packaging cushioning materials: GB/T 8168—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [31] JOHNSTON R, KAZANC Z. Analysis of additively manufactured (3D printed) dual-material auxetic structures under compression[J]. Additive Manufacturing,2021,38:101783. doi: 10.1016/j.addma.2020.101783 [32] CHEN Q, WANG S, WANG C, et al. Modified waterborne epoxy as a cold pavement binder: Preparation and long-term working properties[J]. Journal of Materials in Civil Engineering,2021,33(5):04021079. doi: 10.1061/(ASCE)MT.1943-5533.0003707 [33] 谢磊, 李庆华, 徐世烺. 纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响[J]. 复合材料学报, 2021, 38(9): 3094-3108.XIE Lei, LI Qinghua, XU Shilang. Effect of fiber content on dynamic compressive properties of polyvinyl alcohol fiber reinforced cement based composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3094-3108(in Chinese). [34] HAMEDI G, SHAMAMI K, PAKENARI M. Effect of ultra-high-molecular-weight polyethylene on the performance characteristics of hot mix asphalt[J]. Construction and Building Materials,2020,258:119729. doi: 10.1016/j.conbuildmat.2020.119729 [35] CHEN Q, WANG C, WEN P, et al. Comprehensive performance evaluation of low-carbon modified asphalt based on efficacy coefficient method[J]. Journal of Cleaner Production,2018,203:633-644. doi: 10.1016/j.jclepro.2018.08.316 [36] MA M, CHEN Q, WANG C, et al. High-performance organosilicon-refractory bauxite: Coating and fundamental properties[J]. Construction and Building Materials,2019,207:563-571. doi: 10.1016/j.conbuildmat.2019.02.137 [37] 王济民, 蔡颖. 对功效系数法中标准值确定方法的研究[J]. 财务与会计, 2016, 12:26-27. doi: 10.3969/j.issn.1003-286X.2016.18.015WANG Jimin, CAI Ying. Study on the determination method of standard value in efficacy coefficient method[J]. Finance and Accounting,2016,12:26-27(in Chinese). doi: 10.3969/j.issn.1003-286X.2016.18.015 [38] HU M, GUO N, WANG L. Preparation and assessment of paraffin/SiO2 composite phase change material based on the efficacy coefficient method[J]. Heat and Mass Transfer,2020,56(6):1921-1929. doi: 10.1007/s00231-020-02830-z [39] 陈谦, 王朝辉, 傅豪, 等. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16):16172-16177.CHEN Qian, WANG Chaohui, FU Hao, et al. Prediction and extreme value optimization of tensile strength of waterborne epoxy resin for road[J]. Materials Reports,2021,35(16):16172-16177(in Chinese).