留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能

傅炀杰 张可欣 毛惠秀 姬云 王晓青 王齐

傅炀杰, 张可欣, 毛惠秀, 等. AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(7): 3369-3375. doi: 10.13801/j.cnki.fhclxb.20210927.001
引用本文: 傅炀杰, 张可欣, 毛惠秀, 等. AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(7): 3369-3375. doi: 10.13801/j.cnki.fhclxb.20210927.001
FU Yangjie, ZHANG Kexin, MAO huixiu, et al. Preparation and photocatalytic performance of AgI/NH2-UiO-66(Zr) heterojunction[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3369-3375. doi: 10.13801/j.cnki.fhclxb.20210927.001
Citation: FU Yangjie, ZHANG Kexin, MAO huixiu, et al. Preparation and photocatalytic performance of AgI/NH2-UiO-66(Zr) heterojunction[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3369-3375. doi: 10.13801/j.cnki.fhclxb.20210927.001

AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能

doi: 10.13801/j.cnki.fhclxb.20210927.001
基金项目: 国家自然科学基金(21876154,21477114);浙江省自然科学基金(LR18B070001)
详细信息
    通讯作者:

    王齐,博士,教授,博士生导师,研究方向为环境光催化 E-mail:wangqi8327@zjgsu.edu.cn

  • 中图分类号: O614

Preparation and photocatalytic performance of AgI/NH2-UiO-66(Zr) heterojunction

  • 摘要: 开发可见光响应型金属有机框架材料(MOFs)异质结,有望高效利用太阳能进行催化降解/减毒环境污染物。以氯化锆(ZrCl4)和2-氨基对苯二甲酸(2-ATA)为原料,用溶剂热法制备了NH2-UiO-66(Zr)作为基底MOFs,采用对离子沉淀法在其表面负载AgI,制备一系列AgI/NH2-UiO-66(Zr)异质结复合光催化剂。通过XRD、BET、TEM、UV-Vis DRS、FT-IR、TGA及光电化学测试等手段对材料进行结构和光电响应性质表征。以Cr(VI)为模型污染物,探究复合材料在可见光照射下的光催化性能,以及影响其性能的各种因素:pH、初始Cr(VI)浓度、催化剂投加量、捕获剂种类及浓度。实验结果显示:当AgI负载量为20%时,优选得到的AgI/NH2-UiO-66(Zr)具有最佳的光催化性能,可见光照射120 min后,Cr(VI)还原率为97.8%,远高于纯AgI和NH2-UiO-66(Zr),拟合的一级动力学常数k分别是AgI和NH2-UiO-66(Zr)体系的7.9倍和7.4倍。此外,异质结催化剂循环使用稳定性良好,循环5次后对Cr(VI)还原率仍保持在90%左右。

     

  • 图  1  AgI、NH2-UiO-66(Zr)和AgI/NH2-UiO-66(Zr)的XRD图谱

    Figure  1.  XRD patterns of AgI, NH2-UiO-66(Zr) and AgI/NH2-UiO-66(Zr)

    图  2  20%AgI/NH2-UiO-66(Zr)的TEM和HRTEM图像

    Figure  2.  TEM image of 20%AgI/NH2-UiO-66(Zr) at different scales and HRTEM of selected area

    图  3  AgI、NH2-UiO-66(Zr)和AgI/NH2-UiO-66(Zr)的N2吸附-脱附曲线

    Figure  3.  N2 adsorption-desorption curves of AgI, NH2-UiO-66(Zr) and AgI/NH2-UiO-66(Zr)

    图  4  NH2-UiO-66(Zr)负载AgI前后的TGA曲线

    Figure  4.  TGA curves of NH2-UiO-66(Zr) before and after AgI loading

    图  5  AgI、NH2-UiO-66(Zr)和AgI/NH2-UiO-66(Zr)的紫外-可见漫反射光谱图(插图:带隙图)

    Figure  5.  UV-Vis DRS of AgI, NH2-UiO-66(Zr) and AgI/ NH2-UiO-66(Zr) (Insert: Band gap)

    图  6  AgI、NH2-UiO-66(Zr)和不同比例AgI/NH2-UiO-66(Zr)在可见光下的光电流曲线

    Figure  6.  I-t curves of AgI, NH2-UiO-66(Zr) and AgI/NH2-UiO-66(Zr) at different ratios under visible light

    图  7  可见光照下AgI、NH2-UiO-66(Zr)和AgI/NH2-UiO-66(Zr)的交流阻抗谱

    Figure  7.  EIS nyquist plots of AgI, NH2-UiO-66(Zr) and AgI/ NH2-UiO-66(Zr) under visible light

    图  8  不同条件下不同比例AgI/NH2-UiO-66(Zr)还原Cr(VI)的动力学曲线

    Figure  8.  Kinetic curves of Cr(VI) reduction of AgI/NH2-UiO-66(Zr) at different ratios under different conditions

    Mix—Mechanical mixing group of 20% AgI and NH2-UiO-66(Zr)

    图  9  不同因素对AgI/NH2-UiO-66(Zr)光催化还原Cr(VI)的影响

    Figure  9.  Effect of different factors on the photocatalytic reduction of Cr(VI) by AgI/NH2-UiO-66(Zr)

    图  10  NH2-UiO-66(Zr)和AgI/NH2-UiO-66(Zr)光催化还原Cr(VI)的循环实验

    Figure  10.  Cyclic runs for NH2-UiO-66(Zr) and AgI/NH2-UiO-66(Zr) photocatalytic reduction of Cr(VI)

    图  11  AgI、NH2-UiO-66(Zr)和AgI/NH2-UiO-66(Zr)的Mott-Schottky曲线

    Figure  11.  Mott-Schottky plots of AgI, NH2-UiO-66(Zr) and AgI/NH2-UiO-66(Zr)

    图  12  AgI/ NH2-UiO-66(Zr)光催化还原Cr(VI)机制图

    Figure  12.  Proposed mechanism for photocatalytic reduction of Cr(VI) by AgI/NH2-UiO-66(Zr)

  • [1] 王崇臣, 王恂. 金属-有机骨架在水处理中的应用研究进展 [J]. 工业水处理, 2020, 40(11): 1-9.

    WANG Chongchen, WANG Xun. The application of metal-organic frameworks in the wastewater treatment: A state-of-the-art review [J]. Industrial Water Treatment, 2020, 40(11): 1-9(in Chinese).
    [2] LANG X J, CHEN X D, ZHAO J C. Heterogeneous visible light photocatalysis for selective organic transformations[J]. Chemical Society Reviews,2014,43:473-486.
    [3] 陈丹丹, 衣晓虹, 王崇臣. 机械化学法制备金属-有机骨架及其复合物研究进展 [J]. 无机化学学报, 2020, 36(10): 1805-1821.

    CHEN Dandan, YI Xiaohong, WANG Chongchen. Preparation of metal-organic frameworks and their composites using mechanochemical methods [J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1805-1821(in Chinese).
    [4] WANG Q, GAO Q Y, ALENIZI A M, et al. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light[J]. Inorganic Chemistry Frontiers,2020,7:300-339.
    [5] DHAKSHINAMOORTHY A, ASIRI A M, GARCÍA H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production[J]. Angewandte Chemie International Edition,2016,55(18):5414. doi: 10.1002/anie.201505581
    [6] 肖娟定, 李丹丹, 江海龙. 金属有机框架材料在光催化中的应用[J]. 中国科学(化学), 2018, 48(9):1058-1075. doi: 10.1360/N032018-00035

    XIAO Juanding, LI Dandan, JIANG Hailong. Metal-organic frameworks for photocatalysis[J]. Scientia Sinica Chimica,2018,48(9):1058-1075(in Chinese). doi: 10.1360/N032018-00035
    [7] LILLERUD K P, VALENZANO L, CIVALLERI B, et al. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory [J]. Chemistry of Materials. 2011, 23(7): 1700-1718.
    [8] BAI Y, DOU Y, XIE L H, et al. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications[J]. Chemical Society Reviews,2016,45(8):2327-2367. doi: 10.1039/C5CS00837A
    [9] YANG Y, ZENG Z, ZHANG C, et al. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight[J]. Chemical Engineering Journal,2018,349:808-821. doi: 10.1016/j.cej.2018.05.093
    [10] CHEN M, GAN N, ZHOU Y, et al. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and recJf exonuclease-assisted targets recycling amplification[J]. Talanta,2016,161:867-874. doi: 10.1016/j.talanta.2016.09.051
    [11] PAN Y, YUAN X Z, JIANG L B, et al. Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight[J]. Chemical Engineering Journal,2020,384:123310. doi: 10.1016/j.cej.2019.123310
    [12] GAO Q, LIN D, FAN Y, et al. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19. doi: 10.1016/j.cej.2019.05.151
    [13] FU Y, WU J, DU R, et al. Temperature modulation of defects in NH2-UiO-66(Zr) for photocatalytic CO2 reduction[J]. RSC Advances,2019,9(65):37733-37738. doi: 10.1039/C9RA08097J
    [14] SU Y, ZHANG Z, LIU H, et al. Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction[J]. Applied Catalysis B: Environmental,2017,200:448-457. doi: 10.1016/j.apcatb.2016.07.032
    [15] SWAIN G, SULTANA S, PARIDA K. Constructing a novel surfactant-free MoS2 nanosheet modified MgIn2S4 marigold microflower: An efficient visible-light driven 2D-2D p-n heterojunction photocatalyst toward HER and pH regulated NRR [J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 4848-4862.
  • 加载中
图(12)
计量
  • 文章访问数:  1404
  • HTML全文浏览量:  574
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 修回日期:  2021-08-20
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-09-29
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回