Basic scientific problems of nickel rich cathode materials for Li-ion battery: Regulation and mechanism for crystallization of hydroxide precursor
-
摘要: 富镍锂过渡金属氧化物正极具有高容量及高工作电压的优点,是理想的高能量动力电池材料。富镍锂过渡金属氧化物正极的性能主要受其氢氧化物前驱体的结构、形貌、粒径等因素影响。一次晶粒和二次颗粒形貌与尺寸可控的球形氢氧化物前驱体是制备优异电化学性能的富镍正极材料的关键。氢氧化物前驱体沉淀结晶过程中工艺参数会影响前驱体性能,其生长机制对于调控沉淀结晶具有指导意义。本论文首先介绍了沉淀结晶相关基础理论,其次探讨了富镍正极材料氢氧化物前驱体沉淀结晶生长机制和沉淀反应因素对氢氧化物物理及化学性能影响,最后介绍了合成单晶、放射状和核壳结构等特殊富镍正极材料的前驱体。Abstract: The nickel-rich lithium transition metal oxide cathode is an ideal high-energy power battery material due to its high capacity and high working voltage. Its performance is mainly affected by the structure, morphology, particle size and other factors of its hydroxide precursor. The spherical hydroxide precursor with controllable morphology and size of primary grain and secondary particles is the key for the preparation of nickel-rich cathode materials with excellent electrochemical performance. During the precipitation and crystallization process of hydroxide precursor, the process parameters will affect the performance of the precursor, and its growth mecha-nism has guiding significance for regulating the precipitation and crystallization. This paper reviews the basic theories related to precipitation crystallization, then discusses the growth mechanism of precipitation crystallization for hydroxide precursors of nickel-rich cathode materials and the influence of precipitation reaction factors on the physical and chemical properties of hydroxide. At last, the precursors for the synthesis of nickel-rich cathode materials with special structures such as single crystal, radial and core-shell structures are introduced.
-
强韧、轻质复合多级结构材料在能源储存转化、环境治理、生物医学及航天等战略领域的应用越来越受关注[1-4],其中二维多级层状结构材料独特的电子限域效应赋予这类材料独特的物理、化学性质及丰富的科学内涵,在众多的领域都有重要的应用前景,特别是电子器件、光电器件等方面[5-6]。但人工合成材料不能像天然材料(贝壳、骨骼等)一样通过大量的相互作用对结构基元进行精准的调控,以致各结构基元在受力时应力不能有效传递导致材料断裂,影响力学性质、进而限制材料的应用[7-10]。
受自然界启发,研究工作者发展了大量具有强韧力学性能的二维层状结构材料,通常采取的方案是将高强度的无机纳米片与高柔性的有机聚合物通过层-层(LBL)组装、真空抽滤组装、空气诱导组装、冰模板等方法复合,得到类贝壳珍珠层的“砖-泥”结构[11-13]。如Shin等[14]将还原石墨烯氧化物(RGOF)与碳纳米管(SWNT)复合,用RGOF-SWNT复合体填充聚乙烯醇(PVA),获得了具有强韧性的RGOF-SWNT-PVA复合膜材料。Cao等[15]鉴于电磁屏蔽材料对厚度与力学性能的需要,选择Ti3C2Tx (MXene)与纤维素纳米纤维(CNF)为功能基元通过真空抽滤自组装的方法得到了高电磁屏蔽效率的复合膜材料,同时保证了材料的强度和韧性。Yoo等[16]通过静电组装氮化硼(BNNS)与明胶获得机械强度媲美人体骨密质的复合膜,且表现出优异的生物相容性,有望应用于组织工程与骨内植入领域。Woo等[17]利用交联剂(CA) 将片层氧化石墨烯(GO)通过化学键相连,形成仿贝壳结构的GO/CA层状复合薄膜,由于GO之间强大的共价键网络,复合薄膜表现出优异的力学性能,在航空航天、电子保护器、渗透膜等领域有潜在应用。过去研究者们采用纳米填充质增强聚合物薄膜的工作在拉伸强度上都有明显的提升,但断裂伸长率却变化不大甚至有所降低,导致复合薄膜的韧性提升被限制。究其原因在于结构基元之间可作为牺牲性成键的相互作用力较少,也将其归结为应力传递效率较低。综上所述,发展一种普适性的复合膜增强增韧方法仍然具有一定的挑战性[18-20]。
利用聚乙烯亚胺(PEI)修饰过后的纤维素纳米晶(PCNC)与蒙脱土纳米片(MMT)静电自组装得到MMT-PCNC组装体,将其分散到PVA水溶液中并搅拌均匀,随后倒入培养皿中利用溶剂蒸发法成膜。得到的MMT-PCNC/PVA复合膜拉伸强度与断裂伸长率同步增加,性能平衡。此法提高了材料的应力传递效率,有效增加了复合膜的拉伸强度;同时利用多重弱相互作用实现了断裂强度、断裂伸长率以及韧性的同步提升。
1. 实验材料及方法
1.1 原材料
蒙脱土粉末购买于浙江丰虹新材料有限公司,棉浆浆板购买于河北中国纸业公司,浓硫酸(98%)购买于北京化学试剂厂,聚乙烯醇(PVA,醇解度为87%~89%,AR)在阿拉丁上海有限公司购买,聚乙烯亚胺(PEI,Mw=10000,AR)购买于阿达玛斯试剂有限公司。实验过程中所用到的试剂都未经任何处理。
1.2 PCNC的制备
晶态纳米纤维素(Cellulose nanocrystals, CNC)悬浮液制备方法参考文献[21]制得,PEI修饰的CNC具体制备过程如下:取10 mL PEI水溶液(3.0wt%)加入到5 mL CNC悬浮液(3.0wt%)中,室温下连续搅拌1 h,随后用浓盐酸将混合溶液pH调到1.3以增强CNC与PEI之间的离子相互作用。继续搅拌十分钟后,将混合溶液高速离心20 min(13000 r/min),弃去上层清液,将沉淀用超纯水(18.2 MΩ·cm,Mill-Q Corp)洗涤三次,去掉未发生相互作用的游离PEI聚合物。最后再将沉淀加入水中,超声30 min重新分散,8000 r/min低速离心8 min,去掉CNC聚集体,收集上层清液得到单分散的CNC悬浮液,浓度为1.0wt%,命名为PCNC。
1.3 MMT悬浮液的制备
将2 g MMT粉末加入到500 mL超纯水中,连续溶解搅拌一周后静置72 h,收集上层清液得到剥离充分的MMT纳米片备用,浓度为0.2wt%。
1.4 MMT-PCNC组装体的制备
将MMT (0.2wt%)悬浮溶液逐滴加入到PCNC (1.0wt%)悬浮溶液中,持续搅拌24 h,得到MMT-PCNC组装体悬浮液,控制MMT与PCNC的质量比分别为1∶1、1∶2、1∶4。得到不同MMT、PCNC质量比的组装体,分别命名为1MMT-1PCNC、1MMT-2PCNC、1MMT-4PCNC,具体组成见表1。
1.5 MMT-PCNC/PVA复合膜的制备
将上述组装体悬浮液加入到PVA水溶液中,搅拌过夜,使组装体分散均匀,组装体含量控制为PVA质量的20%。将混合液置于直径为60 mm的聚乙烯塑料培养皿中室温干燥2天,得到柔性MMT-PCNC/PVA复合膜。
表 1 蒙脱土-纤维素纳米晶(MMT-PCNC)组装体的组成Table 1. Compositions of the montmorillonite-cellulose nanocrystal (MMT-PCNC) assembliesSample 1MMT-1PCNC 1MMT-2PCNC 1MMT-4PCNC Composition Mass fraction Mass ratio Mass ratio Mass ratio MMT 0.2% 1 1 1 PCNC 1.0% 1 2 4 1.6 样品性能及表征
SEM结果在JSM-6510A上获得,样品用导电胶粘贴于样品台表面,喷金60 s,电压设置为20 kV,电流设置为86 μA[22]。TEM结果在FEI Tecnai G2S-Twin上获得,样品滴于200 mm铜网上,室温晾干,加速电压为200 kV。溶液的Zeta电势常温下在Malvern Zetasizer Nano-ZS90上获得,样品浓度为0.1wt%[23]。傅立叶红外光谱(FTIR)测试在Bruker IFS 66v/S红外光谱仪上进行,扫描范围为 400~4000 cm−1,扫描速度为4 cm−1,制样过程参考文献[24],样品采用KBr压片,测试前置于60℃烘箱干燥1 h。力学性能测试在万能材料测试机(Instron 5944, UK)上进行,所用传感器为2000 N,拉伸速率为5 mm·min−1,夹距为10 mm。所有的样品测试均在常温下进行,样品长度约为50 mm、宽度约为5 mm、厚度约为0.3 mm,每组样品重复测量3次。
2. 结果与讨论
2.1 MMT-PCNC组装体的形成过程
图1(a)~1(c)分别为CNC、PCNC、MMT悬浮溶液置于室温下一个月之后的光学照片,从图中可以看到溶液基本都呈乳白色,无沉淀产生,说明所有的溶液均非常稳定。CNC由硫酸水解制得,表面含有磺酸基,带负电,Zeta电势分析得到CNC的电势值为−21.3 mV。加入PEI对其进行修饰后,在其表面引入了氨基,带正电,Zeta电势分析显示,PEI修饰过后的CNC (PCNC)电势值由−21.3 mV增加到35.4 mV。对MMT进行Zeta电势表征得到,其电势值为−31.3 mV,与PCNC所带电荷相反,数值匹配,为静电相互作用驱动形成MMT-PCNC组装体提供了必要的条件(图1(d))。
对修饰前后的CNC进行TEM表征,可以看到PCNC仍为棒状结构,长度与直径相比较CNC有明显的增加(图2)。经过统计,平均长度由164 nm增加到206 nm,平均直径由22 nm增加到26 nm (图3),说明PEI聚电解质已成功包覆于CNC的表面,形成PCNC。
将不同质量比的PCNC与MMT悬浮液混合,得到不同质量比的MMT-PCNC组装体悬浮液(1MMT-2PCNC、1MMT-1PCNC、1MMT-4PCNC),组装后发现三组不同配比的溶液均不同程度的发生聚沉,出现明显颗粒感,说明两种结构基元发生相互作用,且组装以后尺寸变大。以1MMT-2PCNC组装体为例,分别对组装前后的结构基元(MMT纳米片、PCNC纳米棒和1MMT-2PCNC组装体)进行TEM表征(图4)。如图4(a)所示,MMT呈分散、不规则片层结构,横向尺寸大约有100~1000 nm。在1MMT-2PCNC组装体的TEM图像中可以看到PCNC纳米棒附着于MMT纳米片的表面及边缘上,取向各异,在MMT表面上形成一层稠密的PCNC层(图4(c)及插图)。组装体的尺寸取决于原始MMT与PCNC的尺寸。
2.2 MMT-PCNC/PVA复合膜的形貌
图5为不同MMT-PCNC/PVA复合膜的SEM图像。如图所示,纯PVA薄膜截面致密,无有序结构。而由不同MMT、PCNC质量比的组装体所构成的复合膜均具有明显层状结构,为干燥成膜过程中MMT纳米片组装而成,由图5(c)、5(d)可见,层间具有明显PCNC附着(图中箭头所指),表明由于较强的静电相互作用,使MMT-PCNC组装体在成膜过程中得以有效保存,但由于层间还存在PVA分子,使得PCNC被部分覆盖,电镜下只观察到棒状尖端。图5(b)中,由于PCNC含量相对较少,未在截面处观察到明显PCNC结构。
2.3 MMT-PCNC/PVA复合膜的力学性能
对复合膜及纯PVA膜进行力学性能的测试(图6),测试结果总结于表2中。如图6所示,相比较纯PVA膜,MMT-PCNC作为增强质对复合膜的力学性能产生正影响,拉伸强度、断裂伸长率、韧性都不同程度的增加,杨氏模量均略有下降;其中,1MMT-1PCNC/PVA复合膜拉伸强度增长最为明显,为196%;1MMT-2PCNC/PVA复合膜的断裂伸长率、韧性增加最为明显(图6插图),分别为175%和900%。这些均得益于复合膜内部的弱相互作用[25-26]:MMT与PCNC之间通过静电组装,使组装体内部存在大量静电相互作用;MMT-PCNC组装体表面携带羟基和氨基,易与PVA分子侧基羟基形成氢键,增加了组装体与基体的界面相互作用[27]。这些弱相互作用在复合膜受到拉伸时首先断裂,充当牺牲性成键,使复合膜内部的MMT、PCNC产生滑移,断裂伸长率提高,进而提升韧性[28-29];其次,附着于MMT表面的PCNC通过静电与氢键相互作用将MMT与PVA连接,形成具有砖-泥结构的片层复合膜,当应力作用于膜上时,可在这些刚性结构基元之间有效传递,从而增加复合膜的强度。二者协同作用使材料单位应变时所需的应力减小,即刚性减小。
表 2 MMT-PCNC/PVA复合膜的力学性能Table 2. Mechanical properties of the MMT-PCNC/PVA hybrid filmsHybrid films of filler/PVA Elongation-at-break
/%Tensile strength
/MPaYoung’s modulus
/MPaToughness
/(MJ·m−3)PVA 28±3 26±3 101±13 3±1 1MMT-1PCNC/PVA 50±4 77±7 97±6 27±6 1MMT-2PCNC/PVA 77±4 63±8 100±3 30±9 1MMT-4PCNC/PVA 42±2 54±9 92±7 13±2 为了证实氢键的存在,对1MMT-2PCNC/PVA复合膜、纯PVA膜以及冷冻干燥的纯CNC进行了红外分析。如图7所示,在3000~3500 cm−1区域内出现的透过峰归属于PVA羟基伸缩振动,对比几个样品—OH的透过峰峰位可以发现,1MMT-2PCNC/PVA复合膜的峰位较纯CNC和PVA向低波数方向移动。过去研究表明[30-33],氢键的形成是导致羟基峰位发生偏移的主要原因。PEI修饰的CNC表面存在大量的氨基,MMT表面也有一定量的羟基,因此组装体1MMT-2PCNC与PVA之间势必会形成氢键,导致羟基峰发生移动。在1025 cm−1、1733 cm−1以及2945 cm−1波数处出现的峰分别归属于PVA的C—OH、C=O以及脂肪质C—H的伸缩振动[34],在1256 cm−1、1370 cm−1以及1446 cm−1处出现的峰分别归属于PVA的C—H、O—H的弯曲振动以及C—H非平面摇摆振动[35-37]。CNC在3382 cm−1、2915 cm−1、1649 cm−1及1055 cm−1处分别出现明显的透过峰,其中3382 cm−1、2915 cm−1归属于CNC的O—H与C—H的伸缩振动,1649 cm−1归属于CNC吡喃糖环的伸缩振动,而1055 cm−1归属于CNC中吸附了水分子的羟基伸缩振动[38]。
为了进一步研究自组装体改善聚合物薄膜力学性能的强韧化机制,人为破坏薄膜表面造成裂纹进行SEM测试。如图8(a)所示,裂纹均非直线传播,而是随着主裂纹的扩展出现了明显的微裂纹偏转(图8(a)中白色折线),说明MMT、PCNC、PVA之间存在强烈的相互作用,与之前分析一致。存在于片层之间的PCNC通过静电以及氢键作用将PVA和MMT相互连接,当应力施加时充当桥连剂,阻止裂纹扩展,随着应力增大,裂纹将沿着纳米纤维发生偏转,直至最终断裂,这一过程将导致裂纹路径增大,消耗更多的能量,实现复合材料的强韧化[26, 39]。
图 8 1MMT-2PCNC/PVA复合膜断裂形态的SEM图像和断裂示意图:(a) 断裂过程中裂纹扩展的SEM图像(白色折线表示裂纹偏转);(b) 断裂模型示意图Figure 8. SEM image of fracture morphologies of 1MMT-2PCNC/PVA hybrid films and the proposed fracture model: (a) SEM image of crack propagation occurred during fracture (White line indicate crack propagation); (b) Schematic illustration of the fracture model通过观察组装体中MMT与PCNC的不同比例组装体对薄膜力学性能的影响发现,随着组装体中PCNC含量的增加,拉伸强度逐渐减弱,当MMT与PCNC比例为1∶4时,断裂伸长率也明显下降(图6),原因可能是随着PCNC含量的增加,组装体质量加重,更易发生聚沉,且当其分布于聚合物基体中时,不易分散均匀,导致复合膜力学性能下降[40-41]。
3. 结 论
(1) 组装体1MMT(蒙脱土)-1PCNC(纤维素纳米晶)和1MMT-2PCNC对PVA(聚乙烯醇)力学性能增强较为明显,拉伸强度分别增加196%、142%;断裂伸长率增幅分别为79%、175%;韧性增幅分别为800%、900%;复合膜杨氏模量略有下降。
(2) MMT-PCNC/PVA复合膜中存在多种弱相互作用(静电相互作用、氢键),给应力的传递提供了有效的途径,同时引起裂纹偏转,达到消耗能量的目的,使其在拉伸强度提高的同时断裂伸长率也得到提升。本文提出了一种新的合理设计构筑先进复合纳米材料的思路,即用自组装的方法制备组装体,并利用组装体中存在的大量弱相互作用提升聚合物薄膜的力学性质,从而拓展其应用。
-
图 1 (a)沉淀过程中溶液溶质浓度随时间变化示意图[27];(b)溶液状态图[25];(c)系统自由能ΔG与半径r的关系图[32]
Figure 1. (a) Schematic diagram of the change of solution solute concentration with time during precipitation[27]; (b) Solution state diagram[25]; (c) Relationship between the system free energy ΔG and the radius r[32]
0—Solubility curve; 1, 2—Curve of the first and second metastable limits; S—Stable zone; M1, M2—First and second metastable zones; L—Unstable zone; Ⅰ—Nucleation-inducing zone; Ⅱ—Nucleation zone; Ⅲ—Growing zone; ΔGθk—Minimum nucleation energy barrier; r*—Critical nuclear radius
图 4 反应时间分别为1、2、4、6 、8、10、22 h ((a)~(g))的Ni0.6Co0.2Mn0.2(OH)2前驱体的SEM图像;(h)类折纸灯笼一次晶粒组装为二次颗粒的示意图[47]
Figure 4. SEM images of the Ni0.6Co0.2Mn0.2(OH)2 precursors obtained at reaction time for 1, 2 , 4, 6, 8, 10, 22 h ((a)-(g)), respectively; (h) Diagrammatic sketch for the assembling of secondary particle[47]
图 7 在pH=11.2((a), (d))、pH=11.5 ((b), (e)) 和pH=11.8 ((c), (f))下制备Ni0.8Co0.1Mn0.1(OH)2 的SEM图像[19];(g) 不同组分Ni1-x-yCoxMny(OH)2的pH值和氨浓度;(h) pH对[Ni(NH3)n]2+、[Co(NH3)n]2+和[Mn(NH3)n]2+浓度的影响[38] (曲线是1≤n≤6的络合物的总和);(i) 反应5 h时pH对Ni(OH)2、Ni1/2Mn1/2(OH)2和Ni1/3Co1/3Mn1/3(OH)2振实密度的影响[38]
Figure 7. SEM images of Ni0.8Co0.1Mn0.1(OH)2 prepared at pH of 11.2 ((a), (d)), 11.5 ((b), (e)) and 11.8 ((c), (f))[19]; (g) pH value and ammonia concentration of Ni1-x-yCoxMny(OH)2 with different compositions; (h) Influence of pH on the concentration of [Ni(NH3)n]2+, [Co(NH3)n]2+ and [Mn(NH3)n]2+ (the curve is the sum of complexes for 1≤n≤6)[38]; (i) Effect of pH on the tap density of Ni(OH)2, Ni1/2Mn1/2(OH)2, and Ni1/3Co1/3Mn1/3(OH)2 when reaction time was 5 hours[38]
图 8 (a)二次颗粒粒径随时间变化图[53];(b)不同温度下Ni1/3Co1/3Mn1/3(OH)2前驱体的粒度变化图[54];(c)无保护气氛时和有N2保护时Ni0.45Co0.1Mn0.45(OH)2前驱体的XRD图谱[56]
Figure 8. (a) Size of the secondary particles at difference reaction time[53]; (b) Size of the Ni1/3Co1/3Mn1/3(OH)2 precursor at different temperatures[54]; (c) XRD spectrum of Ni0.45Co0.1Mn0.45(OH)2 precursor synthesized with or without the protection of N2[56]
D10, D50, D90—Cumulative distribution of particles is 10%, 50%, 90% of the particle size, respectively
图 9 (a)螺旋桨叶轮;(b)平直涡轮式叶轮;(c)折叶涡轮式叶轮;(d)螺旋桨叶轮的水平旋流;(e)平直涡轮式叶轮安装挡板后的液流;((f)~(h)) 在400、600、800 r/min转速下合成Ni0.6Co0.2Mn0.2(OH)2的SEM图像[48]
Figure 9. (a) Propeller impeller; (b) Flat turbine impeller; (c) Folded blade turbine impeller; (d) Horizontal swirl of propeller impeller; (e) Liquid flow after installation of baffle on flat turbine impeller; ((f)-(h)) SEM images of Ni0.6Co0.2Mn0.2(OH)2 powders prepared at stirring speed for 400, 600 and 800 r/min[48]
图 10 间歇和连续操作过程反应器结晶示意图((a), (d))、停留时间分布((b), (e))及代表性前驱体SEM图像((c), (f))[65, 67]
Figure 10. Reactor schematic diagram ((a), (d)), residence time ((b), (e)) and typical SEM image ((c), (f)) for batch and continuous precipitation[65, 67]
BR—Batch reactor; CSTR—Continuous stirred tank reactor; C(t)—From the time the fluid enters the reactor, the ratio of the fluid flowing out of the reactor to the total number of fluids in the time t
图 12 (a)放射状富镍正极材料的结构和特性示意图[76];((b)~(d))放射状前驱体的SEM和横截面SEM图像[76];((e)~(j)) 在0 min、20 min、40 min、2 h、3 h、4 h不同时间下合成的由Ni0.5Mn0.5(OH)2包覆Ni0.8Co0.1Mn0.1(OH)2的SEM图像[77];(k)核壳结构正极材料颗粒示意图[78]
Figure 12. (a) Schematic diagram of the structure and characteristics of the radial Ni-rich material[76]; ((b)-(d)) SEM and cross-sectional SEM images of the radial precursor[76]; ((e)-(j)) SEM image of Ni0.5Mn0.5(OH)2 coated Ni0.8Co0.1Mn0.1(OH)2 synthesized at different times for 0 min, 20 min, 40 min, 2 h, 3 h and 4 h[77]; (k) Schematic diagram of core-shell structure cathode material[78]
-
[1] ZHANG X, YU H. Crystalline domain battery materials[J]. Accounts of Chemical Research,2019,53(2):368-379.
[2] ANDRE D, KIM S J, LAMP P, et al. Future generations of cathode materials: An automotive industry perspective[J]. Journal of Materials Chemistry A,2015,3(13):6709-6732. DOI: 10.1039/C5TA00361J
[3] HAN D, PARK K, PARK J H, et al. Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries[J]. Journal of Industrial and Engineering Chemistry,2018,68:180-186. DOI: 10.1016/j.jiec.2018.07.044
[4] KIM T, SONG W, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A,2019,7(7):2942-2964. DOI: 10.1039/C8TA10513H
[5] DENG C, LIU L, ZHOU W, et al. Effect of synthesis condition on the structure and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by hydroxide co-precipitation method[J]. Electrochimica Acta,2008,53(5):2441-2447. DOI: 10.1016/j.electacta.2007.10.025
[6] DING Y, WANG R, WANG L, et al. A short review on layered LiNi0.8Co0.1Mn0.1O2 positive electrode material for lithium-ion batteries[J]. Energy Procedia,2017,105:2941-2952. DOI: 10.1016/j.egypro.2017.03.672
[7] BIANCHINI M, ROCA-AYATS M, HARTMANN P, et al. There and back again-The journey of LiNiO2 as a cathode active material[J]. Angewandte Chemie International Edition,2019,58(31):10434-10458. DOI: 10.1002/anie.201812472
[8] KALLURI S, YOON M, JO M, et al. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J]. Advanced Energy Materials,2017,7(1):1601507. DOI: 10.1002/aenm.201601507
[9] YOON C S, RYU H H, PARK G T, et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries[J]. Journal of Materials Chemistry A,2018,6(9):4126-4132. DOI: 10.1039/C7TA11346C
[10] TIAN C, LIN F, DOEFF M M. Electrochemical characteris-tics of layered transition metal oxide cathode materials for lithium ion batteries: Surface, bulk behavior, and thermal properties[J]. Accounts of Chemical Research,2018,51(1):89-96. DOI: 10.1021/acs.accounts.7b00520
[11] JIA H, ZHU W, XU Z, et al. Precursor effects on structural ordering and electrochemical performances of Ni-rich layered LiNi0.8Co0.2O2 cathode materials for high-rate lithium ion batteries[J]. Electrochimica Acta,2018,266:7-16. DOI: 10.1016/j.electacta.2018.02.027
[12] LI L, LI Y, LI L, et al. Thermodynamic analysis on the coprecipitation of Ni-Co-Mn hydroxide[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,2017,48(5):2743-2750. DOI: 10.1007/s11663-017-0985-x
[13] ZHENG J, YE Y, LIU T, et al. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control[J]. Accounts of Chemical Research,2019,52(8):2201-2209. DOI: 10.1021/acs.accounts.9b00033
[14] KIM K J, JO Y N, LEE W J, et al. Effects of inorganic salts on the morphological, structural, and electrochemical properties of prepared nickel-rich Li[Ni0.6Co0.2Mn0.2]O2[J]. Journal of Power Sources,2014,268:349-355. DOI: 10.1016/j.jpowsour.2014.06.057
[15] RUAN Y, SONG X, FU Y, et al. Structural evolution and capacity degradation mechanism of LiNi0.6Mn0.2Co0.2O2 cathode materials[J]. Journal of Power Sources,2018,400:539-548. DOI: 10.1016/j.jpowsour.2018.08.056
[16] LEE K S, MYUNG S T, MOON J S, et al. Particle size effect of Li[Ni0.5Mn0.5]O2 prepared by co-precipitation[J]. Electrochimica Acta,2008,53(20):6033-6037. DOI: 10.1016/j.electacta.2008.02.106
[17] ZHANG J, ZHANG H. Robust incident-angle field estimation: A one-way wave propagator approach[J]. Exploration Geophysics,2018,44(4):245-250.
[18] CHENG K L, MU D B, WU B R, et al. Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages[J]. International Journal of Minerals, Metallurgy and Materials,2017,24(3):342-351. DOI: 10.1007/s12613-017-1413-6
[19] VU D L, LEE J W. Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries[J]. Korean Journal of Chemical Engineering,2015,33(2):514-526.
[20] YANG X, TANG Y, ZHENG J, et al. Tailoring structure of Ni-rich layered cathode enable robust calendar life and ultrahigh rate capability for lithium-ion batteries[J]. Electrochimica Acta,2019,320:134587. DOI: 10.1016/j.electacta.2019.134587
[21] XU Z, XIAO L, WANG F, et al. Effects of precursor, synthesis time and synthesis temperature on the physical and electrochemical properties of Li(Ni1-x-yCoxMny)O2 cathode materials[J]. Journal of Power Sources,2014,248:180-189. DOI: 10.1016/j.jpowsour.2013.09.064
[22] 张臻, 张海艳, 胡志兵, 等. 锂电三元正极材料前驱体的研究进展[J]. 矿冶工程, 2019, 39(2):115-119. DOI: 10.3969/j.issn.0253-6099.2019.02.028 ZHANG Zhen, ZHANG Haiyan, HU Zhibing, et al. Research progress in precursors of ternary cathode materials for lithium batteries[J]. Mining and Metallurgical Engi-neering,2019,39(2):115-119(in Chinese). DOI: 10.3969/j.issn.0253-6099.2019.02.028
[23] 李杰, 刘涛, 陈圆圆, 等. 氨值与搅拌频率对制备三元前驱体的影响[J]. 广州化工, 2020, 48(6):73-75, 87. DOI: 10.3969/j.issn.1001-9677.2020.06.028 LI Jie, LIU Tao, CHEN Yuanyuan, et al. Effects of ammonia concentration and stirring frequency on preparation of ternary precursor[J]. Guangzhou Chemical Industry,2020,48(6):73-75, 87(in Chinese). DOI: 10.3969/j.issn.1001-9677.2020.06.028
[24] 翟秀静, 肖碧君, 李乃军. 还原与沉淀[M]. 北京: 冶金工业出版社, 2008: 296-297. ZHAI Xiujing, XIAO Bijun, LI Naijun. Restore and precipi-tate[M]. Beijing: Metallurgical Industry Press, 2008: 296-297(in Chinese).
[25] 王伟东, 仇卫华, 丁倩倩. 锂离子电池三元材料: 工艺技术及生产应用[M]. 北京: 化学工业出版社, 2015: 171-172. WANG Weidong, CHOU Weihua, DING Qianqian. Nickel cobalt manganese based cathode materials for Li-ion batteries technology production and application[M]. Beijing: Chemical Industry Press, 2015: 171-172(in Chinese).
[26] 叶铁林. 化工结晶过程原理及应用[M]. 北京: 北京工业大学出版社, 2006: 30-31. YE Tielin. Principles and applications of chemical crystallization process[M]. Beijing: Beijing University of Technology Press, 2006: 30-31(in Chinese).
[27] LAMER V K, DINEGAR R H. Theory, production and mecha-nism of formation of monodispersed hydrosols [J]. Journal of the American Chemical Society, 1950, 72: 4847-4854
[28] YANG Y, XU S, XIE M, et al. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2[J]. Journal of Alloys and Compounds,2015,619:846-853. DOI: 10.1016/j.jallcom.2014.08.152
[29] LIIRI M, KOIRANEN T, AITTAMAA J. Secondary nucleation due to crystal-impeller and crystal-vessel collisions by population balances in CFD-modelling[J]. Journal of Crystal Growth,2002,237:2188-2193.
[30] CHOU K S, CHEN C C. The critical conditions for secondary nucleation of silica colloids in a batch Stöber growth process[J]. Ceramics International,2008,34(7):1623-1627. DOI: 10.1016/j.ceramint.2007.07.009
[31] FRAWLEY P J, MITCHELL N A, ÓCIARDHÁ C T, et al. The effects of supersaturation, temperature, agitation and seed surface area on the secondary nucleation of paracetamol in ethanol solutions[J]. Chemical Engineering Science,2012,75:183-197. DOI: 10.1016/j.ces.2012.03.041
[32] KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Crystal Growth & Design,2016,16(11):6663-6681.
[33] 姚连增. 晶体生长基础[M]. 安徽: 中国科学技术大学出版社, 1995: 280-283. YAO Lianzeng. The basis for crystal growth[M]. Anhui: China University of Science and Technology Press, 1995: 280-283(in Chinese).
[34] 孙小童. NiSO4-Co(NO3)2-氨水体系制备Ni-Co-O电极材料的反应动力学研究[D]. 北京: 北京化工大学, 2015. SUN Xiaotong. Research on reaction dynamics of Ni-Co-O electrode materials for NiSO4-Co(NO3)2-ammonia system[D]. Beijing: Beijing University of Technology, 2015(in Chinese).
[35] 郑燕青, 施尔畏, 李汶军, 等. 晶体生长理论研究现状与发展[J]. 无机材料学报, 1999, 3(14):321-332. ZHENG Yanqing, SHI Erwei, LI Wenjun, et al. The current situation and development of crystal growth theory[J]. Journal of Inorganic Materials,1999,3(14):321-332(in Chinese).
[36] WULFF G. XXV. Zur frage der geschwindigkeit des wachsthums und der auflsung der krystallflchen: Zeitschrift für kristallographie-crystalline materials [J]. Brown University Rockefeller Library Angemeldet, 1901, 34(1): 449-530.
[37] LEE M H, KANG Y J, MYUNG S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J]. Electrochimica Acta,2004,50(4):939-948. DOI: 10.1016/j.electacta.2004.07.038
[38] VAN BOMMEL A, DAHN J R. Analysis of the growth mechanism of co-precipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the pre-sence of aqueous ammonia[J]. Chemistry of Materials,2009,21(8):1500-1503. DOI: 10.1021/cm803144d
[39] NAM K M, KIM H J, KANG D H, et al. Ammonia-free coprecipitation synthesis of a Ni-Co-Mn hydroxide precursor for high-performance battery cathode materials[J]. Green Chemistry,2015,17(2):1127-1135. DOI: 10.1039/C4GC01898B
[40] 邹邦坤, 丁楚雄, 陈春华. 锂离子电池三元正极材料的研究进展[J]. 中国科学: 化学, 2014, 44(7):1104-1115. DOI: 10.1360/N032014-00019 ZOU Bangkun, DING Chuxiong, CHEN Chunhua. Advances in the research of troy positive materials for lithium-ion batteries[J]. Scientia Sinica Chimica,2014,44(7):1104-1115(in Chinese). DOI: 10.1360/N032014-00019
[41] WANG D, BELHAROUAK I, ORTEGA L H, et al. Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation[J]. Journal of Power Sources,2015,274:451-457. DOI: 10.1016/j.jpowsour.2014.10.016
[42] CUI Y, LIU K, MAN J, et al. Preparation of ultra-stable Li[Ni0.6Co0.2Mn0.2]O2 cathode material with a continuous hydroxide co-precipitation method[J]. Journal of Alloys and Compounds,2019,793:77-85. DOI: 10.1016/j.jallcom.2019.04.123
[43] BARAI P, FENG Z, KONDO H, et al. Multiscale computational model for particle size evolution during coprecipitation of Li-ion battery cathode precursors[J]. Journal of Physical Chemistry B,2019,123(15):3291-3303. DOI: 10.1021/acs.jpcb.8b12004
[44] HUA W, LIU W, CHEN M, et al. Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3-(OH)2 and their application as precursors for high-power cathode materials[J]. Electrochimica Acta,2017,232:123-131. DOI: 10.1016/j.electacta.2017.02.105
[45] GIELEN B, JORDENS J, THOMASSEN L, et al. Agglomeration control during ultrasonic crystallization of an active pharmaceutical ingredient[J]. Crystals,2017,7(2):7020040.
[46] WANG D, BELHAROUAK I, KOENIG G M, et al. Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes[J]. Journal of Materials Chemistry,2011,21(25):9290-9295. DOI: 10.1039/c1jm11077b
[47] CHEN X, LI D, MO Y, et al. Cathode materials with cross-stack structures for suppressing intergranular cracking and high-performance lithium-ion batteries[J]. Electrochimica Acta,2018,261:513-520. DOI: 10.1016/j.electacta.2017.12.176
[48] LIANG L, DU K, PENG Z, et al. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J]. Electrochimica Acta,2014,130:82-89. DOI: 10.1016/j.electacta.2014.02.100
[49] 冯耀华, 李春雷, 艾灵. 锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2的产业化工艺研究[J]. 现代化工, 2018, 38(9):174-179. FENG Yaohua, LI Chunlei, AI Ling. Study on industrialization process of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries[J]. Modern Chemical Industry,2018,38(9):174-179(in Chinese).
[50] CHEN Y, XU G, LI J, et al. High capacity 0.5Li2MnO3·0.5LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method[J]. Electrochimica Acta,2013,87:686-692. DOI: 10.1016/j.electacta.2012.09.024
[51] CHERALATHAN K K, KANG N Y, PARK H S, et al. Preparation of spherical LiNi0.80Co0.15Mn0.05O2 lithium-ion cathode material by continuous co-precipitation[J]. Journal of Power Sources,2010,195(5):1486-1494. DOI: 10.1016/j.jpowsour.2009.08.101
[52] NOH M, CHO J. Optimized synthetic conditions of LiNi0.5Co0.2Mn0.3O2 cathode materials for high rate lithium batteries via co-precipitation method[J]. Journal of the Electrochemical Society,2013,160(1):105-111. DOI: 10.1149/2.004302jes
[53] ZHU Q, XIAO H, ZHANG R, et al. Effect of impeller type on preparing spherical and dense Ni1-x-yCoxMny(OH)2 precursor via continuous co-precipitation in pilot scale: A case of Ni0.6Co0.2Mn0.2(OH)2[J]. Electrochimica Acta,2019,318:1-13. DOI: 10.1016/j.electacta.2019.06.008
[54] 樊勇利, 许国峰, 李平. 制备高致密球形Ni1/3Co1/3Mn1/3(OH)2 的影响因素分析与控制[J]. 电源技术, 2012, 36(6):789-791. DOI: 10.3969/j.issn.1002-087X.2012.06.007 FAN Yongli, XU Guofeng, LI Ping. Analysis and control of factors influencing synthesizing spherical Ni1/3Co1/3Mn1/3-(OH)2 with higher density[J]. Power Technology,2012,36(6):789-791(in Chinese). DOI: 10.3969/j.issn.1002-087X.2012.06.007
[55] VAN BOMMEL A, DAHN J R. Synthesis of spherical and dense particles of the pure hydroxide phase Ni1/3Mn1/3Co1/3(OH)2[J]. Journal of the Electrochemical Society,2009,156(5):362-365. DOI: 10.1149/1.3079366
[56] 代克化, 王银杰, 冯华君, 等. 氢氧化物共沉淀法制备 LiMn0.45Ni0.45Co0.1正极材料的反应条件[J]. 物理化学学报, 2007, 23(12):1927-1931. DOI: 10.3866/PKU.WHXB20071218 DAI Kehua, WANG Yinjie, FENG Huajun, et al. Preparation conditions of LiMn0.45Ni0.45Co0.1 via hydroxide co-precipitation[J]. Acta Physico-Chimica Sinica,2007,23(12):1927-1931(in Chinese). DOI: 10.3866/PKU.WHXB20071218
[57] 刘敏. 电池用高密度氢氧化镍的制备工艺研究[D]. 天津: 河北工业大学, 2002. LIU Min. Technical study of preparing high density nickel hydroxide in batteries[D]. Tianjin: Hebei University of Technology, 2002(in Chinese).
[58] 丁倩倩. 一种锂离子电池多元正极材料球形前驱体的制备方法: 中国专利, CN103035905A[P]. 2013-04-10. DING Qianqian. A preparation method for the spherical precursor of a multi-positive material of lithium-ion batteries: Chinese Patent, CN103035905A[P]. 2013-04-10(in Chinese).
[59] 马跃飞. 高镍多元前驱体的制备与研究[J]. 当代化工研究, 2018(3):45-47. DOI: 10.3969/j.issn.1672-8114.2018.03.029 MA Yuefei. Preparation and study of high nickel multicomponent precursor[J]. Modern Chemical Research,2018(3):45-47(in Chinese). DOI: 10.3969/j.issn.1672-8114.2018.03.029
[60] OCHIENG A, ONYANGO M S, KUMAR A, et al. Mixing in a tank stirred by a rushton turbine at a low clearance[J]. Chemical Engineering and Processing: Process Intensification,2008,47(5):842-851. DOI: 10.1016/j.cep.2007.01.034
[61] LI Z, HU M, BAO Y, et al. Particle image velocimetry experiments and large eddy simulations of merging flow characteristics in dual rushton turbine stirred tanks[J]. Industrial & Engineering Chemistry Research,2012,51(5):2438-2450.
[62] ZHU Q, XIAO H, CHEN A, et al. CFD study on double- to single-loop flow pattern transition and its influence on macro mixing efficiency in fully baffled tank stirred by a Rushton turbine[J]. Chinese Journal of Chemical Engi-neering,2019,27(5):993-1000. DOI: 10.1016/j.cjche.2018.10.002
[63] HUANG Y, WANG Z, LI X, et al. Synthesis of Ni0.8Co0.1-Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries[J]. Transactions of Nonferrous Metals Society of China(English Edition),2015,25(7):2253-2259. DOI: 10.1016/S1003-6326(15)63838-9
[64] 耿淑君, 黄青山, 朱全红, 等. 共沉淀法制备 LiNi1-x-yCoxMnyO2正极材料工艺条件探究[J]. 化工学报, 2018, 69(1):175-187. GENG Shujun, HUANG Qingshan, ZHU Quanhong, et al. Investigation on synthesis conditions of LiNi1-x-yCoxMnyO2 cathode material via co-precipitation[J]. CIESC Journal,2018,69(1):175-187(in Chinese).
[65] 智福鹏, 王娟辉, 杨健壮. 浅谈镍钴锰三元前驱体合成工艺[J]. 甘肃冶金, 2019, 41(6):72-75, 105. ZHI Fupeng, WANG Juanhui, YANG Jianzhuang. Discussion on synthesis technology of nickel cobalt manganese ternary composite hydroxide precursor[J]. Gansu Metallurgy,2019,41(6):72-75, 105(in Chinese).
[66] 刘彦龙. 前驱体制备对三元材料的影响及研究进展概述[J]. 电源技术, 2019, 43(12):1905-1910. DOI: 10.3969/j.issn.1002-087X.2019.12.001 LIU Yanlong. Research progress on the influence of precursors on ternary materials[J]. Power Technology,2019,43(12):1905-1910(in Chinese). DOI: 10.3969/j.issn.1002-087X.2019.12.001
[67] YOON S J, PARK K J, LIM B B, et al. Improved perfor-mances of LiNi0.65Co0.08Mn0.27O2 cathode material with full concentration gradient for Li-ion batteries[J]. Journal of the Electrochemical Society,2015,162(2):3059-3063. DOI: 10.1149/2.0101502jes
[68] RYU H H, PARK G T, YOON C S, et al. Microstructural degradation of Ni-rich Li[NixCoyMn1−x−y]O2 cathodes during accelerated calendar aging[J]. Small,2018,14(45):1803179. DOI: 10.1002/smll.201803179
[69] KIM U H, LEE E J, YOON C S, et al. Compositionally graded cathode material with long-term cycling stability for electric vehicles application[J]. Advanced Energy Materials,2016,6(22):1601417. DOI: 10.1002/aenm.201601417
[70] KONDRAKOV A O, SCHMIDT A, XU J, et al. Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries[J]. Journal of Physical Chemistry C,2017,121(6):3286-3294. DOI: 10.1021/acs.jpcc.6b12885
[71] RYU H H, PARK K J, YOON C S, et al. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation?[J]. Chemistry of Materials,2018,30(3):1155-1163. DOI: 10.1021/acs.chemmater.7b05269
[72] YIN S, DENG W, CHEN J, et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries[J]. Nano Energy,2021,83:105854. DOI: 10.1016/j.nanoen.2021.105854
[73] 刘帅, 宋顺林, 刘亚飞, 等. 锂离子电池用高镍单晶正极材料的研究进展[J]. 山东化工, 2018, 47(16):46-49. DOI: 10.3969/j.issn.1008-021X.2018.16.019 LIU Shuai, SONG Shunlin, LIU Yafei, et al. Research progress in the single crystal of high nickel cathode materials for lithium-ion batteries[J]. Shandong Chemical Industry,2018,47(16):46-49(in Chinese). DOI: 10.3969/j.issn.1008-021X.2018.16.019
[74] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2三元正极材料研究进展[J]. 电池工业, 2017, 21(2):51-54. DOI: 10.3969/j.issn.1008-7923.2017.02.013 XIAO Jianwei, LIU Liangbin, FU Zewei, et al. Research progress in the single crystal LiNixCoyMn1-x-yO2 ternary cathode materials[J]. Chinese Battery Industry,2017,21(2):51-54(in Chinese). DOI: 10.3969/j.issn.1008-7923.2017.02.013
[75] LI H, LI J, MA X, et al. Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries[J]. Journal of the Electrochemical Society,2018,165(5):1038-1045. DOI: 10.1149/2.0951805jes
[76] XU X, HUO H, JIAN J, et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials,2019,9(15):1803963. DOI: 10.1002/aenm.201803963
[77] SUN Y K, MYUNG S T, PARK B C, et al. Synthesis of spherical nano- to microscale core-shell particles Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2 and their applications to lithium batteries[J]. Chemistry of Materials,2006,18(22):5159-5163. DOI: 10.1021/cm061746k
[78] SUN Y K, CHEN Z, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials,2012,11(11):942-947. DOI: 10.1038/nmat3435
[79] KIM U H, RYU H H, KIM J H, et al. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles[J]. Advanced Energy Materials,2019,9(15):1803902. DOI: 10.1002/aenm.201803902
-