留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池富镍正极基础科学问题:氢氧化物前驱体结晶调控及机制

王鑫 任莉 王硕 张燕辉 左美华 张军 吕根品 向伟

王鑫, 任莉, 王硕, 等. 锂离子电池富镍正极基础科学问题:氢氧化物前驱体结晶调控及机制[J]. 复合材料学报, 2022, 39(5): 1995-2013. doi: 10.13801/j.cnki.fhclxb.20210922.001
引用本文: 王鑫, 任莉, 王硕, 等. 锂离子电池富镍正极基础科学问题:氢氧化物前驱体结晶调控及机制[J]. 复合材料学报, 2022, 39(5): 1995-2013. doi: 10.13801/j.cnki.fhclxb.20210922.001
WANG Xin, REN Li, WANG Shuo, et al. Basic scientific problems of nickel rich cathode materials for Li-ion battery: Regulation and mechanism for crystallization of hydroxide precursor[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1995-2013. doi: 10.13801/j.cnki.fhclxb.20210922.001
Citation: WANG Xin, REN Li, WANG Shuo, et al. Basic scientific problems of nickel rich cathode materials for Li-ion battery: Regulation and mechanism for crystallization of hydroxide precursor[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1995-2013. doi: 10.13801/j.cnki.fhclxb.20210922.001

锂离子电池富镍正极基础科学问题:氢氧化物前驱体结晶调控及机制

doi: 10.13801/j.cnki.fhclxb.20210922.001
基金项目: 国家自然科学基金项目(21805018);四川省科技厅应用基础研究项目(2020YJ0134)
详细信息
    通讯作者:

    向伟,博士,副教授,硕士生导师,研究方向为锂离子电池富镍正极材料 E-mail:xiangwei@cdut.edu.cn

  • 中图分类号: TM912

Basic scientific problems of nickel rich cathode materials for Li-ion battery: Regulation and mechanism for crystallization of hydroxide precursor

  • 摘要: 富镍锂过渡金属氧化物正极具有高容量及高工作电压的优点,是理想的高能量动力电池材料。富镍锂过渡金属氧化物正极的性能主要受其氢氧化物前驱体的结构、形貌、粒径等因素影响。一次晶粒和二次颗粒形貌与尺寸可控的球形氢氧化物前驱体是制备优异电化学性能的富镍正极材料的关键。氢氧化物前驱体沉淀结晶过程中工艺参数会影响前驱体性能,其生长机制对于调控沉淀结晶具有指导意义。本论文首先介绍了沉淀结晶相关基础理论,其次探讨了富镍正极材料氢氧化物前驱体沉淀结晶生长机制和沉淀反应因素对氢氧化物物理及化学性能影响,最后介绍了合成单晶、放射状和核壳结构等特殊富镍正极材料的前驱体。

     

  • 图  1  (a)沉淀过程中溶液溶质浓度随时间变化示意图[27];(b)溶液状态图[25];(c)系统自由能ΔG与半径r的关系图[32]

    Figure  1.  (a) Schematic diagram of the change of solution solute concentration with time during precipitation[27]; (b) Solution state diagram[25]; (c) Relationship between the system free energy ΔG and the radius r[32]

    0—Solubility curve; 1, 2—Curve of the first and second metastable limits; S—Stable zone; M1, M2—First and second metastable zones; L—Unstable zone; Ⅰ—Nucleation-inducing zone; Ⅱ—Nucleation zone; Ⅲ—Growing zone; $\Delta G_{\rm{k}}^{\text{θ} }$—Minimum nucleation energy barrier; r*—Critical nuclear radius

    图  2  氨存在下Ni1-x-yCoxMny(OH)2一次晶粒 (001) 晶面择优生长机制[44]

    Figure  2.  Preferential growth mechanism of (001) faces for Ni1-x-yCoxMny(OH)2 primary grain in the presence of ammonia[44]

    图  3  球形Ni1-x-yCoxMny(OH)2二次颗粒团聚体的形成机制[28]

    Figure  3.  Formation mechanism of spherical Ni1-x-yCoxMny(OH)2 secondary particle agglomerates[28]

    图  4  反应时间分别为1、2、4、6 、8、10、22 h ((a)~(g))的Ni0.6Co0.2Mn0.2(OH)2前驱体的SEM图像;(h)类折纸灯笼一次晶粒组装为二次颗粒的示意图[47]

    Figure  4.  SEM images of the Ni0.6Co0.2Mn0.2(OH)2 precursors obtained at reaction time for 1, 2 , 4, 6, 8, 10, 22 h ((a)-(g)), respectively; (h) Diagrammatic sketch for the assembling of secondary particle[47]

    图  5  反应时间分别为1、3、8、14、24、29 h ((a)~(f))的 Ni1/3Co1/3Mn1/3(OH)2前驱体生长的SEM图像[44]

    Figure  5.  SEM images of Ni1/3Co1/3Mn1/3(OH)2 obtained with 1, 3, 8, 14, 24 and 29 h ((a)-(f))[44]

    图  7  在pH=11.2((a), (d))、pH=11.5 ((b), (e)) 和pH=11.8 ((c), (f))下制备Ni0.8Co0.1Mn0.1(OH)2 的SEM图像[19];(g) 不同组分Ni1-x-yCoxMny(OH)2的pH值和氨浓度;(h) pH对[Ni(NH3)n]2+、[Co(NH3)n]2+和[Mn(NH3)n]2+浓度的影响[38] (曲线是1≤n≤6的络合物的总和);(i) 反应5 h时pH对Ni(OH)2、Ni1/2Mn1/2(OH)2和Ni1/3Co1/3Mn1/3(OH)2振实密度的影响[38]

    Figure  7.  SEM images of Ni0.8Co0.1Mn0.1(OH)2 prepared at pH of 11.2 ((a), (d)), 11.5 ((b), (e)) and 11.8 ((c), (f))[19]; (g) pH value and ammonia concentration of Ni1-x-yCoxMny(OH)2 with different compositions; (h) Influence of pH on the concentration of [Ni(NH3)n]2+, [Co(NH3)n]2+ and [Mn(NH3)n]2+ (the curve is the sum of complexes for 1≤n≤6)[38]; (i) Effect of pH on the tap density of Ni(OH)2, Ni1/2Mn1/2(OH)2, and Ni1/3Co1/3Mn1/3(OH)2 when reaction time was 5 hours[38]

    图  6  在0.3 mol/L ((a), (d))、0.4 mol/L ((b), (e))和0.5 mol/L ((c), (f))氨浓度下制备Ni1/3Co1/3Mn1/3(OH)2的SEM图像[28]

    Figure  6.  SEM images of Ni1/3Co1/3Mn1/3(OH)2 prepared at concentrations of ammonia for 0.3 mol/L ((a), (d)), 0.4 mol/L ((b), (e)) and 0.5 mol/L ((c), (f))[28]

    图  8  (a)二次颗粒粒径随时间变化图[53];(b)不同温度下Ni1/3Co1/3Mn1/3(OH)2前驱体的粒度变化图[54];(c)无保护气氛时和有N2保护时Ni0.45Co0.1Mn0.45(OH)2前驱体的XRD图谱[56]

    Figure  8.  (a) Size of the secondary particles at difference reaction time[53]; (b) Size of the Ni1/3Co1/3Mn1/3(OH)2 precursor at different temperatures[54]; (c) XRD spectrum of Ni0.45Co0.1Mn0.45(OH)2 precursor synthesized with or without the protection of N2[56]

    D10, D50, D90—Cumulative distribution of particles is 10%, 50%, 90% of the particle size, respectively

    图  9  (a)螺旋桨叶轮;(b)平直涡轮式叶轮;(c)折叶涡轮式叶轮;(d)螺旋桨叶轮的水平旋流;(e)平直涡轮式叶轮安装挡板后的液流;((f)~(h)) 在400、600、800 r/min转速下合成Ni0.6Co0.2Mn0.2(OH)2的SEM图像[48]

    Figure  9.  (a) Propeller impeller; (b) Flat turbine impeller; (c) Folded blade turbine impeller; (d) Horizontal swirl of propeller impeller; (e) Liquid flow after installation of baffle on flat turbine impeller; ((f)-(h)) SEM images of Ni0.6Co0.2Mn0.2(OH)2 powders prepared at stirring speed for 400, 600 and 800 r/min[48]

    图  10  间歇和连续操作过程反应器结晶示意图((a), (d))、停留时间分布((b), (e))及代表性前驱体SEM图像((c), (f))[65, 67]

    Figure  10.  Reactor schematic diagram ((a), (d)), residence time ((b), (e)) and typical SEM image ((c), (f)) for batch and continuous precipitation[65, 67]

    BR—Batch reactor; CSTR—Continuous stirred tank reactor; C(t)—From the time the fluid enters the reactor, the ratio of the fluid flowing out of the reactor to the total number of fluids in the time t

    图  11  单晶 ((a), (b)) 和多晶 ((c), (d)) 富镍正极所用前驱体的SEM图像

    Figure  11.  SEM images of precursors for single ((a), (b)) and polycrystalline ((c), (d)) Ni-rich cathode

    图  12  (a)放射状富镍正极材料的结构和特性示意图[76];((b)~(d))放射状前驱体的SEM和横截面SEM图像[76];((e)~(j)) 在0 min、20 min、40 min、2 h、3 h、4 h不同时间下合成的由Ni0.5Mn0.5(OH)2包覆Ni0.8Co0.1Mn0.1(OH)2的SEM图像[77];(k)核壳结构正极材料颗粒示意图[78]

    Figure  12.  (a) Schematic diagram of the structure and characteristics of the radial Ni-rich material[76]; ((b)-(d)) SEM and cross-sectional SEM images of the radial precursor[76]; ((e)-(j)) SEM image of Ni0.5Mn0.5(OH)2 coated Ni0.8Co0.1Mn0.1(OH)2 synthesized at different times for 0 min, 20 min, 40 min, 2 h, 3 h and 4 h[77]; (k) Schematic diagram of core-shell structure cathode material[78]

    表  1  富镍三元正极材料相关氢氧化物溶度积常数(25℃时)[25]

    Table  1.   Solubility product constant of hydroxide related to nickel-rich ternary cathode material (at 25℃)[25]

    Insoluble electrolyteNi(OH)2Co(OH)2Mn(OH)2Mg(OH)2Al(OH)3
    Solubility product constant Ksp2.0×10−15(Fresh)1.9×10−15(Fresh)1.6×10−131.2×10−111.3×10−33
    下载: 导出CSV
  • [1] ZHANG X, YU H. Crystalline domain battery materials[J]. Accounts of Chemical Research,2019,53(2):368-379.
    [2] ANDRE D, KIM S J, LAMP P, et al. Future generations of cathode materials: An automotive industry perspective[J]. Journal of Materials Chemistry A,2015,3(13):6709-6732. doi: 10.1039/C5TA00361J
    [3] HAN D, PARK K, PARK J H, et al. Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries[J]. Journal of Industrial and Engineering Chemistry,2018,68:180-186. doi: 10.1016/j.jiec.2018.07.044
    [4] KIM T, SONG W, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A,2019,7(7):2942-2964. doi: 10.1039/C8TA10513H
    [5] DENG C, LIU L, ZHOU W, et al. Effect of synthesis condition on the structure and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by hydroxide co-precipitation method[J]. Electrochimica Acta,2008,53(5):2441-2447. doi: 10.1016/j.electacta.2007.10.025
    [6] DING Y, WANG R, WANG L, et al. A short review on layered LiNi0.8Co0.1Mn0.1O2 positive electrode material for lithium-ion batteries[J]. Energy Procedia,2017,105:2941-2952. doi: 10.1016/j.egypro.2017.03.672
    [7] BIANCHINI M, ROCA-AYATS M, HARTMANN P, et al. There and back again-The journey of LiNiO2 as a cathode active material[J]. Angewandte Chemie International Edition,2019,58(31):10434-10458. doi: 10.1002/anie.201812472
    [8] KALLURI S, YOON M, JO M, et al. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J]. Advanced Energy Materials,2017,7(1):1601507. doi: 10.1002/aenm.201601507
    [9] YOON C S, RYU H H, PARK G T, et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries[J]. Journal of Materials Chemistry A,2018,6(9):4126-4132. doi: 10.1039/C7TA11346C
    [10] TIAN C, LIN F, DOEFF M M. Electrochemical characteris-tics of layered transition metal oxide cathode materials for lithium ion batteries: Surface, bulk behavior, and thermal properties[J]. Accounts of Chemical Research,2018,51(1):89-96. doi: 10.1021/acs.accounts.7b00520
    [11] JIA H, ZHU W, XU Z, et al. Precursor effects on structural ordering and electrochemical performances of Ni-rich layered LiNi0.8Co0.2O2 cathode materials for high-rate lithium ion batteries[J]. Electrochimica Acta,2018,266:7-16. doi: 10.1016/j.electacta.2018.02.027
    [12] LI L, LI Y, LI L, et al. Thermodynamic analysis on the coprecipitation of Ni-Co-Mn hydroxide[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,2017,48(5):2743-2750. doi: 10.1007/s11663-017-0985-x
    [13] ZHENG J, YE Y, LIU T, et al. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control[J]. Accounts of Chemical Research,2019,52(8):2201-2209. doi: 10.1021/acs.accounts.9b00033
    [14] KIM K J, JO Y N, LEE W J, et al. Effects of inorganic salts on the morphological, structural, and electrochemical properties of prepared nickel-rich Li[Ni0.6Co0.2Mn0.2]O2[J]. Journal of Power Sources,2014,268:349-355. doi: 10.1016/j.jpowsour.2014.06.057
    [15] RUAN Y, SONG X, FU Y, et al. Structural evolution and capacity degradation mechanism of LiNi0.6Mn0.2Co0.2O2 cathode materials[J]. Journal of Power Sources,2018,400:539-548. doi: 10.1016/j.jpowsour.2018.08.056
    [16] LEE K S, MYUNG S T, MOON J S, et al. Particle size effect of Li[Ni0.5Mn0.5]O2 prepared by co-precipitation[J]. Electrochimica Acta,2008,53(20):6033-6037. doi: 10.1016/j.electacta.2008.02.106
    [17] ZHANG J, ZHANG H. Robust incident-angle field estimation: A one-way wave propagator approach[J]. Exploration Geophysics,2018,44(4):245-250.
    [18] CHENG K L, MU D B, WU B R, et al. Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages[J]. International Journal of Minerals, Metallurgy and Materials,2017,24(3):342-351. doi: 10.1007/s12613-017-1413-6
    [19] VU D L, LEE J W. Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries[J]. Korean Journal of Chemical Engineering,2015,33(2):514-526.
    [20] YANG X, TANG Y, ZHENG J, et al. Tailoring structure of Ni-rich layered cathode enable robust calendar life and ultrahigh rate capability for lithium-ion batteries[J]. Electrochimica Acta,2019,320:134587. doi: 10.1016/j.electacta.2019.134587
    [21] XU Z, XIAO L, WANG F, et al. Effects of precursor, synthesis time and synthesis temperature on the physical and electrochemical properties of Li(Ni1-x-yCoxMny)O2 cathode materials[J]. Journal of Power Sources,2014,248:180-189. doi: 10.1016/j.jpowsour.2013.09.064
    [22] 张臻, 张海艳, 胡志兵, 等. 锂电三元正极材料前驱体的研究进展[J]. 矿冶工程, 2019, 39(2):115-119. doi: 10.3969/j.issn.0253-6099.2019.02.028

    ZHANG Zhen, ZHANG Haiyan, HU Zhibing, et al. Research progress in precursors of ternary cathode materials for lithium batteries[J]. Mining and Metallurgical Engi-neering,2019,39(2):115-119(in Chinese). doi: 10.3969/j.issn.0253-6099.2019.02.028
    [23] 李杰, 刘涛, 陈圆圆, 等. 氨值与搅拌频率对制备三元前驱体的影响[J]. 广州化工, 2020, 48(6):73-75, 87. doi: 10.3969/j.issn.1001-9677.2020.06.028

    LI Jie, LIU Tao, CHEN Yuanyuan, et al. Effects of ammonia concentration and stirring frequency on preparation of ternary precursor[J]. Guangzhou Chemical Industry,2020,48(6):73-75, 87(in Chinese). doi: 10.3969/j.issn.1001-9677.2020.06.028
    [24] 翟秀静, 肖碧君, 李乃军. 还原与沉淀[M]. 北京: 冶金工业出版社, 2008: 296-297.

    ZHAI Xiujing, XIAO Bijun, LI Naijun. Restore and precipi-tate[M]. Beijing: Metallurgical Industry Press, 2008: 296-297(in Chinese).
    [25] 王伟东, 仇卫华, 丁倩倩. 锂离子电池三元材料: 工艺技术及生产应用[M]. 北京: 化学工业出版社, 2015: 171-172.

    WANG Weidong, CHOU Weihua, DING Qianqian. Nickel cobalt manganese based cathode materials for Li-ion batteries technology production and application[M]. Beijing: Chemical Industry Press, 2015: 171-172(in Chinese).
    [26] 叶铁林. 化工结晶过程原理及应用[M]. 北京: 北京工业大学出版社, 2006: 30-31.

    YE Tielin. Principles and applications of chemical crystallization process[M]. Beijing: Beijing University of Technology Press, 2006: 30-31(in Chinese).
    [27] LAMER V K, DINEGAR R H. Theory, production and mecha-nism of formation of monodispersed hydrosols [J]. Journal of the American Chemical Society, 1950, 72: 4847-4854
    [28] YANG Y, XU S, XIE M, et al. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2[J]. Journal of Alloys and Compounds,2015,619:846-853. doi: 10.1016/j.jallcom.2014.08.152
    [29] LIIRI M, KOIRANEN T, AITTAMAA J. Secondary nucleation due to crystal-impeller and crystal-vessel collisions by population balances in CFD-modelling[J]. Journal of Crystal Growth,2002,237:2188-2193.
    [30] CHOU K S, CHEN C C. The critical conditions for secondary nucleation of silica colloids in a batch Stöber growth process[J]. Ceramics International,2008,34(7):1623-1627. doi: 10.1016/j.ceramint.2007.07.009
    [31] FRAWLEY P J, MITCHELL N A, ÓCIARDHÁ C T, et al. The effects of supersaturation, temperature, agitation and seed surface area on the secondary nucleation of paracetamol in ethanol solutions[J]. Chemical Engineering Science,2012,75:183-197. doi: 10.1016/j.ces.2012.03.041
    [32] KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Crystal Growth & Design,2016,16(11):6663-6681.
    [33] 姚连增. 晶体生长基础[M]. 安徽: 中国科学技术大学出版社, 1995: 280-283.

    YAO Lianzeng. The basis for crystal growth[M]. Anhui: China University of Science and Technology Press, 1995: 280-283(in Chinese).
    [34] 孙小童. NiSO4-Co(NO3)2-氨水体系制备Ni-Co-O电极材料的反应动力学研究[D]. 北京: 北京化工大学, 2015.

    SUN Xiaotong. Research on reaction dynamics of Ni-Co-O electrode materials for NiSO4-Co(NO3)2-ammonia system[D]. Beijing: Beijing University of Technology, 2015(in Chinese).
    [35] 郑燕青, 施尔畏, 李汶军, 等. 晶体生长理论研究现状与发展[J]. 无机材料学报, 1999, 3(14):321-332.

    ZHENG Yanqing, SHI Erwei, LI Wenjun, et al. The current situation and development of crystal growth theory[J]. Journal of Inorganic Materials,1999,3(14):321-332(in Chinese).
    [36] WULFF G. XXV. Zur frage der geschwindigkeit des wachsthums und der auflsung der krystallflchen: Zeitschrift für kristallographie-crystalline materials [J]. Brown University Rockefeller Library Angemeldet, 1901, 34(1): 449-530.
    [37] LEE M H, KANG Y J, MYUNG S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J]. Electrochimica Acta,2004,50(4):939-948. doi: 10.1016/j.electacta.2004.07.038
    [38] VAN BOMMEL A, DAHN J R. Analysis of the growth mechanism of co-precipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the pre-sence of aqueous ammonia[J]. Chemistry of Materials,2009,21(8):1500-1503. doi: 10.1021/cm803144d
    [39] NAM K M, KIM H J, KANG D H, et al. Ammonia-free coprecipitation synthesis of a Ni-Co-Mn hydroxide precursor for high-performance battery cathode materials[J]. Green Chemistry,2015,17(2):1127-1135. doi: 10.1039/C4GC01898B
    [40] 邹邦坤, 丁楚雄, 陈春华. 锂离子电池三元正极材料的研究进展[J]. 中国科学: 化学, 2014, 44(7):1104-1115. doi: 10.1360/N032014-00019

    ZOU Bangkun, DING Chuxiong, CHEN Chunhua. Advances in the research of troy positive materials for lithium-ion batteries[J]. Scientia Sinica Chimica,2014,44(7):1104-1115(in Chinese). doi: 10.1360/N032014-00019
    [41] WANG D, BELHAROUAK I, ORTEGA L H, et al. Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation[J]. Journal of Power Sources,2015,274:451-457. doi: 10.1016/j.jpowsour.2014.10.016
    [42] CUI Y, LIU K, MAN J, et al. Preparation of ultra-stable Li[Ni0.6Co0.2Mn0.2]O2 cathode material with a continuous hydroxide co-precipitation method[J]. Journal of Alloys and Compounds,2019,793:77-85. doi: 10.1016/j.jallcom.2019.04.123
    [43] BARAI P, FENG Z, KONDO H, et al. Multiscale computational model for particle size evolution during coprecipitation of Li-ion battery cathode precursors[J]. Journal of Physical Chemistry B,2019,123(15):3291-3303. doi: 10.1021/acs.jpcb.8b12004
    [44] HUA W, LIU W, CHEN M, et al. Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3-(OH)2 and their application as precursors for high-power cathode materials[J]. Electrochimica Acta,2017,232:123-131. doi: 10.1016/j.electacta.2017.02.105
    [45] GIELEN B, JORDENS J, THOMASSEN L, et al. Agglomeration control during ultrasonic crystallization of an active pharmaceutical ingredient[J]. Crystals,2017,7(2):7020040.
    [46] WANG D, BELHAROUAK I, KOENIG G M, et al. Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes[J]. Journal of Materials Chemistry,2011,21(25):9290-9295. doi: 10.1039/c1jm11077b
    [47] CHEN X, LI D, MO Y, et al. Cathode materials with cross-stack structures for suppressing intergranular cracking and high-performance lithium-ion batteries[J]. Electrochimica Acta,2018,261:513-520. doi: 10.1016/j.electacta.2017.12.176
    [48] LIANG L, DU K, PENG Z, et al. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J]. Electrochimica Acta,2014,130:82-89. doi: 10.1016/j.electacta.2014.02.100
    [49] 冯耀华, 李春雷, 艾灵. 锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2的产业化工艺研究[J]. 现代化工, 2018, 38(9):174-179.

    FENG Yaohua, LI Chunlei, AI Ling. Study on industrialization process of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries[J]. Modern Chemical Industry,2018,38(9):174-179(in Chinese).
    [50] CHEN Y, XU G, LI J, et al. High capacity 0.5Li2MnO3·0.5LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method[J]. Electrochimica Acta,2013,87:686-692. doi: 10.1016/j.electacta.2012.09.024
    [51] CHERALATHAN K K, KANG N Y, PARK H S, et al. Preparation of spherical LiNi0.80Co0.15Mn0.05O2 lithium-ion cathode material by continuous co-precipitation[J]. Journal of Power Sources,2010,195(5):1486-1494. doi: 10.1016/j.jpowsour.2009.08.101
    [52] NOH M, CHO J. Optimized synthetic conditions of LiNi0.5Co0.2Mn0.3O2 cathode materials for high rate lithium batteries via co-precipitation method[J]. Journal of the Electrochemical Society,2013,160(1):105-111. doi: 10.1149/2.004302jes
    [53] ZHU Q, XIAO H, ZHANG R, et al. Effect of impeller type on preparing spherical and dense Ni1-x-yCoxMny(OH)2 precursor via continuous co-precipitation in pilot scale: A case of Ni0.6Co0.2Mn0.2(OH)2[J]. Electrochimica Acta,2019,318:1-13. doi: 10.1016/j.electacta.2019.06.008
    [54] 樊勇利, 许国峰, 李平. 制备高致密球形Ni1/3Co1/3Mn1/3(OH)2 的影响因素分析与控制[J]. 电源技术, 2012, 36(6):789-791. doi: 10.3969/j.issn.1002-087X.2012.06.007

    FAN Yongli, XU Guofeng, LI Ping. Analysis and control of factors influencing synthesizing spherical Ni1/3Co1/3Mn1/3-(OH)2 with higher density[J]. Power Technology,2012,36(6):789-791(in Chinese). doi: 10.3969/j.issn.1002-087X.2012.06.007
    [55] VAN BOMMEL A, DAHN J R. Synthesis of spherical and dense particles of the pure hydroxide phase Ni1/3Mn1/3Co1/3(OH)2[J]. Journal of the Electrochemical Society,2009,156(5):362-365. doi: 10.1149/1.3079366
    [56] 代克化, 王银杰, 冯华君, 等. 氢氧化物共沉淀法制备 LiMn0.45Ni0.45Co0.1正极材料的反应条件[J]. 物理化学学报, 2007, 23(12):1927-1931. doi: 10.3866/PKU.WHXB20071218

    DAI Kehua, WANG Yinjie, FENG Huajun, et al. Preparation conditions of LiMn0.45Ni0.45Co0.1 via hydroxide co-precipitation[J]. Acta Physico-Chimica Sinica,2007,23(12):1927-1931(in Chinese). doi: 10.3866/PKU.WHXB20071218
    [57] 刘敏. 电池用高密度氢氧化镍的制备工艺研究[D]. 天津: 河北工业大学, 2002.

    LIU Min. Technical study of preparing high density nickel hydroxide in batteries[D]. Tianjin: Hebei University of Technology, 2002(in Chinese).
    [58] 丁倩倩. 一种锂离子电池多元正极材料球形前驱体的制备方法: 中国专利, CN103035905A[P]. 2013-04-10.

    DING Qianqian. A preparation method for the spherical precursor of a multi-positive material of lithium-ion batteries: Chinese Patent, CN103035905A[P]. 2013-04-10(in Chinese).
    [59] 马跃飞. 高镍多元前驱体的制备与研究[J]. 当代化工研究, 2018(3):45-47. doi: 10.3969/j.issn.1672-8114.2018.03.029

    MA Yuefei. Preparation and study of high nickel multicomponent precursor[J]. Modern Chemical Research,2018(3):45-47(in Chinese). doi: 10.3969/j.issn.1672-8114.2018.03.029
    [60] OCHIENG A, ONYANGO M S, KUMAR A, et al. Mixing in a tank stirred by a rushton turbine at a low clearance[J]. Chemical Engineering and Processing: Process Intensification,2008,47(5):842-851. doi: 10.1016/j.cep.2007.01.034
    [61] LI Z, HU M, BAO Y, et al. Particle image velocimetry experiments and large eddy simulations of merging flow characteristics in dual rushton turbine stirred tanks[J]. Industrial & Engineering Chemistry Research,2012,51(5):2438-2450.
    [62] ZHU Q, XIAO H, CHEN A, et al. CFD study on double- to single-loop flow pattern transition and its influence on macro mixing efficiency in fully baffled tank stirred by a Rushton turbine[J]. Chinese Journal of Chemical Engi-neering,2019,27(5):993-1000. doi: 10.1016/j.cjche.2018.10.002
    [63] HUANG Y, WANG Z, LI X, et al. Synthesis of Ni0.8Co0.1-Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries[J]. Transactions of Nonferrous Metals Society of China(English Edition),2015,25(7):2253-2259. doi: 10.1016/S1003-6326(15)63838-9
    [64] 耿淑君, 黄青山, 朱全红, 等. 共沉淀法制备 LiNi1-x-yCoxMnyO2正极材料工艺条件探究[J]. 化工学报, 2018, 69(1):175-187.

    GENG Shujun, HUANG Qingshan, ZHU Quanhong, et al. Investigation on synthesis conditions of LiNi1-x-yCoxMnyO2 cathode material via co-precipitation[J]. CIESC Journal,2018,69(1):175-187(in Chinese).
    [65] 智福鹏, 王娟辉, 杨健壮. 浅谈镍钴锰三元前驱体合成工艺[J]. 甘肃冶金, 2019, 41(6):72-75, 105.

    ZHI Fupeng, WANG Juanhui, YANG Jianzhuang. Discussion on synthesis technology of nickel cobalt manganese ternary composite hydroxide precursor[J]. Gansu Metallurgy,2019,41(6):72-75, 105(in Chinese).
    [66] 刘彦龙. 前驱体制备对三元材料的影响及研究进展概述[J]. 电源技术, 2019, 43(12):1905-1910. doi: 10.3969/j.issn.1002-087X.2019.12.001

    LIU Yanlong. Research progress on the influence of precursors on ternary materials[J]. Power Technology,2019,43(12):1905-1910(in Chinese). doi: 10.3969/j.issn.1002-087X.2019.12.001
    [67] YOON S J, PARK K J, LIM B B, et al. Improved perfor-mances of LiNi0.65Co0.08Mn0.27O2 cathode material with full concentration gradient for Li-ion batteries[J]. Journal of the Electrochemical Society,2015,162(2):3059-3063. doi: 10.1149/2.0101502jes
    [68] RYU H H, PARK G T, YOON C S, et al. Microstructural degradation of Ni-rich Li[NixCoyMn1−xy]O2 cathodes during accelerated calendar aging[J]. Small,2018,14(45):1803179. doi: 10.1002/smll.201803179
    [69] KIM U H, LEE E J, YOON C S, et al. Compositionally graded cathode material with long-term cycling stability for electric vehicles application[J]. Advanced Energy Materials,2016,6(22):1601417. doi: 10.1002/aenm.201601417
    [70] KONDRAKOV A O, SCHMIDT A, XU J, et al. Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries[J]. Journal of Physical Chemistry C,2017,121(6):3286-3294. doi: 10.1021/acs.jpcc.6b12885
    [71] RYU H H, PARK K J, YOON C S, et al. Capacity fading of Ni-rich Li[NixCoyMn1–xy]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation?[J]. Chemistry of Materials,2018,30(3):1155-1163. doi: 10.1021/acs.chemmater.7b05269
    [72] YIN S, DENG W, CHEN J, et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries[J]. Nano Energy,2021,83:105854. doi: 10.1016/j.nanoen.2021.105854
    [73] 刘帅, 宋顺林, 刘亚飞, 等. 锂离子电池用高镍单晶正极材料的研究进展[J]. 山东化工, 2018, 47(16):46-49. doi: 10.3969/j.issn.1008-021X.2018.16.019

    LIU Shuai, SONG Shunlin, LIU Yafei, et al. Research progress in the single crystal of high nickel cathode materials for lithium-ion batteries[J]. Shandong Chemical Industry,2018,47(16):46-49(in Chinese). doi: 10.3969/j.issn.1008-021X.2018.16.019
    [74] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2三元正极材料研究进展[J]. 电池工业, 2017, 21(2):51-54. doi: 10.3969/j.issn.1008-7923.2017.02.013

    XIAO Jianwei, LIU Liangbin, FU Zewei, et al. Research progress in the single crystal LiNixCoyMn1-x-yO2 ternary cathode materials[J]. Chinese Battery Industry,2017,21(2):51-54(in Chinese). doi: 10.3969/j.issn.1008-7923.2017.02.013
    [75] LI H, LI J, MA X, et al. Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries[J]. Journal of the Electrochemical Society,2018,165(5):1038-1045. doi: 10.1149/2.0951805jes
    [76] XU X, HUO H, JIAN J, et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials,2019,9(15):1803963. doi: 10.1002/aenm.201803963
    [77] SUN Y K, MYUNG S T, PARK B C, et al. Synthesis of spherical nano- to microscale core-shell particles Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2 and their applications to lithium batteries[J]. Chemistry of Materials,2006,18(22):5159-5163. doi: 10.1021/cm061746k
    [78] SUN Y K, CHEN Z, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials,2012,11(11):942-947. doi: 10.1038/nmat3435
    [79] KIM U H, RYU H H, KIM J H, et al. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles[J]. Advanced Energy Materials,2019,9(15):1803902. doi: 10.1002/aenm.201803902
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  2148
  • HTML全文浏览量:  690
  • PDF下载量:  376
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 修回日期:  2021-09-05
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-09-23
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回