留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag/MnO2复合电极材料的制备及其电化学性能

夏傲 曾啸雄 宜珏 韩曰鹏 谈国强

夏傲, 曾啸雄, 宜珏, 等. Ag/MnO2复合电极材料的制备及其电化学性能[J]. 复合材料学报, 2022, 39(5): 2269-2279. doi: 10.13801/j.cnki.fhclxb.20210916.004
引用本文: 夏傲, 曾啸雄, 宜珏, 等. Ag/MnO2复合电极材料的制备及其电化学性能[J]. 复合材料学报, 2022, 39(5): 2269-2279. doi: 10.13801/j.cnki.fhclxb.20210916.004
XIA Ao, ZENG Xiaoxiong, YI Jue, et al. Preparation and electrochemical properties of Ag/MnO2 composite electrode materials[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2269-2279. doi: 10.13801/j.cnki.fhclxb.20210916.004
Citation: XIA Ao, ZENG Xiaoxiong, YI Jue, et al. Preparation and electrochemical properties of Ag/MnO2 composite electrode materials[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2269-2279. doi: 10.13801/j.cnki.fhclxb.20210916.004

Ag/MnO2复合电极材料的制备及其电化学性能

doi: 10.13801/j.cnki.fhclxb.20210916.004
基金项目: 中国博士后科学基金(2016M592746);陕西科技大学博士科研启动基金项目(BJ15-04)
详细信息
    通讯作者:

    夏傲,博士,副教授,硕士生导师,研究方向为能源材料和纳米材料 E-mail:xiaao@sust.edu.cn

  • 中图分类号: TM912.9;TB331

Preparation and electrochemical properties of Ag/MnO2 composite electrode materials

  • 摘要: 过渡金属氧化物MnO2因其制备工艺简单、储量丰富、环保且具有较高的理论比容量,在电池储能方面有较大潜力。本论文借助溶胀法对水热合成的δ-MnO2进行剥离制得MnO2纳米片。再利用紫外光照以及NaBH4的还原作用在MnO2纳米片表面负载Ag纳米颗粒,从而得到Ag/MnO2复合材料。对Ag/MnO2复合材料进行了结构和形貌表征以及电化学性能测试。结果表明,作为锂离子电池负极材料,Ag/MnO2的电化学性能明显优于纯相δ-MnO2。Ag/MnO2在100 mA/g电流密度下的首次可逆比容量达到1001.1 mA·h/g,库伦效率为79.9%;在0.1、0.2、0.5、1.0、2.0 A/g电流密度下的平均可逆比容量分别为936.3、607.5、429.5、351.1和278 mA·h/g,当电流密度重新回到0.1 A/g时,其平均可逆比容量仍可达到658.7 mA·h/g。MnO2电化学性能的改善归因于均匀负载的导电Ag颗粒,使得电极材料的导电性显著提升,利于带电粒子的传输。此外,Ag/MnO2复合材料的纳米结构使得锂离子在固相中的传输路径缩短,进而提高了锂离子扩散速率。

     

  • 图  1  δ-MnO2和Ag/MnO2样品的XRD图谱对比

    Figure  1.  Comparison of XRD patterns of δ-MnO2 and Ag/MnO2 samples

    图  2  样品Ag/MnO2的XPS图谱:(a) 全谱;(b) Mn2p;(c) Ag3d;(d) O1s

    Figure  2.  XPS spectrum of the Ag/MnO2 sample: (a) Survey spectra; (b) Mn2p; (c) Ag3d; (d) O1s

    图  3  Ag/MnO2样品的EDS (a) 和元素分布图 (b)

    Figure  3.  EDS (a) and element mapping images (b) of Ag/MnO2 sample

    图  4  δ-MnO2 (a) 以及Ag/MnO2 (b) 微观形貌SEM图像

    Figure  4.  SEM images of δ-MnO2 (a) and Ag/MnO2 (b)

    图  5  Ag/MnO2的低分辨率 (a) 及高分辨率 (b) TEM图像

    Figure  5.  Low resolution (a) and high resolution (b) TEM images of Ag/MnO2

    d—Indices of crystal face

    图  6  Ag/MnO2形成过程示意图

    Figure  6.  Diagram of Ag/MnO2 formation process

    TMAOH—Tetramethylammonium hydroxide

    图  7  (a) δ-MnO2和Ag/MnO2的BET图谱;(b) Ag/MnO2的N2吸附-脱附等温线 (插图为孔径分布图)

    Figure  7.  (a) BET of δ-MnO2 and Ag/MnO2; (b) BET isotherm plots and corresponding pore size distributions (inset) of Ag/MnO2

    图  8  δ-MnO2和Ag/MnO2在0.1 A/g下首次充放电曲线

    Figure  8.  First charge/discharge curves of δ-MnO2 and Ag/MnO2 at current densitiy of 0.1 A/g

    图  9  δ-MnO2和Ag/MnO2复合材料的倍率性能曲线

    Figure  9.  Ratio performance curves of δ-MnO2 and Ag/MnO2 composite material

    图  10  δ-MnO2和Ag/MnO2在1 A/g的循环性能图

    Figure  10.  Cycling performance of δ-MnO2 and Ag/MnO2 at 1 A/g

    图  11  δ-MnO2和Ag/MnO2的首次循环伏安曲线

    Figure  11.  First cyclic voltammetry curves of δ-MnO2 and Ag/MnO2

    图  12  (a) Ag/MnO2电极在不同扫速下的CV曲线;(b) Ag/MnO2电极b值计算;(c) Ag/MnO2电极在0.1 mV/s扫速下赝电容贡献面积比例;(d) Ag/MnO2电极在不同扫速下赝电容比例

    Figure  12.  (a) Cyclic voltammetry curves of Ag/MnO2 electrode at various scan rates; (b) Calculation of b value of Ag/MnO2 electrode; (c) Contribution area ratio of pseudocapacitance at 0.1 mV/s scanning speed of Ag/MnO2 electrode; (d) Normalized contribution ratios of capacitive and diffusion-controlled capacities at different scan rates

    图  13  δ-MnO2 (a) 和Ag/MnO2 (b) 的电化学阻抗图谱 (内插图为模拟等效电路图)

    Figure  13.  Electrochemical impedance spectra of δ-MnO2 (a) and Ag/MnO2 (b) (Fitting circuit diagram are in inset)

    Rs—Ohmic resistance; Rct—Charge transfer resistance; CPE—Equivalent circuit defines the double-layer capacitance; W—Warburg resistance

    图  14  δ-MnO2和Ag/MnO2复合材料的Z′ω−1/2在低频区的拟合曲线

    Figure  14.  Relationship between Z′ and ω−1/2 at the low frequency range of δ-MnO2 and Ag/MnO2 composites

    表  1  δ-MnO2和Ag/MnO2合成样品的电化学阻抗谱(EIS)模型参数

    Table  1.   Electrochemical impedance spectroscopy (EIS) model parameters for the synthesized of δ-MnO2 and Ag/MnO2 samples

    SampleRsRctCPE
    /F
    W
    δ-MnO277.33283.403.45×10−38.95×10−5
    Ag/MnO25.8334.504.68×10−37.89×10−4
    Notes: Rs—Ohmic resistance; Rct—Charge transfer resistance; CPE—Equivalent circuit defines the double-layer capacitance; W—Warburg resistance.
    下载: 导出CSV

    表  2  δ-MnO2和Ag/MnO2复合材料的阻抗因子(σ)和扩散系数(DLi+)

    Table  2.   Impedance factor (σ) and diffusion rate (DLi+) of δ-MnO2 and Ag/MnO2 composites

    Sampleσ/(Ω·cm2·S−1/2)DLi+/(cm2·S−1)
    δ-MnO2334.552.95×10−22
    Ag/MnO239.002.17×10−20
    下载: 导出CSV
  • [1] 罗述东, 李祖德, 赵慕岳, 等. 锰在粉末冶金材料中的应用[J]. 粉末冶金材料科学与工程, 2007, 12(6): 321-329.

    LUO Shudong, LI Zude, ZHAO Muyue, et al. Application of manganese in powder metallurgical materials[J]. Materials Science and Engineering of Powder Metallurgy, 2007, 12(6): 321-329(in Chinese).
    [2] 顾鑫, 徐化云, 杨剑, 等. 二氧化锰纳米材料在锂离子电池负极材料中的应用[J]. 科学通报, 2013, 58(31):3108-3114. doi: 10.1360/972013-712

    GU Xin, XU Huayun, YANG Jian, et al. Application of MnO2 nanomaterials as an anode for lithiumion batteries[J]. Chinese Science Bulletin,2013,58(31):3108-3114(in Chinese). doi: 10.1360/972013-712
    [3] WU M S, CHIANG P C J, LEE J T, et al. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries[J]. Journal of Physical Chemistry B,2005,109(49):23279-23284. doi: 10.1021/jp054740b
    [4] WU M S, CHIANG P C J. Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries[J]. Electrochemistry Communications,2006,8(3):383-388. doi: 10.1016/j.elecom.2005.12.014
    [5] 孔祥荣, 胡如男, 吴延红, 等. MnO2纳米材料的制备及应用[J]. 应用化工, 2016, 45(8):1549-1552.

    KONG Xiangrong, HU Runan, WU Yanhong, et al. Prearation and application of MnO2 nanomaterials[J]. Applied Chemical Industry,2016,45(8):1549-1552(in Chinese).
    [6] 夏熙. 二氧化锰的物理、化学性质与其电化学活性的相关(5)[J]. 电池, 2006, 36(4):276-279. doi: 10.3969/j.issn.1001-1579.2006.04.012

    XIA Xi. The relation between chemical, physical properties and electrochemical activity for manganese dioxides(Ⅴ)[J]. Battery Bimonthly,2006,36(4):276-279(in Chinese). doi: 10.3969/j.issn.1001-1579.2006.04.012
    [7] 郑龙. 类钙钛矿结构中氧八面体调制及物性研究[D]. 南京: 南京大学, 2013.

    ZHENG Long. Study of octahedron structure and properties on perovskite like oxides[D]. Nanjing: Nanjing University, 2013(in Chinese).
    [8] VOSKANYAN A A, HO C K, CHAN K Y. 3D δ-MnO2 nanostructure with ultralarge mesopores as high-performance lithium-ion battery anode fabricated via colloidal solution combustion synthesis[J]. Journal of Power Sources, 2019, 421: 162-168.
    [9] LI X, CHEN Y, YAO H, et al. Core/shell TiO2-MnO2/MnO2 heterostructure anodes for high-performance lithium-ion batteries[J]. RSC Advances,2014,4:39906. doi: 10.1039/C4RA06981A
    [10] XING L L, HE B, NIE Y X, et al. SnO2-MnO2-SnO2 sandwich-structured nanotubes as high-performance anodes of lithium ion battery[J]. Materials Letters,2013,105(15):169-172.
    [11] GUO Z, GUAN Y, DAI C, et al. Ag/MnO2 nanorod as electrode material for high-performance electrochemical supercapacitors[J]. Journal of Nanoscience and Nanotechnology,2019,18(7):4904-4909.
    [12] LU S Q, YAN D L, CHEN L, et al. One-pot fabrication of hierarchical Ag/MnO2 nanoflowers for electrochemical capacitor electrodes[J]. Materials Letters,2016,168(1):40-43.
    [13] HWAN K J, CHANGSOON C, MYEONG L J, et al. Ag/MnO2 composite sheath-core structured yarn super-capacitors[J]. Scientific Reports,2018,8(1):13309. doi: 10.1038/s41598-018-31611-2
    [14] YANG X F, WANG G C, WANG R Y, et al. A novel layered manganese oxide/poly(aniline-co-O-anisidine) nanocomposite and its application for electrochemical supercapaci-tor[J]. Electrochimica Acta,2010,55(19):5414-5419. doi: 10.1016/j.electacta.2010.04.067
    [15] YU L, XU Z Y, WANG D W, et al. Snowflake-like core-shell α-MnO2@δ-MnO2 for high performance asymmetric supercapacitor[J]. Electrochimica Acta,2017,251:344-354. doi: 10.1016/j.electacta.2017.08.146
    [16] DI W H, ZHANG X, QIN W. Single-layer MnO2 nanosheets for sensitive and selective detection of glutathione by a colorimetric method[J]. Applied Surface Science,2017,400:200-205. doi: 10.1016/j.apsusc.2016.12.204
    [17] KOO W T, JANG H Y, KIM C, et al. MOF derived ZnCo2O4 porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode[J]. Journal of Materials Chemistry A,2017,5(43):22717-22725. doi: 10.1039/C7TA07573A
    [18] KARMAKAR N, FERNANDES R, JAIN S P, et al. Room temperature NO2 gas sensing properties of p-toluenesulfonic acid doped silver-polypyrrole nanocomposite[J]. Sensors and Actuators B: Chemical,2017,242:118-126. doi: 10.1016/j.snb.2016.11.039
    [19] AN J, SUN G H, XIA H A. Aerobic oxidation of 5 hydroxymethylfurfural to high-yield 5 hydroxymethyl-2-furancarboxylic acid by poly(vinylpyrrolidone)-capped Ag nanoparticle catalysts[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):6696-6706.
    [20] LI Y, ZHOU X Z, BAI Y, et al. Building an electronic bridge via Ag-decoration to enhance kinetics of iron fluoride cathode in lithium ion batteries[J]. Applied Materials & Interfaces,2017,9(23):19852-19860.
    [21] 张伟, 谈发堂, 乔学亮, 等. 光化学还原法制备纳米银溶胶[J]. 材料导报, 2012, 26(12):32-35. doi: 10.3969/j.issn.1005-023X.2012.12.010

    ZHANG Wei, TAN Fatang, QIAO Xueliang, et al. Preparation of nano-silver sol by photochemical reduction method[J]. Materials Reports,2012,26(12):32-35(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.12.010
    [22] 姚素薇, 曹艳蕊, 张卫国. 光还原法制备不同形貌银纳米粒子及其形成机理[J]. 应用化学, 2006, 23(4):438-440. doi: 10.3969/j.issn.1000-0518.2006.04.022

    YAO Suwei, CAO Yanru, ZHANG Weiguo. Preparation of silver nanoparticles of different shapes via photoreduction method[J]. Chinese Jouranal of Applied Chemistry,2006,23(4):438-440(in Chinese). doi: 10.3969/j.issn.1000-0518.2006.04.022
    [23] ZANG J, YE J, QIAN H, et al. Hollow carbon sphere with open pore encapsulated MnO2, nanosheets as high-performance anode materials for lithium ion batteries[J]. Electrochimica Acta,2017,260:783-788.
    [24] CAO Zhiguang, CHEN Xiaoqiao, XING Lidang, et al. Nano-MnO2@TiO2 microspheres: A novel structure and excellent performance as anode of lithium-ion batteries[J]. Journal of Power Sources, 2018, 379: 174-181.
    [25] ZHANG Y X, LIAN F, LU J H, et al. Identification of rever-sible insertion-type lithium storage reaction of manganese oxide with long cycle lifespan[J]. Journal of Energy Che-mistry, 2020(46): 144-151.
    [26] LIU H D, HU Z L, TIAN L L, et al. Reduced graphene oxide anchored with δ-MnO2 nanoscrolls as anode materials for enhanced Li-ion storage[J]. Ceramics International, 2016, 42(12): 13519-13524.
    [27] 郑国涛. 锰基氧化物电极材料制备及电化学性能研究[D]. 辽宁: 大连海事大学, 2019.

    ZHENG Guotao. Preparation and electrochemical properties of manganese based oxide electrode materials[D]. Liaoning: Dalian Maritime University, 2019(in Chinese).
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1136
  • HTML全文浏览量:  594
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 修回日期:  2021-08-25
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回