Preparation and properties of SiO2/attapulgite composite self-healing superhydrophobic coating
-
摘要: 在过去的几十年中,超疏水表面由于其特殊的性能而受到极为广泛的关注,但是在室外应用中,受环境中各种因素的影响,大多数超疏水表面很轻易会失去其超疏水性。采用简单的两步浸涂法制备得到一种表面坚固的可修复超疏水涂层。以聚硅氧烷与无水乙醇混合制得涂层底层;中性硅酮玻璃胶、纳米SiO2、微米级凹凸棒土(ATP)粉末以及聚硅氧烷共混制得涂层面层。利用扫描电子显微镜(SEM)、接触角测量仪、傅里叶变换红外光谱仪(FTIR)对涂层的微观形貌、润湿性、分子结构进行表征。确定了中性硅酮玻璃胶的最佳用量,考察了涂层的耐磨性能、自清洁性能以及机械磨损与酸碱环境下的自修复性能。结果表明:中性硅酮玻璃胶添加量在质量分数为1wt%时涂层疏水能力最佳,水接触角达到153.5°±1.5°。在50 g砝码(1.03 kPa)下经过360 cm的机械磨损,涂层仍具备140°以上的水接触角。并且涂层在受到一定程度的机械磨损或是酸碱破坏后,都可以通过高温加热实现涂层超疏水性能的修复,此外涂层还具备一定的耐水稳定性以及优异的自清洁能力。Abstract: In the past few decades, superhydrophobic surfaces have received extensive attention due to their special properties. However, in outdoor applications, most superhydrophobic surfaces easily lose their superhydrophobicity due to various factors in the environment. A simple two-step dip-coating method is used to prepare a strong and repairable superhydrophobic coating. In the first step, the coating’s bottom layer was prepared by mixing polysiloxane with absolute ethanol. For the second step, neutral silicone glass glue was mixed with silicon dioxide nanoparticles, micron attapulgite powder (ATP) and polysiloxane to create the coating’s upper layer. Scanning electron microscopy (SEM), contact angle measuring instrument, and fourier-transform infrared spectroscopy (FTIR) were used to determine the microscopic morphology, wettability and molecular structure of the coating. Furthermore, the optimal amount of neutral silicone glass glue was specified while at the same time the coating’s self-healing ability was observed under mechanical abrasion and in an acid-based environment. The results show that the hydrophobicity of the coating reaches the optimum when the amount of neutral silicone glass glue is 1% and the water contact angle reaches 153.5°±1.5°. In this way, the coating is able to maintain a water contact angle of over 140° even when 360 cm of mechanical wear with a weight of 50 g (1.03 kPa) is placed on it. In addition, after the coating has endured a certain amount of mechanical abrasion and acid-base damage, the superhydrophobic properties of the coating can be repaired by high-temperature heating. The coating also provides a certain water resistance-stability and an excellent self-cleaning ability.
-
Key words:
- superhydrophobic /
- self-cleaning /
- self-repairing /
- silicone glue /
- attapulgite /
- nano SiO2
-
图 2 不同中性硅酮玻璃胶含量下SiO2/ATP涂层的SEM图像,5 μm放大倍数下中性硅酮玻璃胶的含量:(a1) 0wt%;(b1) 1wt%;(c1) 2wt%;1 μm放大倍数下中性硅酮玻璃胶的含量:(a2) 0wt%;(b2) 1wt%;(c2) 2wt%
Figure 2. SEM images of different neutral silicone glass glue contents of SiO2/ATP coating: Under 5 μm magnification: (a1) 0wt%; (b1) 1wt%; (c1) 2wt%; Under 1 μm magnification: (a2) 0wt%; (b2) 1wt%; (c2) 2wt%
图 4 (a) SiO2/ATP超疏水涂层水接触角随磨损周期的变化规律;(b) 不同表层构造的涂层水接触角随磨损周期的变化规律
Figure 4. (a) Change of water contact angle of SiO2/ATP superhydrophobic coating with abrasion cycles; (b) Variation of water contact angle of different coatings with wear cycles:
1—SiO2; 2—SiO2 with attapulgite; 3—SiO2 with attapulgite and polysiloxane; 4—SiO2 with attapulgite, polysiloxane and silicone glue
图 5 (a) 机械磨损下SiO2/ATP超疏水涂层的自修复规律;(b) SiO2/ATP超疏水涂层的FTIR图谱:初始涂层I;磨损后涂层II;加热修复后涂层III
Figure 5. (a) Self-healing law of SiO2/ATP suphyderrophobic coating under mechanical abrasion; (b) FTIR spectra of SiO2/ATP superhydrophobic coating: Initial coating I; Coating after abrasion II; Coating after heating repair III
CA—Contact angle
图 8 (a) 水中浸泡时间对SiO2/ATP超疏水涂层接触角与滑动角的影响;(b) 5%NaCl水溶液浸泡时间对SiO2/ATP超疏水涂层接触角与滑动角的影响
Figure 8. (a) Effect of immersion time in water on the contact angle and sliding angle of SiO2/ATP superhydrophobic coating; (b) Influence of 5%NaCl solution immersion time on the contact angle and sliding angle of SiO2/ATP superhydrophobic coating
表 1 不同质量分数中性硅酮胶对SiO2/ATP涂层水接触角的影响
Table 1. The influence of different mass fractions of neutral silicone glue on the water contact angle of SiO2/ATP coating
Silicone glue content 0wt% 0.5wt% 1wt% 1.5wt% 2wt%
Water drop photoContact angle/(°) 147.99±0.5 149.49±1.5 153.49±1.5 152.49±1.5 151.99±1.5 -
[1] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8. doi: 10.1007/s004250050096 [2] WANG F P, WANG L, WU H P, et al. Lotus-leaf-like SiO2 superhydrophobic bamboo surface based on soft lithography[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2017,520:834-840. doi: 10.1016/j.colsurfa.2017.02.043 [3] SUN M H, LUO C X, XU L P, et al. Artificial lotus leaf by nanocasting[J]. Langmuir the ACS Journal of Surfaces and Colloids,2005,21(19):8978-8981. doi: 10.1021/la050316q [4] 吴忠灿, 刘亮亮, 唐伟, 等. 强稳定性超疏水F-DLC涂层的制备与性能研究[J]. 真空, 2019, 56(6):38-43.WU Zhongcan, LIU Liangliang, TANG Wei, et al. Preparation and performance of strong and stable superhydrophobic F-DLC coating[J]. Vacuum,2019,56(6):38-43(in Chinese). [5] XUE C H, LI Y R, ZHANG P, et al. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization[J]. ACS Applied Materials and Interfaces,2014,6(13):10153-10161. doi: 10.1021/am501371b [6] 顾晓茵, 徐丽慧, 张旋宇, 等. 基于SiO2气凝胶的超疏水功能棉织物的制备及性能研究[J]. 化工新型材料, 2019, 47(2):260-263.GU Xiaoyin, XU Lihui, ZHANG Xuanyu, et al. Preparation and performance study of superhydrophobic functional cotton fabric based on SiO2 aerogel[J]. New Chemical Materials,2019,47(2):260-263(in Chinese). [7] 许瑞, 赵莉芝, 吴迪昊, 等. 溶胶-凝胶法制备仿猪笼草润滑表面[J]. 山东化工, 2019, 48(9):10-13.XU Rui, ZHAO Lizhi, WU Dihao, et al. Preparation of the lubricated surface of nepenthes imitation by sol-gel method[J]. Shandong Chemical Industry,2019,48(9):10-13(in Chinese). [8] LI K Q, ZENG X R, LI H Q, et al. Facile fabrication of superhydrophobic filtration fabric with honeycomb structures for the separation of water and oil[J]. Materials Letters,2014,120:255-258. doi: 10.1016/j.matlet.2014.01.105 [9] EBERT D, BHUSHAN B. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles[J]. Langmuir the ACS Journal of Surfaces and Colloids,2012,28(31):11391-11399. doi: 10.1021/la301479c [10] SONG J L, LI Y X, XU W, et al. Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion[J]. Journal of Colloid and Interface Science,2019,541:86-92. doi: 10.1016/j.jcis.2019.01.014 [11] WANG F J, XIE T, OU J F, et al. Cement based superhydrophobic coating with excellent robustness and solar reflective ability[J]. Journal of Alloys and Compounds,2020,823:153702. doi: 10.1016/j.jallcom.2020.153702 [12] ZHANG G W, LIN S D, WYMAN L, et al. Robust superamphiphobic coatings based on silica particles bearing bifunctional random copolymers[J]. ACS Applied Materials and Interfaces,2013,5(24):13466-13477. doi: 10.1021/am404317c [13] ZOU H, LIN S, TU Y, et al. Simple approach towards fabrication of highly durable and robust superhydrophobic cotton fabric from functional diblock copolymer[J]. Journal of Materials Chemistry A, 2013, 1: 11246-11260. [14] 梁伟欣, 张亚斌, 王奔, 等. 仿生超疏水性表面的生物应用[J]. 化学学报, 2012(23):2393-2403.LIANG Weixin, ZHANG Yabin, WANG Ben, et al. Biological application of biomimetic superhydrophobic surface[J]. Acta Chimica Sinica,2012(23):2393-2403(in Chinese). [15] VERHO T, BOWER C, ANDREW P, et al. Mechanically durable superhydrophobic surfaces[J]. Advanced Materials,2011,23(5):673-678. doi: 10.1002/adma.201003129 [16] 周莹, 肖利吉, 姚丽, 等. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 033(007):1234-1242.ZHOU Ying, XIAO Liji, YAO Li, et al. Research progress of self-healing superhydrophobic materials[J]. Materials Review,2019,033(007):1234-1242(in Chinese). [17] 乔燕芳, 王利强, 刘晓伟. 自修复超疏水多功能协同作用涂层研究进展[J]. 涂料工业, 2018, 48(11):84-92.QIAO Yanfang, WANG Liqiang, LIU Xiaowei. Research progress of self-healing super-hydrophobic multifunctional synergistic coatings[J]. Paint Industry,2018,48(11):84-92(in Chinese). [18] CHEN K L, GU K, QIANG S Y, et al. Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings[J]. RSC Advances,2017,7(1):543-550. doi: 10.1039/C6RA25135H [19] SAHOO B N, NANDA S, KOZINSKI J A, et al. PDMS/camphor soot composite coating: Towards a self-healing and a self-cleaning superhydrophobic surface[J]. RSC Advances,2017,7(25):15027-15040. doi: 10.1039/C6RA28581C [20] PURETSKIY N, STOYCHEV G, SYNYTSKA A, et al. Surfaces with self-repairable ultrahydrophobicity based on selforganizing freely floating colloidal particles[J]. Langmuir,2012,28(8):3679-3682. doi: 10.1021/la204232g [21] 韦远怡, 陈炳耀, 彭小琴, 等. 硅酮胶在工业领域的应用研究[J]. 粘接, 2021(6):21-24. doi: 10.3969/j.issn.1001-5922.2021.06.006WEI Yuanyi, CHEN Bingyao, PENG Xiaoqin, et al. Application research of silicone glue in industrial field[J]. Adhesive,2021(6):21-24(in Chinese). doi: 10.3969/j.issn.1001-5922.2021.06.006 [22] 许里杰, 鲁浈浈, 周建庭. 透明超疏水SiO2/硅酮胶复合涂层的制备及性能[J]. 精细化工, 2019, 36(7):1334-1339.XU Lijie, LU Zhenzhen, ZHOU Jianting. Preparation and properties of transparent superhydrophobic SiO2/silicone sealant composite coatings[J]. Fine Chemicals,2019,36(7):1334-1339(in Chinese). [23] 张莉, 张东, 但贵萍. 中性硅酮胶的性能研究和在氚防护中的应用[J]. 广州化工, 2010(2):115-116+124. doi: 10.3969/j.issn.1001-9677.2010.02.040ZHANG Li, ZHANG Dong, DAN Guiping. Research on the performance of neutral silicone rubber and its application in tritium protection[J]. Guangzhou Chemical Industry,2010(2):115-116+124(in Chinese). doi: 10.3969/j.issn.1001-9677.2010.02.040 [24] 李小兵, 刘莹. 固体表面润湿性机理及模型[J]. 功能材料, 2007, 038(A10):3919-3924.LI Xiaobing, LIU Ying. Mechanism and model of solid surface wettability[J]. Functional Materials,2007,038(A10):3919-3924(in Chinese). [25] 方京男, 洪碧圆, 童威, 等. 基于CaCO3/SiO2复合粒子的超疏水表面制备[J]. 浙江大学学报(理学版), 2011, 38(2):189-193.FANG Jingnan, HONG Biyuan, TONG Wei, et al. Preparation of superhydrophobic surface based on CaCO3/SiO2 composite particles[J]. Journal of Zhejiang University (Science Edition),2011,38(2):189-193(in Chinese). [26] KE Q P, FU W Q, ZHANG L, et al. Fabrication of mechanically robust superhydrophobic surfaces based on silica micro-nanoparticles and polydimethylsiloxane[J]. Surface and Coatings Technology,2011,205(21):4910-4914. [27] YANG H, CHEN F. Superhydrophobic modification of silica with VTMO[J]. Journal of Synthetic Crystals,2015,44(9):2597-2605. [28] 余楠林. 有机-无机杂化耐摩擦超疏水涂层的制备与性能研究 [D]. 广州: 华南理工大学, 2019.YU Nanlin. Preparation and properties of organic-inorganic hybrid anti-friction superhydrophobic coating [D]. Guangzhou: South China University of Technology, 2019(in Chinese). [29] 化全县, 郝志远, 张凯, 等. 水热酸处理解离凹凸棒土晶束的研究[J]. 应用化工, 2020, 49(8):1904-1908. doi: 10.3969/j.issn.1671-3206.2020.08.008HUA Quanxian, HAO Zhiyuan, ZHANG Kai, et al. Hydrothermal acid treatment of dissociated attapulgite crystal bundles[J]. Applied Chemical Industry,2020,49(8):1904-1908(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.08.008 [30] LI D W, WANG H Y, LIU Y, et al. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J]. Chemical Engineering Journal,2019,367:169-179. doi: 10.1016/j.cej.2019.02.093 [31] 梁婷, 范振忠, 刘庆旺, 等. 超疏水/超双疏表面自修复方式的研究进展[J]. 化工进展, 2019, 38(7):3185-3193.LIANG Ting, FAN Zhenzhong, LIU Qingwang, et al. Research progress on self-repairing methods of super-hydrophobic/super-biphobic surfaces[J]. Progress in Chemical Industry,2019,38(7):3185-3193(in Chinese).