留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维角联锁机织铺层复合材料的拉伸性能与失效机制

朱超 吴宁 张一帆 焦亚男 陈利 刘刚

朱超, 吴宁, 张一帆, 等. 三维角联锁机织铺层复合材料的拉伸性能与失效机制[J]. 复合材料学报, 2022, 39(7): 3167-3177. doi: 10.13801/j.cnki.fhclxb.20210914.001
引用本文: 朱超, 吴宁, 张一帆, 等. 三维角联锁机织铺层复合材料的拉伸性能与失效机制[J]. 复合材料学报, 2022, 39(7): 3167-3177. doi: 10.13801/j.cnki.fhclxb.20210914.001
ZHU Chao, WU Ning, ZHANG Yifan, et al. Tensile properties and failure mechanism of three-dimensional angle interlocking woven layup composites under tensile loading[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3167-3177. doi: 10.13801/j.cnki.fhclxb.20210914.001
Citation: ZHU Chao, WU Ning, ZHANG Yifan, et al. Tensile properties and failure mechanism of three-dimensional angle interlocking woven layup composites under tensile loading[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3167-3177. doi: 10.13801/j.cnki.fhclxb.20210914.001

三维角联锁机织铺层复合材料的拉伸性能与失效机制

doi: 10.13801/j.cnki.fhclxb.20210914.001
基金项目: 天津市教委科研计划重点项目(2019ZD03);国家自然科学基金(11802204);天津市高等学校创新团队培养计划(TD13-5043)
详细信息
    通讯作者:

    吴宁,博士,副研究员,博士生导师,研究方向为纺织结构复合材料设计与制造、高性能纤维可织性 E-mail: wuning@tiangong.edu.cn

  • 中图分类号: TB332

Tensile properties and failure mechanism of three-dimensional angle interlocking woven layup composites under tensile loading

  • 摘要: 采用树脂传递模塑 (Resin transfer molding,RTM)工艺方法制备了三维角联锁机织铺层复合材料,着重探讨了单层厚度对复合材料拉伸性能以及失效机制的影响。结果表明,复合材料的拉伸强度随着单层厚度的增大而显著增加,纤维体积含量相同时单层厚度对拉伸模量影响较小;在拉伸断裂过程中,各层断裂不同步,单层厚度的增加会加深各单层之间破坏应变的差异;失效试样分层现象显著,单层内未出现明显裂纹,经纱脆性断裂显著,层间伴随着大量基体碎屑,失效模式主要涵盖了纤维断裂和抽拔、界面脱黏、基体开裂以及分层。

     

  • 图  1  2.5D机织结构示意图

    Figure  1.  Sketch diagram of three-dimensional angle interlock woven structure

    图  2  拉伸试样(单位:mm)

    Figure  2.  Tensile test sample (Units: mm)

    图  3  拉伸实验装置及测试过程

    Figure  3.  Tensile test apparatuses and test process

    图  4  2.5DWLC的截面形貌

    Figure  4.  Section morphologies of 2.5DWLC

    Three types of 2.5DWLC represented by 2.5DWLiC ( i=0.8, 1.33, 2), and “i” represents the layer thickness

    图  5  纱线卷曲计算方法

    Figure  5.  Method for calculating yarn crimp

    图  6  2.5DWLC典型的拉伸应力-应变曲线

    Figure  6.  Typical strain-stress curves of 2.5DWLC under tension

    图  7  2.5DWLC在极限抗拉强度的20%、40%、60%、80%时的裂纹长度

    Figure  7.  Crack length of 2.5DWLC at 20%, 40%, 60%, 80% of the ultimate tensile strength

    图  8  2.5DWLC典型的拉伸应力-位移曲线

    Figure  8.  Typical stress–displacement curves of 2.5DWLC under tension

    图  9  2.5DWLC拉伸试样在X-Y方向上的断裂形貌

    Figure  9.  Fracture morphologies of 2.5DWLC tensile specimens in X-Y direction

    图  10  2.5DWLC拉伸试样在Y-Z方向上的断裂形貌

    Figure  10.  Fracture morphologies of 2.5DWLC tensile specimens in Y-Z direction

    D—Width of 2.5DWLC tensile specimens; L—The crack propagation length

    图  11  试样失效后的裂纹示意图:(a) 2.5DWLC;(b) 2.5DWC

    Figure  11.  Diagram of specimen crack after failure: (a) 2.5DWLC; (b) 2.5DWC

    图  12  结构2.5DWL2C和2.5DWC拉伸失效试样纤维断口的SEM图像

    Figure  12.  SEM images of tensile failure fiber fracture of 2.5DWL2C and 2.5DWC specimens

    表  1  碳纤维参数

    Table  1.   Parameters of carbon fiber

    Product typeDensity/(g·cm−3)Breakage elongation/%Tensile strength/$ {\rm{MPa}} $Tensile modulus/$ {\rm{GPa}} $
    TG800H-12K 1.79 2.28 5810 289
    下载: 导出CSV

    表  2  三维角联锁机织铺层复合材料(2.5DWLC)的结构参数

    Table  2.   Structural parameters of three-dimensional angle interlocking woven layup composites (2.5DWLC)

    StructuresPly stacking sequenceLayer thickness/mmComposite thickness/mmFiber volume fraction/$ {\rm{vol\% }} $
    2.5DWL0.8C [(0)5/(0,90)] 0.80 4.02 47.9
    2.5DWL1.33C [(0)3/(0,90)] 1.33 4.01 51.4
    2.5DWL2C [(0)2/(0,90)] 2.00 4.00 51.2
    2.5DWC 4.00 4.01 50.8
    Notes: Three types of 2.5DWLC are represented by 2.5DWLiC ($ i $=0.8, 1.33, 2), and “$ i $” represents the layer thickness.
    下载: 导出CSV

    表  3  2.5DWLC中经纱的局部偏离角度

    Table  3.   Local angle of deviation of warp yarn in 2.5DWLC from a specified horizontal

    Structure2.5DWL0.8C2.5DWL1.33C2.5DWL2C2.5DWC
    Local angle θ/(°) (CV)12.34° (3.2%)12.79° (2.6%)12.64° (2.9%)12.11° (2.1%)
    Notes: CV—Coefficient of variation.
    下载: 导出CSV

    表  4  2.5DWLC的拉伸强度和拉伸模量

    Table  4.   Tensile strength and tensile modulus of 2.5DWLC

    StructureTensile strength/
    $ {\rm{MPa}} $ (CV)
    Tensile modulus/
    $ {\rm{GPa}} $ (CV)
    2.5DWL0.8C 461.74 (7.22%) 63.17 (3.89%)
    2.5DWL1.33C 688.75 (7.13%) 80.47 (1.94%)
    2.5DWL2C 775.01 (7.32%) 81.97 (2.21%)
    2.5DWC 803.13 (6.54%) 87.56 (1.62%)
    下载: 导出CSV

    表  5  2.5DWLC拉伸试样断口处的宽度(D)和裂纹扩展长度(L)

    Table  5.   Width(D) of 2.5DWLC tensile specimens and the crack propagation length(L)

    Structure2.5DWL0.8C2.5DWL1.33C2.5DWL2C2.5DWC
    D/mm (CV)9.44 (8.6%)6.07 (7.1%)8.98 (11.9%)5.86 (5.9%)
    L/mm (CV)44.45 (15.2%)40.65 (14.7%)73.08 (16.3%)19.17 (19.1%)
    下载: 导出CSV
  • [1] ZHANG Y, GUO Q, CHEN X, et al. Effect of apertures on tensile property of warp-reinforced 2.5D woven composites notched plates[J]. Composite Structures,2020,252:112693. doi: 10.1016/j.compstruct.2020.112693
    [2] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexu- ral behaviour of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing,2015,69:195-207. doi: 10.1016/j.compositesa.2014.11.012
    [3] 郭瑞卿, 张一帆, 吕庆涛, 等. 多层多向层联三维机织复合材料的拉伸性能[J]. 复合材料学报, 2020, 37(10):2409-2417.

    GUO Ruiqing, ZHANG Yifan, LV Qingtao, et al. Tensile properties of multilayer multiaxial interlock 3D woven composites[J]. Acta Materiae Compositae Sinica,2020,37(10):2409-2417(in Chinese).
    [4] 王雅娜, 曾安民, 陈新文, 等. 2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测[J]. 复合材料学报, 2019, 36(6):1364-1373.

    WANG Yana, ZENG Anmin, CHEN Xinwen, et al. Mechanical properties testing for 2.5D quartz fiber reinforced resin composites in different and module prediction[J]. Acta Materiae Compositae Sinica,2019,36(6):1364-1373(in Chinese).
    [5] GU H, ZHILI Z. Tensile behavior of 3D woven composites by using different fabric structures[J]. Materials & Design,2002,23(7):671-674.
    [6] 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018, 35(4):748-759.

    GUAN Liuxiang, LI Jialu, JIAO Yanan, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica,2018,35(4):748-759(in Chinese).
    [7] KUO W. The role of loops in 3D fabric composites[J]. Composites Science and Technology,2000,60(9):1835-1849. doi: 10.1016/S0266-3538(00)00075-0
    [8] ZHOU W, QIN R, HAN K, et al. Progressive damage visualization and tensile failure analysis of three-dimensional braided composites by acoustic emission and micro-CT[J]. Polymer Testing,2020,93:106881.
    [9] LEE L, RUDOV-CLARK S, MOURITZ A P, et al. Effect of weaving damage on the tensile properties of three-dimensional woven composites[J]. Composite Structures,2002,57(1):405-413.
    [10] JIN L, NIU Z, JIN B C, et al. Comparisons of static bending and fatigue damage between 3D angle-interlock and 3D orthogonal woven composites[J]. Journal of Reinforced Plastics & Composites,2012,31(14):935-945.
    [11] LAPEYRONNIE P, LE GROGNEC P, BINÉTRUY C, et al. Homogenization of the elastic behavior of a layer-to-layer angle-inter-lock composite[J]. Composite Structures,2011,93(11):2795-2807. doi: 10.1016/j.compstruct.2011.05.025
    [12] 王忠远, 蔡长春, 王振军, 等. 三维角联锁机织铝基复合材料面内拉伸力学行为与失效机制[J]. 复合材料学报, 2021, 38(9):2989-2999.

    WANG Zhongyuan, CAI Changchun, WANG Zhenjun, et al. Mechanical behavior and failure mechanism of the 3D angle interlocking woven reinforced aluminum matrix composites under in-plane tensile loading[J]. Acta Materiae Compositae Sinica,2021,38(9):2989-2999(in Chinese).
    [13] 吴宁, 韩美月, 焦亚男, 等. 高性能纤维的可织性研究进展[J]. 航空制造技术, 2020, 63(15):81-89.

    WU Ning, HAN Meiyue, JIAO Yanan, et al. Research progress on weavability of high-performance fibers[J]. Aeronautical Manufacturing Technology,2020,63(15):81-89(in Chinese).
    [14] MOHAMED M H, SALAMA M M. High speed three-dimensional weaving method and machine: United States Patent, US 6315007 B1[P]. 2001-06-23.
    [15] 王盼乐, 周光明. 2.5D与2D织物混杂铺设复合材料力学性能实验研究[J]. 科技信息, 2011(22):463-465. doi: 10.3969/j.issn.1001-9960.2011.22.391

    WANG Panle, ZHOU Guangming. Experimental study on mechanical properties of 2.5D and 2D hybrid fabric laid composites[J]. Science and Technology Information,2011(22):463-465(in Chinese). doi: 10.3969/j.issn.1001-9960.2011.22.391
    [16] SONG L L, LI J L, ZHAO Y F, et al. Improvement of interlaminar shear strength of 2.5D fabric laminated composites with short-cut web interlayer[J]. Journal of polymer engineering,2017,37(3):261-269. doi: 10.1515/polyeng-2016-0029
    [17] PANKOW M, JUSTUSSON B, RIOSBAAS M, et al. Effect of fiber architecture on tensile fracture of 3D woven textile composites[J]. Composite Structures,2019,225:111139. doi: 10.1016/j.compstruct.2019.111139
    [18] LOMOV S V, BOGDANOVICH A E, IVANOV D S, et al. A comparative study of tensile proper-ties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites:Part 1— Materials, methods and principal results[J]. Composites Part A: Applied Science and Manufacturing,2009,40(8):1134-1143. doi: 10.1016/j.compositesa.2009.03.012
    [19] 杨彩云, 李嘉禄, 田玲玲. 复合材料中纱束的几何形态[J]. 复合材料学报, 2007, 24(4):123-127. doi: 10.3321/j.issn:1000-3851.2007.04.022

    YANG Caiyun, LI Jialu, TIAN Lingling. Geometry configuration of yarn in composite materials[J]. Acta Materiae Compositae Sinica,2007,24(4):123-127(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.04.022
    [20] 陆慧中, 孙颖, 焦亚男, 等. 典型多向2.5D机织预制体近净形编织结构设计[J]. 复合材料学报, 2021, 38(9):3109-3117.

    LU Huizhong, SUN Ying, JIAO Yanan, et al. Near net-shaped design on the architecture of typical multidirectional 2.5D woven preform[J]. Acta Materiae Com-positae Sinica,2021,38(9):3109-3117(in Chinese).
    [21] 杨连贺, 李姜. 三维机织复合材料纱线束截面变形研究[J]. 复合材料学报, 2008, 25(4):198-204. doi: 10.3321/j.issn:1000-3851.2008.04.035

    YANG Lianhe, LI Jiang. Study on tow cross-section deformation in three-dimensional woven composites[J]. Acta Materiae Compositae Sinica,2008,25(4):198-204(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.04.035
    [22] American Society for Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM-D3039/D3090M—2007[S]. United States: American Society for Testing Materials International, 2007-12-15.
    [23] JIAO W, CHEN L, XIE J, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures,2020,252:112756. doi: 10.1016/j.compstruct.2020.112756
    [24] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12):162-168.

    LIU Junling, SUN Ying, CHEN Li. Axial tensile properties of three-dimensional woven compo-sites with variant structure[J]. Journal of Textile Research,2019,40(12):162-168(in Chinese).
    [25] COX B N, DADKHAH M S, MORRIS W L. On the tensile failure of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing,1996,27(6):447-458. doi: 10.1016/1359-835X(95)00053-5
    [26] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1):171-199.

    ZHAO Libin, GONG Yu, ZHANG Jianyu. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica,2019,40(1):171-199(in Chinese).
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1363
  • HTML全文浏览量:  508
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-08-23
  • 录用日期:  2021-09-01
  • 网络出版日期:  2021-09-14
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回