Bonding and strain behavior of graphene/boron nitride diaphragm of micro-electro-mechanical system pressure sensor
-
摘要: 石墨烯和六方氮化硼(h-BN)层状材料的垂直堆叠组成的范德瓦尔斯异质结构,是制造高质量石墨烯器件的理想模型。我们提出了一种新型压力传感器的结构,在Si/SiO2衬底上用石墨烯/h-BN异质结构作为压力敏感薄膜。通过分子动力学模拟的方法,从分子原子层面得到了石墨烯和石墨烯/ h-BN异质结构的应力-应变关系,发现单层石墨烯的弹性模量约为907 GPa,随着温度的升高,弹性模量数值会变小。进而分析了石墨烯/h-BN异质结构的力学特性和温度特性,得出异质结构的弹性模量为1343 GPa,异质结构的力学参数对温度的敏感性比石墨烯低。其次,根据密度泛函理论和CASTEP分析了石墨烯/h-BN异质结构键合时的能量变化以及三种不同构型的几何优化,得出AB型(一个碳在氮上,另一个在六方氮化硼的中心)为最优构型,带隙打开最大为3.803 eV。计算得到了此构型的能带结构与态密度。这些结果为石墨烯/h-BN异质结构压力传感器的设计与制作提供了一定的理论基础与依据。Abstract: The van der Waals heterostructure composed of a vertical stack of graphene and hexagonal boron nitride (h-BN) layered materials is an ideal model for manufacturing high-quality graphene devices. A new type of pressure sensor structure was proposed, using graphene/h-BN heterostructure on Si/SiO2 substrate as a pressure sensitive film. Through the method of molecular dynamics simulation, the stress-strain relationship between graphene and graphene/h-BN heterostructure was obtained from the molecular atomic level. It is found that the elastic modulus of single-layer graphene is about 907 GPa, and as the temperature increasing higher, the elastic modulus value will become smaller. Furthermore, the mechanical properties and temperature characteristics of the graphene/h-BN heterostructure were analyzed, and the elastic modulus of the heterostructure is 1343 GPa. The mechanical parameters of the heterostructure are less sensitive to temperature than graphene. Secondly, according to density functional theory and CASTEP, the energy change of graphene/h-BN heterostructure bonding and the geometric optimization of three different configurations were analyzed, and the AB type (One carbon is on the nitrogen, the other is on the center of hexagonal boron nitride) is the optimal configuration, and the maximum band gap opening is 3.803 eV. The band structure and density of states of this configuration were calculated. These results provide a certain theoretical basis and basis for the design and manufacture of graphene/h-BN heterostructure pressure sensors.
-
图 8 石墨烯/h-BN异质结构晶胞几何优化结构的三种不同构型
Figure 8. Three different configurations of graphene/h-BN heterostructure unit cell geometry optimization structure
g1, g2, g3—Different axes; The red points—The high symmetry points; The red line—The Brillouin zone integration path; The blue range—The reciprocal lattice
表 1 单层石墨烯的力学性能对比
Table 1. Comparison of mechanical properties of single-layer graphene
Evaluation method Failure strain Breaking strength/TPa Elastic modulus/TPa This paper 0.226 1.06 0.907 Molecule dynamics method 0.2014 0.930 0.930 Experimental method 0.25 1.0 1.0 -
[1] JONGSUNG P, JI-KWAN K, SWATI P, et al. A wireless pressure sensor integrated with a biodegradable polymer stent for biomedical applications[J]. Sensors,2016,16(6):809. doi: 10.3390/s16060809 [2] SUJA K J, KUMAR G S, NISANTH A, et al. Dimension and doping concentration based noise and performance optimization of a piezoresistive MEMS pressure sensor[J]. Microsystem Technologies,2015,21(4):831-839. doi: 10.1007/s00542-014-2118-7 [3] JIA W, MAGNANI S, SARRO P M. Suspended submicron silicon-beam for high sensitivity piezoresistive force sensing cantilevers[J]. Sensors & Actuators A:Physical,2012,186:80-85. [4] BALAVALAD K B, SHEEPARAMATTI B G. A critical review of MEMS capacitive pressure sensors [J]. Sensors & Transducers, 2015, 187(4): 120-128. [5] MISHRA M K, DUBEY V, MISHRA P M, et al. MEMS technology: A review[J]. Journal of Engineering Research and Reports,2019,4(1):1-24. [6] NAG M, SINGH J, KUMAR A, et al. Sensitivity enhancement and temperature compatibility of graphene piezoresistive MEMS pressure sensor[J]. Microsystem Technologies,2019,25(10):3977-3982. [7] NIU X, LI Y, ZHANG H, et al. Fast thermal calibration of low-grade inertial sensors and inertial measurement units[J]. Sensors, 2013, 13(9): 12192-12217. [8] SUJIT E S, KUSUMA N, HEMALATHA B. Polysilicon piezoresistive MEMS pressure sensor: Study of analytical solutions for diaphragm and design & simulation[C]//2017 International Conference on Communication and Signal Processing (ICCSP). Chennai, India: IEEE, 2017: 1606-1610. [9] METI S, BALAVALD K B, SHEEPARMATTI B G. MEMS piezoresistive pressure sensor: A survey[J]. International Journal of Engineering Research and Applications,2016,6(4):23-31. [10] PANG S, HERNANDEZ Y, FENG X, et al. Graphene as transparent electrode material for organic electronics[J]. Advanced Materials,2011,23(25):2779-2795. doi: 10.1002/adma.201100304 [11] 魏子钧, 王志刚, 李晨, 等. 石墨烯场效应晶体管的光响应特性研究[J]. 北京大学学报:自然科学版, 2014, 50(4):704-708.WEI Zijun, WANG Zhigang, LI Chen, et al. Studies on the photoresponse in graphene-based field-effect transistors[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(4):704-708(in Chinese). [12] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展[J]. 物理学报, 2012(24):593-604.YIN Weihong, HAN Qin, YANG Xiaohong. The progress of semiconductor photoelectric devices based on graphene[J]. Acta Physica Sinica,2012(24):593-604(in Chinese). [13] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3906-3924. [14] 武佩, 胡潇, 张健, 等. 硅基底石墨烯器件的现状及发展趋势[J]. 物理学报, 2017, 66(21):171-186.WU Pei, HU Xiao, ZHANG Jian, et al. Research status and development graphene devices using silicon as the subtrate[J]. Acta Physica Sinica,2017,66(21):171-186(in Chinese). [15] WANG Q, ARASH B. A review on applications of carbon nanotubes and graphenes as nano-resonator sensors[J]. Computational Materials Science,2014,82:350-360. doi: 10.1016/j.commatsci.2013.10.010 [16] ZHU S E, KRISHNA GHATKESAR M, ZHANG C, et al. Graphene based piezoresistive pressure sensor[J]. Applied Physics Letters,2013,102(16):161904. [17] WANG Q G, HONG W, DONG L. Graphene “microdrums” on a freestanding perforated thin membrane for high sensitivity MEMS pressure sensors[J]. Nanoscale,2016,8(14):7663-7671. [18] SMITH A D, VAZIRI S, DELIN A, et al. Strain engineering in suspended graphene devices for pressure sensor applications[C]//13th International Conference on Ultimate Integration on Silicon (ULIS). Grenoble, France: IEEE, 2012: 21-24. [19] KWON O K, LEE J H, KIM K S, et al. Developing ultrasensitive pressure sensor based on graphene nanoribbon: Molecular dynamics simulation[J]. Physica E Low-dimensional Systems and Nanostructures,2013,47:6-11. [20] LIN X, LIU Y, ZHANG Y, et al. Polymer-assisted pressure sensor with piezoresistive suspended graphene and its temperature characteristics[J]. Nano,2019,14(10):1950130. [21] LEE G H, YU Y J, XU C, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano,2013,7(9):7931-7936. doi: 10.1021/nn402954e [22] WANG J, MA F, LIANG W, et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN) and graphene/h-BN heterostructures[J]. Materials Today,2017,2:6-34. doi: 10.1016/j.mtphys.2017.07.001 [23] KATSNELSON M I, NOVOSELOV K S, GEIM A K. Chiral tunnelling and the Klein paradox in graphene[J]. Nature Physics,2006,2(2):620-625. [24] BJELKEVIG C, MI Z, XIAO J, et al. Electronic structure of a graphene/hexagonal-BN heterostructure grown on Ru(0001) by chemical vapor deposition and atomic layer deposition: Extrinsically doped graphene[J]. Journal of Physics Condensed Matter An Institute of Physics Journal,2010,22(30):302002. doi: 10.1088/0953-8984/22/30/302002 [25] LU G, WU T, YANG P, et al. Synthesis of high-quality graphene and hexagonal boron nitride monolayer in-plane heterostructure on Cu-Ni alloy[J]. Advanced Science,2017,4(9):1700076. [26] 王冬, 秦亚飞, 袁锐波, 等. 石墨烯压力传感器结构设计与压力敏感特性研究[J]. 半导体光电, 2020, 41(5):676-680+716.WANG Dong, QIN Yafei, YUAN Ruibo, et al. Structural design and pressure sensitivity of graphene pressure sensors[J]. Semiconductor Optoelectronics,2020,41(5):676-680+716(in Chinese). [27] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19. [28] 刘思思, 童佳威, 张言. 硅基双层复合自组装分子膜结构特性及其润湿行为的分子动力学模拟[J]. 复合材料学报, 2018, 35(2):468-475.LIU Sisi, TONG Jiawei, ZHANG Yan. Molecular dynamics simulation of structural properties and wetting behavior of silicon based dual composite self- assembled monolayers[J]. Acta Materiae Compositae Sinica,2018,35(2):468-475(in Chinese). [29] 华军, 宋郴, 段志荣, 等. 石墨烯/铜复合材料剪切性能的分子动力学模拟[J]. 复合材料学报, 2018(3):632-639.HUA Jun, SONG Chen, DUAN Zhirong, et al. Molecular dynamics simulations of the shear mechanical properties of graphene/copper composites[J]. Acta Materiae Compositae Sinica,2018(3):632-639(in Chinese). [30] SHEN L, SHEN R S, ZHANG R L. Temperature-dependent elastic properties of single layer graphene sheets[J]. Materials & Design,2010,31(9):4445-4449. [31] ZHONG X, YAP Y K, PANDEY R, et al. First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers[J]. Physical Review B,2011,83(19):193403. doi: 10.1103/PhysRevB.83.193403 [32] 万海青. 新型功能分子器件的第一性原理研究[D]. 长沙: 湖南师范大学, 2013.WAN Haiqing. First-principles investigation on newfunctional molecular electronic devices [D]. Changsha: Hunan Normal University, 2013(in Chinese). [33] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-392. doi: 10.1126/science.1157996 [34] ANSARI R, MALAKPOUR S, AJORI S. Structural and elastic properties of hybrid bilayer graphene/h-BN with different interlayer distances using DFT[J]. Superlattices and Microstructures,2014,72:230-237. doi: 10.1016/j.spmi.2014.04.017 [35] NEEK-AMAL M, PEETERS F. Nanoindentation of a circular sheet of bilayer graphene[J]. Physical Review B,2010,81(23):235421. doi: 10.1103/PhysRevB.81.235421 [36] SONG L, CI L, LU H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Letters,2010,10(8):3209-3215. doi: 10.1021/nl1022139 [37] GUO Q, WANG G, PANDEY R, et al. Robust band gaps in the graphene/oxide heterostructure: SnO/graphene/SnO[J]. Physical Chemistry Chemical Physics,2018,20(26):17983-17989. [38] CHEN X F, LIAN J S, JIANG Q. Band-gap modulation in hydrogenated graphene/boron nitride heterostructures: The role of heterogeneous interface[J]. Physical Review B,2012,86(12):125437. doi: 10.1103/PhysRevB.86.125437