留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内置复材约束的T形截面钢管混凝土组合柱轴压力学性能试验研究

沈高奎 齐玉军 陆建成 沈振

沈高奎, 齐玉军, 陆建成, 等. 内置复材约束的T形截面钢管混凝土组合柱轴压力学性能试验研究[J]. 复合材料学报, 2022, 39(7): 3388-3403. doi: 10.13801/j.cnki.fhclxb.20210909.009
引用本文: 沈高奎, 齐玉军, 陆建成, 等. 内置复材约束的T形截面钢管混凝土组合柱轴压力学性能试验研究[J]. 复合材料学报, 2022, 39(7): 3388-3403. doi: 10.13801/j.cnki.fhclxb.20210909.009
SHEN Gaokui, QI Yujun, LU Jiancheng, et al. Experimental study on axial compression performance of T-section concrete filled steel and FRP tubular composite columns[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3388-3403. doi: 10.13801/j.cnki.fhclxb.20210909.009
Citation: SHEN Gaokui, QI Yujun, LU Jiancheng, et al. Experimental study on axial compression performance of T-section concrete filled steel and FRP tubular composite columns[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3388-3403. doi: 10.13801/j.cnki.fhclxb.20210909.009

内置复材约束的T形截面钢管混凝土组合柱轴压力学性能试验研究

doi: 10.13801/j.cnki.fhclxb.20210909.009
基金项目: 国家自然科学基金面上项目 (51778286)
详细信息
    通讯作者:

    齐玉军,博士,教授,硕士生导师,研究方向为复合材料与复合材料结构、建筑工业化与智能建造  E-mail: qiyujun@njtech.edu.cn

  • 中图分类号: TU398

Experimental study on axial compression performance of T-section concrete filled steel and FRP tubular composite columns

  • 摘要: 内置复材约束的T形截面钢管混凝土组合柱(T-section concrete filled steel and GFRP tubular composite column,T-SCFC)包括外部钢管、夹层混凝土、玻璃纤维增强树脂复合材料(Glass fiber reinforced polymer,GFRP)管和核心混凝土。对14根不同截面形式的约束混凝土短柱和3组内置不同复材管壁厚的T形截面钢管混凝土组合柱进行轴压试验,对比分析了方钢管混凝土短柱(Square concrete filled steel tube,CFST)、复材管约束混凝土短柱(Concrete filled GFRP tube,CFFT)、内置复材约束方钢管混凝土短柱(Steel-concrete-GFRP-concrete tube,SCFC)和T-SCFC柱在轴压荷载作用下的力学性能。建立与试件同尺寸的有限元模型,并开展数值参数分析,研究不同钢管壁厚和核心混凝土强度对T-SCFC柱轴心受压性能的影响。结果表明:内置约束复材管可以明显提高方钢管混凝土短柱的受压性能,显著延缓SCFC短柱在轴压荷载作用下的钢材屈服和鼓曲;T-SCFC柱在达到峰值荷载前,荷载-轴向位移曲线呈双线性增长,复材断裂后试件保持较高的残余承载力呈延性破坏,可以将复材断裂作为该类组合柱的失效点,增加复材管壁厚可以明显提高试件承载力;有限元模型计算结果与试验吻合较好;增加钢管壁厚可明显提高试件的承载力,提高试件核心混凝土强度仅对试件的等效屈服荷载有一定提高作用,对试件峰值承载力的影响较小。

     

  • 图  1  内置复材约束方钢管混凝土异形组合柱示意图

    Figure  1.  Illustration of special shaped concrete filled square steel tubular columns confined with built-in composite materials

    图  2  不同截面形式混凝土组合柱设计尺寸(单位:mm)

    Figure  2.  Design dimensions of concrete composite columns with different section forms (Unit: mm)

    图  3  轴压试验加载装置

    Figure  3.  Loading device for axial compression test

    图  4  应变测点布置及编号

    Figure  4.  Layout and number of strain measuring points

    T-SCFC-H/2 Sx (Sy) represents the transverse (longitudinal) strain of H/2 section steel tube of T-SCFC column, respectively; FRP tubes built in the T-SCFC were numbered with Roman numerals, taking the FRP tube I as an example, Ix(Iy) represents the transverse (longitudinal) strain of the H/2 section of the GFRP tube, and two transverse strain measuring points I1/2, I9/10 were added to the H/4 and 3H/4 sections of the GFRP tube, respectively.

    图  5  CFST短柱破坏过程

    Figure  5.  Failure process of CFST short column

    图  6  CFFT短柱破坏过程

    Figure  6.  Failure process of CFFT short column

    图  7  SCFC短柱破坏过程

    Figure  7.  Failure process of SCFC short column

    图  8  T-SCFC柱立面编号

    Figure  8.  T-SCFC column number

    图  9  T-SCFC柱局部强度破坏

    Figure  9.  Local strength failure of T-SCFC column

    图  10  T-SCFC柱先局部强度破坏后整体弯曲

    Figure  10.  T-SCFC column bending after local strength failure

    图  11  不同截面形式混凝土组合柱荷载-轴向位移曲线

    Figure  11.  Axial load-displacement curves of concrete composite columns with different section forms

    图  12  T-SCFC柱荷载-轴向位移曲线

    Figure  12.  Axial load-displacement curves of T-SCFC columns

    图  13  4×SCFC与T-SCFC峰值承载力对比

    Figure  13.  Comparison of peak bearing capacity between 4 × SCFC and T-SCFC

    图  14  不同截面形式混凝土组合柱轴压典型试件荷载-应变曲线

    Figure  14.  Load-strain curves of typical concrete composite columns with different section forms under axial compression load

    图  15  T-SCFC柱荷载-应变曲线

    Figure  15.  Load-strain curves of T-SCFC columns

    图  16  T-SCFC数值模型

    Figure  16.  Numerical model of T-SCFC

    图  17  T-SCFC试验与数值模型荷载-轴向位移曲线对比

    Figure  17.  Comparison of load-axial displacement curves between test and numerical model for T-SCFC

    图  18  T-SCFC数值模型破坏模式

    Figure  18.  Failure mode of numerical model of T-SCFC

    图  19  T-SCFC数值模型中考虑不同钢管壁厚的荷载-轴向位移曲线

    Figure  19.  Load-axial displacement curves considering different wall thicknesses of steel tubes in numerical model of T-SCFC

    图  20  T-SCFC数值模型中考虑不同核心混凝土强度的荷载-轴向位移曲线

    Figure  20.  Load-axial displacement curves considering different core concrete strengths in numerical model of T-SCFC

    表  1  不同截面形式混凝土组合柱试件基本参数

    Table  1.   Basic parameters of concrete composite column specimens with different section forms

    Specimentf/mmts/mmH/mm
    CFST-A/B 4.5 300
    CFFT-1-A/B 1 300
    CFFT-2-A/B 2 300
    CFFT-3-A/B 3 300
    SCFC-1-A/B 1 4.5 300
    SCFC-2-A/B 2 4.5 300
    SCFC-3-A/B 3 4.5 300
    T-SCFC-1-A/B 1 4.5 900
    T-SCFC-2-A/B 2 4.5 900
    T-SCFC-3-A/B 3 4.5 900
    Notes: CFST—Square concrete filled steel tube; CFFT—Concrete filled GFRP tube; SCFC—Steel-concrete-FRP-concrete; T-SCFC—T-section concrete filled steel and GFRP tubular composite column; The naming formats of CFST, CFFT, SCFC and T-SCFC specimens are “CFST-y”, “CFFT-x-y”, “SCFC-x-y” and “T-SCFC-x-y”, x, y represent tube wall thickness and parallel specimen number, respectively; tf—Wall thickness of GFRP tube; ts—Wall thickness of steel tube; H-Height of specimen.
    下载: 导出CSV

    表  2  钢材力学性能

    Table  2.   Mechanical properties of steel

    Materialft/MPafy /MPaE/105MPa
    Q235B381.56313.222.02
    Notes: ft—Tensile strength; fy—Yield strength; E—Elastic modulus.
    下载: 导出CSV

    表  3  玻璃纤维增强树脂复合材料(GFRP)管力学性能

    Table  3.   Mechanical properties of glass fiber reinforced polymer (GFRP) tube

    tf/mmEh/GPaσh/MPaεhEa/GPaσa/MPa
    1 81.13 823.26 0.012 6.63 127.29
    2 62.33 610.97 0.010 4.57 110.41
    3 65.17 683.51 0.011 3.46 134.95
    Notes: Eh—Hoop tensile modulus; σh—Hoop tensile strength; εh—Cyclic tensile ultimate strain; Ea—Axial compression modulus; σa—Axial compressive strength.
    下载: 导出CSV

    表  4  SCFC与CFST短柱轴压承载力对比

    Table  4.   Comparison of axial compressive bearing capacity between SCFC and CFST short columns

    SpecimenNy/kNNmax/kN$ \eta $y/%$ \eta $max/%
    CFST-A/B 673.60 800.38
    SCFC-1-A/B 806.00 978.24 19.6 22.20
    SCFC-2-A/B 885.32 1097.08 31.4 37.07
    SCFC-3-A/B 991.67 1298.56 47.2 62.20
    Notes: Ny—Equivalent yield load; Nmax—Peak load; $ \eta $y—Increase ratio of equivalent yield load; $ \eta $max—Increase ratio of peak load.
    下载: 导出CSV

    表  5  不同截面形式混凝土组合柱轴压试验主要结果

    Table  5.   Main results of concrete composite columns with different section forms under axial compression load

    SpecimenNmax/kNNy/kNNmax/ NyNmax-a/kNNy-a/kNμa$ \eta $/%Failure mode
    CFST-A 803.02 688.53 1.17 800.38 673.60 2.93 Softening
    CFST-B 797.73 658.66 1.21
    CFFT-1-A 454.41 201.53 2.25 428.49 215.47 4.91 Brittle failure
    CFFT-1-B 402.56 229.40 1.75
    CFFT-2-A 620.42 315.04 1.97 606.75 325.32 3.30 41.60
    CFFT-2-B 593.07 335.60 1.77
    CFFT-3-A 827.34 432.45 1.91 835.77 414.89 4.11 95.05
    CFFT-3-B 844.20 397.32 2.12
    SCFC-1-A 1002.60 839.20 1.19 978.24 806.00 3.13 Ductile failure
    SCFC-1-B 953.87 772.79 1.23
    SCFC-2-A 1093.48 929.99 1.18 1097.08 885.32 4.78 12.15
    SCFC-2-B 1100.69 840.65 1.31
    SCFC-3-A 1309.79 1019.08 1.29 1298.56 991.67 3.31 32.74
    SCFC-3-B 1287.33 964.26 1.34
    Notes: Nmax-a—Mean value of peak load for specimens with same parameters; Ny-a—Mean value of equivalent yield load for specimens with same parameters; μa—Average ductility coefficient; $ \eta $—Peak load increase ratio.
    下载: 导出CSV

    表  6  T-SCFC柱轴压试验主要结果

    Table  6.   Main results of T-SCFC columns under axial compression load

    SpecimenNTmax/kNNTy/kNNTmax/ NTyNTmax-a/kNNTy-a/kNμT-aηTmax/%ηTy/%
    T-SCFC-1-A 4330.79 3431.66 1.26 4255.69 3528.83 2.59
    T-SCFC-1-B 4180.59 3626 1.15
    T-SCFC-2-A 5044 3739 1.35 5042 3668.41 3.74 18.48 3.96
    T-SCFC-2-B 5040 3597.82 1.40
    T-SCFC-3-A 5360 4145.16 1.29 5316.50 4037.08 3.52 24.93 14.40
    T-SCFC-3-B 5273 3929 1.34
    Notes: NTmax—Peak load capacity of T-SCFC; NTy—Equivalent yield load of T-SCFC; NTmax-a—Mean value of peak load for specimens with same parameters; NTy-a—Mean value of equivalent yield load for specimens with same parameters; μT-a—Average ductility coefficient; ηTmax-Peak load increase ratio; ηTy—Increase ratio of equivalent yield load.
    下载: 导出CSV

    表  7  混凝土塑性损伤参数取值

    Table  7.   Concrete damaged plasticity parameter values

    $ \psi $$ \varepsilon $${ { {\sigma _{{\rm{b0}}} } } \mathord{\left/{\vphantom { { {\sigma _{b0} } } { {\sigma _{c0} } } }} \right.} { {\sigma _{{\rm{c0}}} } } }$${K_{\rm{c}}}$$ \mu $
    30 0.1 1.16 0.6667 0.0005
    Notes: $ \psi $—Dilatancy angle; $ \varepsilon $—Flow potential eccentricity; σb0/σc0—Ratio of initial equibiaxial compressive yield stress to initial uniaxial compressive yield stress; Kc—Ratio of the second stress invariant on the tensile meridian; μ—Viscosity parameter.
    下载: 导出CSV

    表  8  GFRP管模型参数

    Table  8.   Model parameters of GFRP tube

    Thickness/mm123
    E1/GPa 81.13 62.33 65.17
    E2=E3/GPa 6.63 4.57 3.46
    ν12=ν13 0.33 0.33 0.33
    ν23 0.35 0.32 0.33
    G12= G13/GPa 6.5 6.5 6.5
    G23/GPa 2.24 1.54 1.17
    下载: 导出CSV

    表  9  T-SCFC数值模拟结果与试验对比

    Table  9.   Comparison of numerical simulation and experimental results of T-SCFC

    SpecimenNTmax-a/kNNTmax-F/kNNTmax-a /NTmax-F
    T-SCFC-1-A/B 4255.69 4419.39 0.96
    T-SCFC-2-A/B 5042.00 5002.74 1.01
    T-SCFC-3-A/B 5316.50 5590.95 0.95
    Note: NTmax-F—Peak load of numerical simulation.
    下载: 导出CSV

    表  10  T-SCFC数值试件基本参数

    Table  10.   Basic parameters of numerical specimens of T-SCFC

    Numerical specimenfcu/MPats/mm
    T-SCFC-40-2.5 40 2.5
    T-SCFC-40-3.5 40 3.5
    T-SCFC-40-4.5 40 4.5
    T-SCFC-40-5.5 40 5.5
    T-SCFC-30-4.5 30 4.5
    T-SCFC-50-4.5 50 4.5
    T-SCFC-60-4.5 60 4.5
    Notes: The naming format of T-SCFC specimens is “T-SCFC-x-y”, x, y represent core concrete strength and wall thickness of steel tube respectively; fcu—Core concrete strength.
    下载: 导出CSV

    表  11  钢管壁厚对T-SCFC试件承载力的影响

    Table  11.   Influence of wall thickness of steel tube on bearing capacity of T-SCFC specimens

    SpecimenNy/kNNmax/kNηy/%ηmax/%
    T-SCFC-40-2.5 2085.40 3511.92
    T-SCFC-40-3.5 2539.99 3689.89 21.80 5.07
    T-SCFC-40-4.5 3138.71 4247.65 50.51 20.95
    T-SCFC-40-5.5 3479.03 4759.08 66.83 35.51
    下载: 导出CSV

    表  12  核心混凝土强度对T-SCFC试件承载力的影响

    Table  12.   Influence of core concrete strength on bearing capacity of T-SCFC specimens

    SpecimenNy/kNNmax/kNηy/%ηmax/%
    T-SCFC-30-4.5 2971.21 4260.06
    T-SCFC-40-4.5 3138.71 4247.84 5.64 −0.29
    T-SCFC-50-4.5 3220.93 4444.46 8.40 4.33
    T-SCFC-60-4.5 3334.59 4456.23 12.23 4.60
    下载: 导出CSV
  • [1] 郝际平, 孙晓岭, 薛强, 等. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(1):1-13.

    HAO Jiping, SUN Xiaoling, XUE Qiang, et al. Research and application of green prefabricated steel structure building system[J]. Engineering Mechanics,2017,34(1):1-13(in Chinese).
    [2] 孙晓岭, 郝际平, 薛强, 等. 壁式钢管混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2018, 39(6):92-101.

    SUN Xiaoling, HAO Jiping, XUE Qiang, et al. Experimental study on seismic performance of wall concrete filled steel tubular columns[J]. Journal of Building Structures,2018,39(6):92-101(in Chinese).
    [3] 程杰, 齐玉军, 谢志锦. 玻璃纤维增强聚合物复合材料约束壁式钢管混凝土短柱轴压性能试验[J]. 复合材料学报, 2021, 38(6):1825-1837.

    CHENG Jie, QI Yujun, XIE Zhijin. Experiment on axial compression performance of glass fiber reinforced polymer-walled concrete-filled steel tube columns[J]. Acta Materiae Compositae Sinica,2021,38(6):1825-1837(in Chinese).
    [4] XIONG Q, CHEN Z, ZHANG W, et al. Compressive behaviour and design of L-shaped columns fabricated using concrete-filled steel tubes[J]. Engineering Structures,2017,152:758-770.
    [5] WANG F C, HAN L H. Analytical behavior of special-shaped CFST stub columns under axial compression[J]. Thin-Walled Structures,2018,129:404-417.
    [6] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [7] 程实. 配置复材管内约束的方钢管混凝土柱轴压及抗震性能研究[D]. 北京: 清华大学, 2016.

    CHENG Shi. Research on axial compression and seismic performance of concrete filled square steel tubular columns with composite tube constraints [D]. Beijing: Tsinghua University, 2016 (in Chinese).
    [8] 张冰, 魏威, 冯贵森, 等. 纤维缠绕角度对GFRP约束混凝土短柱轴压性能的影响[J]. 建筑结构学报, 2019, 40(S1):192-199.

    ZHANG Bing, WEI Wei, FENG Guisen, et al. Effect of fiber winding angle on axial compression performance of GFRP confined concrete short columns[J]. Journal of Building Structures,2019,40(S1):192-199(in Chinese).
    [9] 国家市场监督管理总局. 金属材料拉伸试验第1部分: 室温试验方法: BG/T 228.1—2010[S]. 北京: 中国标准出版社, 2011.

    State Administration for Market Regulation. Tensile test of metal materials Part 1: Room temperature test method: BG/T 228.1—2010[S]. Beijing: China Standard Press, 2011 (in Chinese).
    [10] ASTM. Standard test method for apparent hoop tensile strength of plastic or reinforced plastic pipe by split disk method: ASTM D 2290—2012[S]. US: American Society for Testing and Materials, 2012.
    [11] 国家市场监督管理总局. 纤维增强热固性塑料管轴向压缩性能试验方法: GB/T 5350—2005[S]. 北京: 中国标准出版社, 2005.

    State Administration for Market Regulation. Test method for axial compression properties of fiber reinforced thermosetting plastic pipes: GB/T 5350—2005[S]. Beijing: China Standard Press, 2005 (in Chinese).
    [12] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of mechanical properties of ordinary concrete: GB/T 50081—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese).
    [13] 郭莹, 许天祥, 刘界鹏. 圆CFRP-钢复合管约束高强混凝土短柱轴压试验研究[J]. 建筑结构学报, 2019, 40(5):124-131.

    GUO Ying, XU Tianxiang, LIU Jiepeng. Experimental study on axial compression of circular CFRP-steel composite tube confined high strength concrete short columns[J]. Journal of Architectural Structures,2019,40(5):124-131(in Chinese).
    [14] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3):36-46.

    FENG Peng, QIANG Hanlin, YE Lieping. The definition and discussion of 'yield point' of materials, components and structures[J]. Engineering Mechanics,2017,34(3):36-46(in Chinese).
    [15] WANG X X, QI Y J, SUN Y L, et al. Compressive behavior of composite concrete columns with encased FRP confined concrete cores[J]. Sensors,2019,19(8):1792.
    [16] 高鹏, 赵元鸿, 洪丽, 等. 圆角半径对碳纤维增强聚合物复合材料布约束型钢混凝土矩形短柱轴压性能的影响[J]. 复合材料学报, 2020, 37(4):775-785.

    GAO Peng, ZHAO Yuanhong, HONG Li, et al. The effect of fillet radius on axial compression performance of carbon fiber reinforced polymer composite cloth confined steel reinforced concrete rectangular short columns[J]. Journal of Composite Materials,2020,37(4):775-785(in Chinese).
    [17] SCHNEIDER S P. Axially loaded concrete-filled steel tubes[J]. Journal of Structural Engineering,1998,119(10):1125-1138.
    [18] 张伟, 唐站站, 杨艳. 等. 复合受力模式下 CFRP-混凝土界面剥离分析方法[J]. 建筑结构学报. https://doi.org/10.14006/j.jzjgxb.2020.0703.

    ZHANG Wei, TANG Zhanzhan, YANG Yan, et al. Analysis method of CFRP-concrete interface debonding under combined stress mode[J]. Journal of Architectural Structures.https://doi.org/10.14006/j.jzjgxb.2020.0703 (in Chinese).
    [19] GUADES E, ARAVINTHAN T, ISLAM M. Characterisation of the mechanical properties of pultruded fibre-reinforced polymer tube[J]. Materials & Design,2014,63:305-315.
    [20] TENG J G, HU Y M. Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression[J]. Construction & Building Materials,2007,21(4):827-838.
    [21] 方小丹, 林斯嘉. 复式钢管高强混凝土柱轴压试验研究[J]. 建筑结构学报, 2014, 35(4):236-245.

    FANG Xiaodan, LIN Sijia. Experimental study on axial compression of composite high strength concrete filled steel tubular columns[J]. Journal of Building Structures,2014,35(4):236-245(in Chinese).
    [22] 鲁国昌, 叶列平, 杨才千, 等. FRP管约束混凝土的轴压应力-应变关系研究[J]. 工程力学, 2006(9):98-103. doi: 10.3969/j.issn.1000-4750.2006.09.017

    LU Guochang, YE Lieping, YANG Caiqian, et al. Research on axial compression stress-strain relationship of FRP tube confined concrete[J]. Engineering Mechanics,2006(9):98-103(in Chinese). doi: 10.3969/j.issn.1000-4750.2006.09.017
    [23] LI B B, JIANG J F, XIONG H B, et al. Improved concrete plastic-damage model for FRP-confined concrete based on true tri-axial experiment[J]. Composite Structures,2021,269:114051.
    [24] 韩林海, 陶忠. 方钢管混凝土轴压力学性能的理论分析与试验研究[J]. 土木工程学报, 2001(2):17-25. doi: 10.3321/j.issn:1000-131X.2001.02.004

    HAN Linhai, TAO Zhong. Theoretical analysis and experimental study on mechanical properties of concrete filled square steel tubular under axial compression[J]. Journal of Civil Engineering,2001(2):17-25(in Chinese). doi: 10.3321/j.issn:1000-131X.2001.02.004
    [25] GRAY P J, MCCARTHY C T. An analytical model for the prediction of through-thickness stiffness in tension-loaded composite bolted joints[J]. Composite Structures,2012,94(8):2450-2459. doi: 10.1016/j.compstruct.2012.02.011
    [26] EGAN B, MCCARTHY C T, MCCARTHY M A, et al. Stress analysis of single-bolt, single-lap, countersunk composite joints with variable bolt-hole clearance[J]. Composite Structures,2012,94(3):1038-1051. doi: 10.1016/j.compstruct.2011.10.004
    [27] 刘万雷, 常新龙, 张晓军, 等. 基于改进Hashin准则的复合材料低速冲击损伤研究[J]. 振动与冲击, 2016, 35(12):209-214.

    LIU Wanlei, CHANG Xinlong, ZHANG Xiaojun, et al. Research on low-speed impact damage of composites based on improved Hashin criterion[J]. Vibration and Impact,2016,35(12):209-214(in Chinese).
  • 加载中
图(21) / 表(12)
计量
  • 文章访问数:  1223
  • HTML全文浏览量:  574
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-08-15
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回