Fabrication, microstructure and mechanical properties of (Me1/3Hf1/3Nb1/3)B2(Me=Ti, Zr, Ta) ceramics
-
摘要: 以采用硼热/碳热还原反应自合成的(Me1/3Hf1/3Nb1/3)B2 (Me=Ti, Zr, Ta) 为原料,通过放电等离子烧结制备了(Me1/3Hf1/3Nb1/3)B2陶瓷,系统研究了其相组成、致密度、显微结构和力学性能。结果表明,(Ti1/3Hf1/3Nb1/3)B2和(Zr1/3Hf1/3Nb1/3)B2陶瓷具有较高的致密度(~98%),而(Ta1/3Hf1/3Nb1/3)B2陶瓷的致密度较低(~93%)。(Ti1/3Hf1/3Nb1/3)B2的晶粒较粗,而(Zr1/3Hf1/3Nb1/3)B2和(Ta1/3Hf1/3Nb1/3)B2的晶粒相对较小,并且在(Ta1/3Hf1/3Nb1/3)B2中Nb元素出现局部偏析。(Ti1/3Hf1/3Nb1/3)B2陶瓷具有较优异的力学性能,硬度和韧性分别为(20.08±0.81) GPa和(2.52±0.15) MPa·m1/2,而(Zr1/3Hf1/3Nb1/3)B2陶瓷的力学性能较差,硬度和断裂韧性分别为(17.21±0.63) GPa和(1.50±0.18) MPa·m1/2。Abstract: With (Me1/3Hf1/3Nb1/3)B2 (Me=Ti, Zr, Ta) powders self-synthesized via boron/carbothermal reduction, (Me1/3Hf1/3Nb1/3)B2 ceramics were prepared by spark plasma sintering (SPS), and their phase composition, relative density, microstructure and mechanical properties were investigated systematically. The result reveals that (Ti1/3Hf1/3Nb1/3)B2 and (Zr1/3Hf1/3Nb1/3)B2 possess the high relative density (~98%), while (Ta1/3Hf1/3Nb1/3)B2 has the lowest relative density (~93%). (Ti1/3Hf1/3Nb1/3)B2 possesses relatively coarse grains, while (Zr1/3Hf1/3Nb1/3)B2 and (Ta1/3Hf1/3Nb1/3)B2 possess relatively fine grains and Nb segregation is found in (Ta1/3Hf1/3Nb1/3)B2. (Ti1/3Hf1/3Nb1/3)B2 shows the most excellent mechanical properties with the Vickers hardness and fracture toughness of (20.08±0.81) GPa and (2.52±0.15) MPa·m1/2, respectively, whereas the mechanical properties of (Zr1/3Hf1/3Nb1/3)B2 are inferior, with hardness and fracture toughness of (17.21±0.63) GPa and (1.50±0.18) MPa·m1/2, respectively.
-
图 2 2000℃烧结(Me1/3Hf1/3Nb1/3)B2 陶瓷SEM图像和相应的能谱元素图:(a) (Ti1/3Hf1/3Nb1/3)B2;(b) (Zr1/3Hf1/3Nb1/3)B2;(c) (Ta1/3Hf1/3Nb1/3)B2
Figure 2. SEM images and the corresponding EDS elemental mappings of (Me1/3Hf1/3Nb1/3)B2 ceramics sintered at 2000℃: (a) (Ti1/3Hf1/3Nb1/3)B2; (b) (Zr1/3Hf1/3Nb1/3)B2; (c) (Ta1/3Hf1/3Nb1/3)B2
图 3 2000℃烧结(Me1/3Hf1/3Nb1/3)B2陶瓷材料腐蚀的SEM图像:(a) (Ti1/3Hf1/3Nb1/3)B2;(b) (Zr1/3Hf1/3Nb1/3)B2;(c) (Ta1/3Hf1/3Nb1/3)B2
Figure 3. SEM images of the polished surface of (Me1/3Hf1/3Nb1/3)B2 ceramics sintered at 2000℃ after acid etching: (a) (Ti1/3Hf1/3Nb1/3)B2; (b) (Zr1/3Hf1/3Nb1/3)B2; (c) (Ta1/3Hf1/3Nb1/3)B2
表 1 2000℃烧结(Me1/3Hf1/3Nb1/3)B2陶瓷的晶胞参数、相对密度、晶粒尺寸与力学性能
Table 1. Lattice parameters, relative density, grain size and mechanical properties of (Me1/3Hf1/3Nb1/3)B2 ceramics sintered at 2000℃
Code a/nm c/nm Relative
density/%Grain
size/μmHardness/
GPaFracture toughness/
(MPa·m1/2)(Ti1/3Hf1/3Nb1/3)B2 0.30919 0.33423 98.02 1.97±0.47 20.08±0.81 2.52±0.15 (Zr1/3Hf1/3Nb1/3)B2 0.31346 0.34384 98.35 1.67±0.43 17.21±0.63 1.50±0.18 (Ta1/3Hf1/3Nb1/3)B2 0.31076 0.33481 92.87 1.55±0.38 19.29±0.73 2.43±0.14 Notes: a and c—Lattice parameters of (Me1/3Hf1/3Nb1/3)B2 ceramics sintered at 2000℃. -
[1] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society,2007,90:1347-1364. doi: 10.1111/j.1551-2916.2007.01583.x [2] BROWN-SHAKLEE H J, FAHRENHOLTZ W G, HILMAS G E. Densification behavior and microstructure evolution of hot-pressed HfB2[J]. Journal of the American Ceramic Society,2011,94:49-58. doi: 10.1111/j.1551-2916.2010.04063.x [3] 彭易发, 李争显, 陈云飞, 等. 硼化物超高温陶瓷的研究进展[J]. 陶瓷学报, 2018, 39(2):9-16.PENG Yifa, LI Zhengxian, CHEN Yunfei, et al. Research progress of research progress of diboride UHTCS[J]. Journal of Ceramics,2018,39(2):9-16(in Chinese). [4] MONTEVERDE F, BELLOSIA A, SCATTEIA L. Processing and properties of ultra-high temperature ceramics for space applications[J]. Materials Science and Engineering: A,2008,485(1-2):415-421. [5] 陈丽敏, 索相波, 王安哲, 等. ZrB2基超高温陶瓷材料抗热震性能及热震失效机制研究进展[J]. 硅酸盐学报, 2018, 46(9):1235-1243.CHEN Limin, SUO Xiangbo, WANG Anzhe, et al. Thermal shock resistance and failure mechanism of ZrB2-based ultra-high temperature ceramic composites—A short review[J]. Journal of the Chinese Ceramic Society,2018,46(9):1235-1243(in Chinese). [6] SCITI D, SILVESTRONI L, NYGREN M. Spark plasma sintering of Zr- and Hf-borides with decreasing amounts of MoSi2 as sintering aid[J]. Journal of the European Ceramic Society,2018,28(6):1287-1296. [7] GUO S Q, YANG J M, TANAKA H, et al. Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles[J]. Composites Science and Technology,2008,68(14):3033-3040. doi: 10.1016/j.compscitech.2008.06.021 [8] 赵笑统, 赵新阳, 李智强, 等. Mo–Si–B对ZrB2超高温陶瓷烧结工艺和性能的影响[J]. 硅酸盐学报, 2018, 46(3):382-387.ZHAO Xiaotong, ZHAO Xinyang, LI Zhiqiang, et al. Effect of Mo–Si–B on sintering process and properties of ZrB2 ultra-high-temperature ceramics[J]. Journal of the Chinese Ceramic Society,2018,46(3):382-387(in Chinese). [9] 王晓玲, 王周福, 王玺堂, 等. 熔盐中镁热还原合成二硼化钛纳米粉体[J]. 硅酸盐学报, 2014, 42(6):709-713.WANG Xiaoling, WANG Zhoufu, WANG Xitang, et al. Synthesis of TiB2 nanopowder by magnesiothermic reduction in molten salt[J]. Journal of the Chinese Ceramic Society,2014,42(6):709-713(in Chinese). [10] ZHANG Y, TAN D W, GUO W M, et al. Improvement of densification and microstructure of HfB2 ceramics by Ta/Ti substitution for Hf[J]. Journal of the American Ceramic Society,2019,103:103-111. [11] GUO W M, TAN D W, ZENG L Y, et al. Synthesis of fine ZrB2 powders by solid solution of TaB2 and their densification and mechanical properties[J]. Ceramics International,2018,44:4473-4477. [12] CHAKRABORTY S, DEBNATH D, MALLICK A R, et al. Mechanical and thermal properties of hot pressed ZrB2 system with TiB2[J]. International Journal of Refractory Metals and Hard Materials,2014,46:35-42. doi: 10.1016/j.ijrmhm.2014.05.004 [13] FENG L, FAHRENHOLTZ W G, HILMAS G E, et al. Effect of Nb content on the phase composition, densification, microstructure, and mechanical properties of high-entropy boride ceramics[J]. Journal of the European Ceramic Society,2021,41:92-100. doi: 10.1016/j.jeurceramsoc.2020.08.058 [14] ZHAO X T, WANG H L, SHAO G, et al. Processing and properties of (Zr, Hf)B2-SiC ceramic composites[J]. Solid State Phenomena,2018,281:438-443. doi: 10.4028/www.scientific.net/SSP.281.438 [15] MCCLANE D L, FAHRENHOLTZ W G, HILMAS G E. Thermal properties of (Zr, TM)B2 solid solutions with TM=Ta, Mo, Re, V, and Cr[J]. Journal of the American Ceramic Society,2015,98(2):637-644. doi: 10.1111/jace.13341 [16] MCCLANE D L, FAHRENHOLTZ W G, HILMAS G E. Thermal properties of (Zr, TM)B2 solid solutions with TM = Hf, Nb, W, Ti, and Y[J]. Journal of the American Ceramic Society,2014,97(5):1552-1558. doi: 10.1111/jace.12893 [17] 中国国家标准化管理委员会. 精细陶瓷室温硬度试验方法: GB/T 16534—2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People’s Republic of China. Fine ceramics (advanced ceramics advanced technical ceramics)—Test method for hardness of monolithic ceramics at room temperature: GB/T 16534—2009[S]. Beijing: China Standards Press, 2009(in Chinese). [18] EVANS A G, CHARLES E A. Fracture toughness determinations by indentation[J]. Journal of the American Ceramic Society,1976,59:371-372. doi: 10.1111/j.1151-2916.1976.tb10991.x [19] SHARMA S K, BANERJEE S, KULDEEP, et al. Some correlations for diffusion in amorphous alloys[J]. Journal of Materials Research,1989,4:603-606. doi: 10.1557/JMR.1989.0603 [20] HE Y, PENG C, XIN S, et al. Vacancy effect on the preparation of high-entropy carbides[J]. Journal of Materials Science,2020,55(16):6754-6760. doi: 10.1007/s10853-020-04471-3 [21] RAJU G B, BASU B, TAK N H, et al. Temperature dependent hardness and strength properties of TiB2 with TiSi2 sinter-aid[J]. Journal of the European Ceramic Society,2009,29(10):2119-2128. doi: 10.1016/j.jeurceramsoc.2008.11.018 [22] SCHNEIDER S J. Engineered materials handbook volume 4: Ceramics and glasses[M]. Almere: ASM International, 1991: 787-803. [23] LICHERI R, MUSA C, ORRU R, et al. Silvestroni, bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering[J]. Journal of Alloys and Compounds,2016,663:351-359. doi: 10.1016/j.jallcom.2015.12.096 [24] HUANG P K, YEH J W. Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings[J]. Journal of Physics D: Applied Physics,2009,42:115401. doi: 10.1088/0022-3727/42/11/115401 [25] TIAN F, VARGA L K, CHEN N, et al. Empirical design of single phase high-entropy alloys with high hardness[J]. Intermetallics,2015,58:1-6. doi: 10.1016/j.intermet.2014.10.010 [26] YANG Y, WANG W, GAN G, et al. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: Ab initio investigation[J]. Physica B: Physics of Condensed Matter,2018,550:163-170. doi: 10.1016/j.physb.2018.09.014 [27] YANG Y, MA L, GAN G Y, et al. Investigation of thermodynamic properties of high entropy (TaNbHfTiZr)C and (TaNbHfTiZr)N[J]. Journal of Alloys and Compounds,2019,788:1076-1083. doi: 10.1016/j.jallcom.2019.02.254 [28] YE B, WEN T, NGUYEN M C, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics[J]. Acta Materialia,2019,170:15-23. doi: 10.1016/j.actamat.2019.03.021