Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method
-
摘要: 制备具有垂直方向高导热、低压缩应力松弛的柔性导热复合材料,并将其应用于大功率电子元器件的导热垫片,对大幅度提升电子器件垂直散热能力具有重要的意义。本文基于冰模板法设计了自下而上垂直定向排列的导热网络来实现高热导率。首先,利用多巴胺改性的羟基化氮化硼纳米片并负载银纳米颗粒(BNNS@PDA/Ag)作为杂化导热填料,再与纤维素纳米纤维(Cellulose nanofiber,CNF)进行复合,采用半导体制冷台为冷源进行定向冷冻,对冷冻后的样品进行冷冻干燥形成气凝胶,再真空浇筑聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)后制得具有高导热和低应力松弛的BNNS@PDA/Ag-PDMS导热垫片。结果表明,理论松弛时间损失随着银纳米颗粒(Ag NPs)含量的提升先减小后增大,气凝胶质量分数达到19.7wt%时,在20%的形变下,3wt%Ag NPs含量对应的导热垫片的理论松弛时间达到32204 s,导热垫片的垂直方向热导率达到3.23 W/(m·K)。利用冰模板法可以制备具有高度取向的垂直填料导热网络,在导热垫片领域具有很好的应用前景。Abstract: The preparation of thermally conductive pads with high vertical thermal conductivity and low compressive stress relaxation is of great significance for improving the vertical heat dissipation capability of current high-power electronic components. In this paper, based on the ice template method, a bottom-up vertically oriented thermal network is designed to achieve high thermal conductivity. First, we use dopamine-modified hydroxylated boron nitride nanosheets and silver nanoparticles (BNNS@PDA/Ag) as hybrid thermally conductive fillers, cellulose nanofibers (Cellulose nanofiber, CNF) are used to prepare composite, and a semiconductor is applied as refrigeration table for the composite’s directional freezing. The frozen samples are freeze-dried to form an aerogel, and then polydimethylsiloxane (PDMS) is vacuum poured into the aerogel to prepare BNNS@PDA/Ag-PDMS thermal pad with high thermal conductivity and low stress relaxation. The results show that the theoretical relaxation time loss decreases first and then increases with the increase of silver nanoparticles (Ag NPs) content. When the aerogel mass fraction reaches 19.7wt%, the theoretical relaxation time of the thermal pad corresponding to 3wt% Ag NPs content reaches 32204 at 20% deformation, the vertical thermal conductivity of thermal pad is up to 3.23 W/(m·K). The ice template method can be used to prepare the vertical packing thermal network with high orientation, which has a good application prospect in the field of thermally conductive pads.
-
图 1 ((a)~(g)) 多巴胺改性羟基化氮化硼纳米片负载银纳米颗粒气凝胶(BNNS@PDA/Ag)及BNNS@PDA/Ag-聚二甲基硅氧烷(PDMS)复合导热垫片的制备示意图;(h) 气凝胶的内部取向网络和气凝胶实物图;((i), (j)) 导热垫片的实物及弯折过程照片;(k) BNNS@PDA/Ag导热网络示意图
Figure 1. ((a)-(g)) Fabrication of dopamine-modified hydroxylated boron nitride nanosheets and silver nanoparticles aerogel (BNNS@PDA/Ag) and BNNS@PDA/Ag-polydimethylsiloxane (PDMS))composite thermal conductivity pad; (h) Internal orientation network of the gel; ((i), (j)) Bending picture of thermal conductive pad; (k) Thermal conductive network of BNNS@PDA/Ag
CNF—Cellulose nanofiber
图 9 不同质量份数的气凝胶及定份数下的不同含量Ag NPs的BNNS@PDA/Ag-PDMS导热垫片热导率图:(a) 不同份数的气凝胶热导率;(b)不同含量的Ag NPs热导率
Figure 9. Thermal conductivity of BNNS@PDA/Ag-PDMS thermally conductive pads with different mass fractions of aerogel and different content of Ag NPs under a fixed number of aerogel’s fraction: (a) Thermal conductivity of different fractions of aerogel; (b) Thermal conductivity of different content of Ag NPs
图 10 相关报道的BNNS基复合材料垂直热导率对比[23-30]
Figure 10. Vertical thermal conductivity of different BNNS-based composites in previous reports[23-30]
PMMA—Polymethyl methacrylate; CNT—Carbon nanotube; PET—Polyethylene terephthalate; NFC—Nanocellulose; rGO—Reduced graphene oxide; GNP—Graphite nanosheet; PPS—Polyphenylene sulfite
表 1 BNNS@PDA/PDMS 导热垫片的填料质量分数表
Table 1. Mass fraction of filler in BNNS@PDA/PDMS thermally conductive pad
Concentration of the suspensions/(mg·mL−1) Mass of BNNS@PDA/mg Mass of CNF/mg Mass of aerogels/mg Mass fraction of elastomer composites/wt% 1 10 25 35 16.4 2 20 25 45 19.6 3 30 25 55 24.3 4 40 25 65 26.9 表 2 BNNS@PDA/PDMS导热垫片的理论松弛时间表
Table 2. Theoretical relaxation time of BNNS@PDA/PDMS thermal pad
Mass of BNNS@PDA/mg Compressive stress at 20% strain/MPa Theoretical relaxation time/s 0(Pure CNF) 0.27 28852 10 0.32 32107 20 0.40 34886 30 0.46 33471 40 0.54 32152 表 3 不同填料分数的BNNS@PDA/PDMS 导热垫片的导热性能参数
Table 3. Thermal conductivity parameters of BNNS@PDA/PDMS thermal pads with different filler mass fractions
Filler concentration/
(mg·mL−1)Mass fraction of aerogel
after infiltration/wt%Density/
(g·cm−3)Specific heat/
(J·(g·K)−1)Thermal diffusity/
(mm2·s−1)Thermal conductivity/
(W·(m·K)−1)0 Pure PDMS 0.78 1.82 0.14 0.21 1 16.4 1.15 1.70 0.29 0.57 2 19.6 1.26 1.63 0.83 1.70 3 24.3 1.31 1.55 1.14 2.32 4 26.9 1.40 1.38 1.56 3.02 -
[1] 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4):760-766.WU Yuming, YU Jinhong, CAO Yong, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica,2018,35(4):760-766(in Chinese). [2] OUYANG T, CHEN Y P, XIE Y E, et al. Thermal transport in hexagonal boron nitridenanoribbons[J]. Nano-technology,2010,21(24):245701. doi: 10.1088/0957-4484/21/24/245701 [3] BRESNEHAN M S. Synthesis and characterization of hexagonal boron nitride for integration with graphene electronics[D]. Pennsylvania: The Pennsylvania State University, 2013. [4] XUE B, ZHANG C X, ZENG X L, et al. Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional networks[J]. Composites Communications,2021,24:100650. doi: 10.1016/j.coco.2021.100650 [5] WANG T, OU D H, LIU H H, et al. Thermally conductive boron nitride nanosheet composite paper as a flexible printed circuit board[J]. ACS Applied Nano Mater-ials,2018,1(4):1705-1712. doi: 10.1021/acsanm.8b00160 [6] WU Y J, ZHANG X X, NEGI A, et al. Synergistic effects of boron nitride (BN) nanosheets and silver (Ag) nanoparticles on thermal conductivity and electrical properties of epoxy nanocomposites[J]. Polymers,2020,12(2):426. doi: 10.3390/polym12020426 [7] LI R Y, LV X W, YU J, et al. Dielectric, thermally conductive, and heat-resistant polyimide composite film filled with silver nanoparticle-modified hexagonal boron nitride[J]. High Performance Polymers,2020,32(10):1181-1190. doi: 10.1177/0954008320938846 [8] CHEN C, XUE Y, LI Z. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles[J]. Chemical Engineering Journal,2019,369:1150-1160. doi: 10.1016/j.cej.2019.03.150 [9] CHEN H Y, VALERIY V G, JIAN Y, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. [10] GUO Y Q, PAN L L, YANG X T, et al. Simultaneous improvement of thermal conductivities andelectromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105484. doi: 10.1016/j.compositesa.2019.105484 [11] VU M C, KIM I H, CHOI W K, et al. Highly flexible graphene derivative hybrid film: An outstanding nonflammable thermally conductive yet electrically insulating material for efficient thermal management[J]. ACS Applied Materials & Interfaces,2020,12(23):26413-26423. [12] ZENG X L, YE L, YU S H, et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties[J]. Nanoscale,2015,7(15):6774-6781. doi: 10.1039/C5NR00228A [13] YUAN J, QIAN X T, MENG Z C, et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation[J]. ACS Applied Mater-ials & Interfaces,2019,11(19):17915-17924. [14] ZENG X L, YAO Y M, GONG Z Y, et al. Ice-templated assembly strategy to construct 3d boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small,2015,11(46):6205-6213. doi: 10.1002/smll.201502173 [15] JI C, WANG Y, YE Z Q, et al. Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials[J]. ACS Applied Materials & Interfaces,2020,12(21):24298-24307. [16] 杜虎, 吴钢, 庞之洋, 等. 基于界面热阻等效模型的超导磁体热输运分析[J]. 低温与超导, 2011, 39(07):25-29. doi: 10.3969/j.issn.1001-7100.2011.07.006DU Hu, WU Gang, PANG Zhiyang, et al. Thermal transport analysis of superconducting magnet based on equivalent model of interface thermal resistance[J]. Cryogenics and Superconductivity,2011,39(07):25-29(in Chinese). doi: 10.3969/j.issn.1001-7100.2011.07.006 [17] 宋成轶, 栾添, 邬剑波, 等. 聚合物基热界面材料界面接触热阻的研究进展[J]. 集成技术, 2019, 8(1):54-67.SONG Chengyi, LUAN Tian, WU Jianbo, et al. Research progress on the interface contact thermal resistance of polymer-based thermal interface materials[J]. Integrated Technology,2019,8(1):54-67(in Chinese). [18] SHEN H, GUO J, WANG H, et al. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure[J]. ACS Applied Materials & Interfaces,2015,7(10):5701-5708. [19] ZHAO H R, DING J H, SHAO Z Z, et al. High-quality boron nitride nanosheets and their bioinspired thermally conductive papers[J]. ACS Applied Materials & Interfaces,2019,11(40):37247-37255. [20] WANG L, WU W, DRUMMER D, et al. Study on thermal conductive PA6 composites with 3-dimensional structured boron nitride hybrids[J]. Journal of Applied Polymer Science,2019,136(23):47630. doi: 10.1002/app.47630 [21] WANG F F, ZENG X L, YAO Y M, et al. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity[J]. Scientific Reports,2016,6(1):19394. doi: 10.1038/srep19394 [22] 卫延斌, 史仪凯, 刘澎. 粘弹性材料剪切模量松弛函数的拟合研究[J]. 兵工学报, 2010, 31(10):1409-1412.WEI Yanbin, SHI Yikai, LIU Peng. Research on fitting the shear modulus relaxation function of viscoelastic materials[J]. Acta Armamentarii,2010,31(10):1409-1412(in Chinese). [23] WANG X B, PAKDEL A, ZHANG J, et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties[J]. Nanoscale Research Letters,2012,7(1):1-7. doi: 10.1186/1556-276X-7-1 [24] ZAMEL N, LITOVSKY E, LI X G, et al. Measurement of the through-plane thermal conductivity of carbon paper diffusion media for the temperature range from -50 to +120℃[J]. International Journal of Hydrogen Energy,2011,36(19):12618-12625. doi: 10.1016/j.ijhydene.2011.06.097 [25] YAO Y M, ZHU X D, ZENG X L, et al. Vertically aligned and interconnected sic nanowire networks leading to significantly enhanced thermal conductivity of polymer composites[J]. ACS Applied Materials & Interfaces,2018,10(11):9669-9678. [26] PANDEY R P, RASOOL K, MADHAVAN V E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets[J]. Journal of Materials Chemistry A,2018,6(8):3522-3533. doi: 10.1039/C7TA10888E [27] KIM K, KIM J. BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating[J]. Polymer,2016,101:168-175. [28] TIAN X J, ITKIS M E, HADDON R C. Application of hybrid fillers for improving the through-plane heat transport in graphite nanoplatelet-based thermal interface layers[J]. Scientific Reports,2015,5(1):13108. doi: 10.1038/srep13108 [29] SONG N, JIAO D J, CUI S Q, et al. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management[J]. ACS Applied Materials & Interfaces,2017,9(3):2924-2932. [30] JI C, YAN C Z, WANG Y, et al. Thermal conductivity enhancement of CNT/MoS2/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network[J]. Composites Part B: Engineering,2019,163:363-370.