留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微热压增材制造轻质、高强度、低导热碳化硅/石墨复合材料

吴海华 贺俊超 钟磊 叶永盛 黄才华

吴海华, 贺俊超, 钟磊, 等. 微热压增材制造轻质、高强度、低导热碳化硅/石墨复合材料[J]. 复合材料学报, 2022, 39(7): 3542-3553. doi: 10.13801/j.cnki.fhclxb.20210905.002
引用本文: 吴海华, 贺俊超, 钟磊, 等. 微热压增材制造轻质、高强度、低导热碳化硅/石墨复合材料[J]. 复合材料学报, 2022, 39(7): 3542-3553. doi: 10.13801/j.cnki.fhclxb.20210905.002
WU Haihua, HE Junchao, ZHONG Lei, et al. Micro-thermocompression molded light weight, high-strength, low thermal conductivity silicon carbide/graphite composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3542-3553. doi: 10.13801/j.cnki.fhclxb.20210905.002
Citation: WU Haihua, HE Junchao, ZHONG Lei, et al. Micro-thermocompression molded light weight, high-strength, low thermal conductivity silicon carbide/graphite composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3542-3553. doi: 10.13801/j.cnki.fhclxb.20210905.002

微热压增材制造轻质、高强度、低导热碳化硅/石墨复合材料

doi: 10.13801/j.cnki.fhclxb.20210905.002
详细信息
    通讯作者:

    吴海华,博士,教授,博士生导师,研究方向为石墨3D打印技术  E-mail:wuhaihua@ctgu.edu.cn

  • 中图分类号: TB332

Micro-thermocompression molded light weight, high-strength, low thermal conductivity silicon carbide/graphite composites

  • 摘要: 轻质隔热材料已在飞行器动力装置热防护系统中获得广泛应用,但现有的工艺技术难以实现高承载、轻质、隔热等多个技术目标的协同。基于微热压增材制造成形技术原理快速制备了一种轻质、高强度、低导热碳化硅/石墨复合材料。研究了不同成形密度下复合材料的抗压强度和导热系数变化规律,通过改变材料配方组成(包括热固性酚醛树脂粉末、高纯硅粉和可膨胀石墨质量分数)实现了复合材料的抗压强度和导热系数正反向调节,揭示了其内在机制。研究发现当酚醛树脂粉末、高纯硅粉、可膨胀石墨质量分数分别为30wt%、30wt%、2wt%时,所制备的碳化硅/石墨隔热复合材料兼具低密度(<1.2 g/cm3)、高抗压(>15 MPa)和低导热(<1 W/(m·K))性能,该复合材料在航空航天具有良好的应用前景。

     

  • 图  1  各石墨件微热压增材制造成形工艺原理

    Figure  1.  Forming process principle of micro hot pressing of graphite parts

    图  2  酚醛树脂/石墨件成形密度对抗压强度与导热系数的影响:(a)抗压强度;(b)导热系数

    Figure  2.  Effects of forming density of phenolic resin/graphite parts on compressive strength and thermal conductivity: (a) Compressive strength; (b) Thermal conductivity

    图  3  传统热压成形与微热压成形酚醛树脂/石墨件试样

    Figure  3.  Traditional hot pressing and micro hot pressing phenolic resin/graphite parts samples

    图  4  热固性酚醛树脂粉末质量分数对酚醛树脂/石墨件抗压强度、导热系数的影响

    Figure  4.  Effect of mass fraction of thermosetting phenolic resin powder on compressive strength and thermal conductivity of phenolic resin/graphite parts

    图  5  碳化后酚醛树脂/石墨件微观形貌图(热固性酚醛树脂粉末质量分数分别为:(a) 5wt%;(b) 10wt%;(c) 20wt%;(d) 25wt%;(e) 30wt%)

    Figure  5.  Micro morphology of phenolic resin/graphite parts after carbonization (The mass fraction of thermosetting phenolic resin powder: (a) 5wt%; (b) 10wt%; (c) 20wt%; (d) 25wt%; (e) 30wt%)

    图  6  不同的热固性酚醛树脂粉末质量分数对酚醛树脂/石墨件气孔率和开气孔率的影响

    Figure  6.  Effect of different mass fractions of thermosetting phenolic resin powder on porosity and open porosity of phenolic resin/graphite parts

    图  7  高纯硅粉质量分数对高温烧结后硅粉-酚醛树脂/石墨件抗压强度和导热系数的影响

    Figure  7.  Effect of mass fraction of high purity silicon powder on compressive strength and thermal conductivity of silicon powder-phenolic resin/graphite after high temperature sintering

    图  8  高温烧结后硅粉-酚醛树脂/石墨件内部微形貌图(高纯硅粉质量分数:(a) 15wt%;(b) 20wt%;(c) 25wt%;(d) 30wt%;(e) 35wt%)

    Figure  8.  Internal micro morphology of silicon powder-phenolic resin/graphite after high temperature sintering (Mass fraction of high purity silicon powder: (a) 15wt%; (b) 20wt%; (c) 25wt%; (d) 30wt%; (e) 35wt%)

    图  9  不同硅粉含量的硅粉-酚醛树脂/石墨件XRD图谱

    Figure  9.  XRD patterns of samples with different silicon powder contents of silicon powder-phenolic resin/graphite

    图  10  高纯硅粉质量分数对硅粉-酚醛树脂/石墨件气孔率和开气孔率的影响

    Figure  10.  Effect of mass fraction of high purity silicon powder on porosity and open porosity of silicon powder-phenolic resin/graphite parts

    图  11  可膨胀石墨质量分数对可膨胀石墨-硅粉-酚醛树脂/石墨件抗压强度和导热系数的影响

    Figure  11.  Effect of mass fraction of expandable graphite on compressive strength and thermal conductivity of expandable graphite-silica fume-phenolic resin/graphite parts

    图  13  可膨胀石墨质量分数对可膨胀石墨-硅粉-酚醛树脂/石墨件气孔率、开气孔率和成形密度的影响

    Figure  13.  Effect of mass fraction of expandable graphite on porosity, open porosity and forming density of expandable graphite-silica fume-phenolic resin/graphite parts

    图  12  包覆两次后可膨胀石墨微观形貌图:(a)未包覆;(b)包覆两次

    Figure  12.  Micromorphology of expandable graphite powder after twice coating: (a) Uncoated; (b) Twice coated

    图  14  不同可膨胀石墨含量制备的可膨胀石墨-硅粉-酚醛树脂/石墨件内部微形貌图:(a) 0wt%;(b) 0.5wt%;(c) 1.0wt%;(d) 1.5wt%;(e) 2.0wt%

    Figure  14.  Internal micro morphology of expandable graphite-silica fume-phenolic resin/graphite prepared with different expandable graphite contents: (a) 0wt%; (b) 0.5wt%; (c) 1.0wt%; (d) 1.5wt%; (e) 2.0wt%

    图  15  石墨件有效导热系数的计算值与实测值:(a)酚醛树脂/石墨件;(b)硅粉-酚醛树脂/石墨件

    Figure  15.  Calculated and measured values of effective thermal conductivity of graphite parts: (a) Phenolic resin/graphite parts; (b) Silicon powder-phenolic resin/graphite parts

    图  16  比例系数与孔隙率关系的拟合曲线图

    Figure  16.  Fitting curve of the relationship between proportional coefficient and porosity

    表  1  不同热固性酚醛树脂和天然鳞片石墨粉末的质量分数制备的酚醛树脂/石墨件

    Table  1.   Phenolic resin/graphite parts prepared by different mass fractions of thermosetting phenolic resin and natural flake graphite powder

    MaterialsMass fraction/wt%
    Graphite9085807570
    Phenolic resin1015202530
    下载: 导出CSV

    表  2  不同天然鳞片石墨粉末与高纯硅粉的质量分数制备的硅粉-酚醛树脂/石墨件

    Table  2.   Silicon powder-phenolic resin/graphite parts prepared by different mass fractions of natural flake graphite powder and high-purity silicon powder

    MaterialsMass fraction/wt%
    Graphite5550454035
    Phenolic resin3030303030
    Si1520253035
    下载: 导出CSV

    表  3  不同可膨胀石墨粉末的质量分数制备的可膨胀石墨-硅粉-酚醛树脂/石墨件

    Table  3.   Expandable graphite-silica fume-phenolic resin/graphite parts prepared with different mass fractions of expandable graphite powder

    MaterialsMass fraction/wt%
    Graphite39.7539.539.2539.0039.75
    Phenolic resin3030303030
    Si3030303030
    Expandable graphite0.250.500.751.001.25
    下载: 导出CSV

    表  4  与各种轻质隔热材料综合性能对比

    Table  4.   Comprehensive performance comparison with various lightweight thermal insulation materials

    Material compositionForming methodsDensity/
    (g·cm−3)
    Thermal conductivity/
    (W·(m·K)−1)
    Compressive
    strength/MPa
    Ref.
    Expandable graphite, alumina fiber, aluminium silicatePress forming0.100.74[25]
    Hollow balls, Al2O3-SiO2Gel-casting1.090.1315.0[26]
    Carbon fiber,
    graphite fiber
    High temperature
    graphitization treatment
    0.160.142.0[27]
    Graphite felt core,
    graphite paper, carbon fiber
    Chemical vapor deposition0.310.40[28]
    Graphite, phenolic resin, silicon, expandable graphiteMicro-thermal press additive manufacturing1.000.8518.37This work
    下载: 导出CSV
  • [1] 李庆彬, 潘志华. 轻质隔热材料的研究现状及其发展趋势[J]. 硅酸盐通报, 2011, 30(5):1089-1093.

    LI Qingbin, PAN Zhihua. Research status of lightweight thermal insulation materials and its development trend[J]. Silicate Bulletin,2011,30(5):1089-1093(in Chinese).
    [2] LI X X, YAN L W, ZHANG Y B, et al. Lightweight porous silica ceramics with ultra-low thermal conductivity and enhanced compressive strength [J]. Ceramics International, 2022, 48(7):9788-9796.
    [3] 王雪琴, 俞建勇, 丁彬. 纳米纤维隔热材料在航空航天领域的应用进展[J]. 纺织导报, 2018(S1):68-72.

    WANG Xueqin, YU Jianyong, DING Bin. Advances in the application of nanofiber insulation materials in aerospace field[J]. Textile Herald,2018(S1):68-72(in Chinese).
    [4] 任海涛, 贾韬, 刘家臣, 等. 具有三维网络结构的莫来石纤维多孔隔热材料的制备及性能研究[J]. 航空科学技术, 2018, 29(4):73-78.

    REN Haitao, JIA Tao, LIU Jiachen, et al. Preparation and performance study of mullite fiber porous thermal insulation materials with three-dimensional network structure[J]. Aviation Science and Technology,2018,29(4):73-78(in Chinese).
    [5] 郭俊. 新型低密度C/C隔热材料的制备研究[D]. 长沙: 中南大学, 2009.

    GUO Jun. Preparation of new low density C/C insulation materials[D]. Changsha: Central South University, 2009(in Chinese).
    [6] YANG X G, SUN Y T, SHI D Q, et al. Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite[J]. Materials Science and Engineering: A,2011,528(13-14):4830-4836.
    [7] 刘丹丹. 石墨的应用及其发展前景[J]. 黑龙江冶金, 2016, 36(1):56-57.

    LIU Dandan. Application of graphite and its development prospect[J]. Heilongjiang Metallurgy,2016,36(1):56-57(in Chinese).
    [8] 李晓娜, 夏鹏, 朱清. 全球石墨资源开发现状及我国石墨行业发展建议[J]. 现代矿业, 2021, 37(2): 5-9.

    LI Xiaona, XIA Peng, ZHU Qing. Development status of global graphite resources and development suggestions of China's graphite industry [J]. Modern Mining, 2021, 37 (2): 5-9(in Chinese).
    [9] 吴海华. 李腾飞. 肖林楠. 等. 鳞片石墨粉末选择性激光烧结成型工艺研究[J]. 激光与光电子学展, 2016, 53(10):101409. doi: 10.3788/LOP53.101409

    WU Haihua, LI Tengfei, XIAO Linnan, et al. Study on selective laser sintering and forming process of flake graphite powder[J]. Laser and Optoelectronics Show,2016,53(10):101409(in Chinese). doi: 10.3788/LOP53.101409
    [10] 吴海华, 孙瑜, 陈奎, 等. 选择性激光烧结与凝胶注模成型制备高强度低导热系数石墨/陶瓷复合材料[J]. 激光与光电子学进展, 2019, 56(9):182-187.

    WU Haihua, SUN Yu, CHEN Kui, et al. Preparation of high-strength low thermal conductivity graphite/ceramic composites by selective laser sintering and gel injection molding[J]. Advances in Laser and Optoelectronics,2019,56(9):182-187(in Chinese).
    [11] CHEN S W. Fabrication of PEM fuel cell bipolar plate by indirect selective laser sintering[J]. Strength of Materials,2006,20(10):1356-1362.
    [12] 邵珠花. 高参数浸渍剂研制及浸渍工艺的研究[D]. 贵阳: 贵州大学, 2019.

    SHAO Zhuhua. Preparation of high parameter impregnant and Study on its impregnation process [D]. Guiyang: Guizhou University, 2019(in Chinese).
    [13] 刘占军, 郭全贵, 史景利, 等. 高导热炭/陶复合材料的制备及其性能研究[J]. 材料工程, 2007(S1):1-7.

    LIU Zhanjun, GUO Quangui, SHI Jingli, et al. Preparation and properties of high thermal conductivity carbon/ceramic composites[J]. Materials Engineering,2007(S1):1-7(in Chinese).
    [14] GUO N N, LEU M C. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering[J]. International Journal of Hydrogen Energy,2012,37(4):3558-3566. doi: 10.1016/j.ijhydene.2011.11.058
    [15] 韩永军, 李青彬. 燕青芝, 等. 反应烧结制备碳化硅增强石墨复合材料及其性能[J]. 新型炭材料, 2015, 30(1):92-96.

    HAN Yongjun, LI Qingbin, YAN Qingzhi, et al. Properties of silicon carbide-reinforced graphite composites prepared by a reactive sintering method[J]. New Carbon Materials,2015,30(1):92-96(in Chinese).
    [16] 中国国家标准化管理委员会. 炭素材料显气孔率的测定方法: GB/T 24529—2009 [S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Determination method of apparent porosity of carbon materials: GB/T 24529—2009 [S]. Beijing: China Standards Press, 2009(in Chinese).
    [17] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 不透性石墨材料试验方法 第3部分: 抗压强度: GB/T 13465.3—2014 [S]. 北京: 中国标准出版社, 2014.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People’s Republic of China. Test methods for impermeable graphite materials Part 3: Compressive strength: GB/T 13465.3—2014 [S]. Beijing: China Standards Press, 2009(in Chinese).
    [18] 韩永军. 高强石墨基复合材料的低成本制备与性能研究[D]. 北京: 北京科技大学, 2015.

    HAN Yongjun. Low cost preparation and properties of high strength graphite matrix composites [D]. Beijing: Beijing University of Science and Technology, 2015(in Chinese).
    [19] 刘瑞平, 汪长安. 造孔剂添加量对凝胶注模成型工艺制备8YSZ多孔陶瓷性能的影响[J]. 稀有金属材料与工程, 2013, 42(S1):422-425.

    LIU Ruiping, WANG Changan. Effect of pore forming additives on the properties of 8YSZ porous ceramics prepared by gel casting process[J]. Rare Metal Materials and Engineering,2013,42(S1):422-425(in Chinese).
    [20] RICE R W. Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations[J]. Journal of Materials Science,1993,28(8):2187-2190. doi: 10.1007/BF00367582
    [21] 李翠伟, 邓娜娜, 武令豪, 等. 泡沫注凝法制备孔结构可调的氧化锆多孔陶瓷[J]. 硅酸学报, 2019, 47(9):1214-1221.

    LI Cuiwei, DENG Nana, WU Linghao, et al. Zirconia porous ceramics with adjustable pore structure prepared by foam injection method,[J]. Silica Journal,2019,47(9):1214-1221(in Chinese).
    [22] 邓先功, 韦婷婷, 冉松林, 等. 发泡–注凝成型法制备自结合莫来石多孔陶瓷[J]. 硅酸盐学报, 2017, 45(12):1803-1809.

    DENG Xiangong, WEI Tingting, RAN Songlin, et al. Preparation of self bonded mullite porous ceramics by foam injection molding[J]. Acta Silicate Sinica,2017,45(12):1803-1809(in Chinese).
    [23] GONG L L, WANG Y H, CHENG X D, et al. Thermal conductivity of highly porous mullite materials[J]. International Journal of Heat and Mass Transfer,2013,67:253-259.
    [24] 龚伦伦. 基于发泡和固化法的硅酸盐无机外墙保温材料制备与性能研究[D]. 合肥: 中国科学技术大学, 2014.

    GONG lunlun. Preparation and properties of silicate inorganic exterior insulation materials based on foaming and curing method [D]. Hefei: University of Science and Technology of China, 2014(in Chinese).
    [25] 方凯. 氧化铝纤维基可膨胀隔热材料的制备与性能研究[D]. 北京: 中国建筑材料科学研究总院, 2016.

    FANG Kai. Preparation and properties of alumina fiber based expandable thermal insulation materials [D]. Beijing: China Academy of Building Materials Science, 2016(in Chinese).
    [26] 黄春舒. 多孔轻质莫来石陶瓷制备及性能的研究[D]. 天津: 天津大学, 2012.

    HUANG Chunshu. Preparation and properties of porous lightweight mullite ceramics [D]. Tianjin: Tianjin University, 2012(in Chinese).
    [27] FRIEDRICH Wegner, 钱承顺, 王元化. 用炭纤维和石墨纤维制造的高温隔热材料[J]. 炭素技术, 1983(3):11-13.

    FRIEDRICH Wegner, QIAN Chengshun, WANG Yuanhua. High temperature insulation materials made of carbon fiber and graphite fiber[J]. Carbon Technology,1983(3):11-13(in Chinese).
    [28] YANG W, CHEN Z F, YU S J, et al. Preparation and characterization of new-type high-temperature vacuum insulation composites with graphite felt core material[J]. Materials & Design,2016,99:369-377.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  579
  • HTML全文浏览量:  159
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 修回日期:  2021-07-30
  • 录用日期:  2021-08-25
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回