Micro-thermocompression molded light weight, high-strength, low thermal conductivity silicon carbide/graphite composites
-
摘要: 轻质隔热材料已在飞行器动力装置热防护系统中获得广泛应用,但现有的工艺技术难以实现高承载、轻质、隔热等多个技术目标的协同。基于微热压增材制造成形技术原理快速制备了一种轻质、高强度、低导热碳化硅/石墨复合材料。研究了不同成形密度下复合材料的抗压强度和导热系数变化规律,通过改变材料配方组成(包括热固性酚醛树脂粉末、高纯硅粉和可膨胀石墨质量分数)实现了复合材料的抗压强度和导热系数正反向调节,揭示了其内在机制。研究发现当酚醛树脂粉末、高纯硅粉、可膨胀石墨质量分数分别为30wt%、30wt%、2wt%时,所制备的碳化硅/石墨隔热复合材料兼具低密度(<1.2 g/cm3)、高抗压(>15 MPa)和低导热(<1 W/(m·K))性能,该复合材料在航空航天具有良好的应用前景。
-
关键词:
- 碳化硅/石墨隔热材料 /
- 微热压增材制造 /
- 导热系数 /
- 抗压强度 /
- 调控
Abstract: Light weight thermal insulation materials have been widely used in the thermal protection system of aircraft power plant, but the existing technology is difficult to achieve the synergy of many technical goals such as high load, light weight and thermal insulation. In this paper, a kind of lightweight, high strength and low thermal conductivity silicon carbide/graphite composite was rapidly prepared based on the principle of micro-hot pressing additive manufacturing and forming technology. The variation law of compressive strength and thermal conductivity of composite materials under different forming densities was studied. By changing the material formula composition (including thermosetting phenolic resin powder, high purity silicon powder and expandable graphite, etc.), the compressive strength and thermal conductivity of composite materials were adjusted forward and backward, and its internal mechanism was revealed. This research finds that when the mass fraction of phenolic resin powder, high purity silicon powder and expandable graphite is 30wt%, 30wt% and 2wt%, respectively, the silicon carbide/graphite thermal insulation composite has the properties of low density (<1.2 g/cm3), high compressive strength (>15 MPa) and low thermal conductivity (< 1 W/(m·K)), which has a good application prospect in aerospace. -
图 14 不同可膨胀石墨含量制备的可膨胀石墨-硅粉-酚醛树脂/石墨件内部微形貌图:(a) 0wt%;(b) 0.5wt%;(c) 1.0wt%;(d) 1.5wt%;(e) 2.0wt%
Figure 14. Internal micro morphology of expandable graphite-silica fume-phenolic resin/graphite prepared with different expandable graphite contents: (a) 0wt%; (b) 0.5wt%; (c) 1.0wt%; (d) 1.5wt%; (e) 2.0wt%
表 1 不同热固性酚醛树脂和天然鳞片石墨粉末的质量分数制备的酚醛树脂/石墨件
Table 1. Phenolic resin/graphite parts prepared by different mass fractions of thermosetting phenolic resin and natural flake graphite powder
Materials Mass fraction/wt% Graphite 90 85 80 75 70 Phenolic resin 10 15 20 25 30 表 2 不同天然鳞片石墨粉末与高纯硅粉的质量分数制备的硅粉-酚醛树脂/石墨件
Table 2. Silicon powder-phenolic resin/graphite parts prepared by different mass fractions of natural flake graphite powder and high-purity silicon powder
Materials Mass fraction/wt% Graphite 55 50 45 40 35 Phenolic resin 30 30 30 30 30 Si 15 20 25 30 35 表 3 不同可膨胀石墨粉末的质量分数制备的可膨胀石墨-硅粉-酚醛树脂/石墨件
Table 3. Expandable graphite-silica fume-phenolic resin/graphite parts prepared with different mass fractions of expandable graphite powder
Materials Mass fraction/wt% Graphite 39.75 39.5 39.25 39.00 39.75 Phenolic resin 30 30 30 30 30 Si 30 30 30 30 30 Expandable graphite 0.25 0.50 0.75 1.00 1.25 表 4 与各种轻质隔热材料综合性能对比
Table 4. Comprehensive performance comparison with various lightweight thermal insulation materials
Material composition Forming methods Density/
(g·cm−3)Thermal conductivity/
(W·(m·K)−1)Compressive
strength/MPaRef. Expandable graphite, alumina fiber, aluminium silicate Press forming — 0.10 0.74 [25] Hollow balls, Al2O3-SiO2 Gel-casting 1.09 0.13 15.0 [26] Carbon fiber,
graphite fiberHigh temperature
graphitization treatment0.16 0.14 2.0 [27] Graphite felt core,
graphite paper, carbon fiberChemical vapor deposition 0.31 0.40 — [28] Graphite, phenolic resin, silicon, expandable graphite Micro-thermal press additive manufacturing 1.00 0.85 18.37 This work -
[1] 李庆彬, 潘志华. 轻质隔热材料的研究现状及其发展趋势[J]. 硅酸盐通报, 2011, 30(5):1089-1093.LI Qingbin, PAN Zhihua. Research status of lightweight thermal insulation materials and its development trend[J]. Silicate Bulletin,2011,30(5):1089-1093(in Chinese). [2] LI X X, YAN L W, ZHANG Y B, et al. Lightweight porous silica ceramics with ultra-low thermal conductivity and enhanced compressive strength [J]. Ceramics International, 2022, 48(7):9788-9796. [3] 王雪琴, 俞建勇, 丁彬. 纳米纤维隔热材料在航空航天领域的应用进展[J]. 纺织导报, 2018(S1):68-72.WANG Xueqin, YU Jianyong, DING Bin. Advances in the application of nanofiber insulation materials in aerospace field[J]. Textile Herald,2018(S1):68-72(in Chinese). [4] 任海涛, 贾韬, 刘家臣, 等. 具有三维网络结构的莫来石纤维多孔隔热材料的制备及性能研究[J]. 航空科学技术, 2018, 29(4):73-78.REN Haitao, JIA Tao, LIU Jiachen, et al. Preparation and performance study of mullite fiber porous thermal insulation materials with three-dimensional network structure[J]. Aviation Science and Technology,2018,29(4):73-78(in Chinese). [5] 郭俊. 新型低密度C/C隔热材料的制备研究[D]. 长沙: 中南大学, 2009.GUO Jun. Preparation of new low density C/C insulation materials[D]. Changsha: Central South University, 2009(in Chinese). [6] YANG X G, SUN Y T, SHI D Q, et al. Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite[J]. Materials Science and Engineering: A,2011,528(13-14):4830-4836. [7] 刘丹丹. 石墨的应用及其发展前景[J]. 黑龙江冶金, 2016, 36(1):56-57.LIU Dandan. Application of graphite and its development prospect[J]. Heilongjiang Metallurgy,2016,36(1):56-57(in Chinese). [8] 李晓娜, 夏鹏, 朱清. 全球石墨资源开发现状及我国石墨行业发展建议[J]. 现代矿业, 2021, 37(2): 5-9.LI Xiaona, XIA Peng, ZHU Qing. Development status of global graphite resources and development suggestions of China's graphite industry [J]. Modern Mining, 2021, 37 (2): 5-9(in Chinese). [9] 吴海华. 李腾飞. 肖林楠. 等. 鳞片石墨粉末选择性激光烧结成型工艺研究[J]. 激光与光电子学展, 2016, 53(10):101409. doi: 10.3788/LOP53.101409WU Haihua, LI Tengfei, XIAO Linnan, et al. Study on selective laser sintering and forming process of flake graphite powder[J]. Laser and Optoelectronics Show,2016,53(10):101409(in Chinese). doi: 10.3788/LOP53.101409 [10] 吴海华, 孙瑜, 陈奎, 等. 选择性激光烧结与凝胶注模成型制备高强度低导热系数石墨/陶瓷复合材料[J]. 激光与光电子学进展, 2019, 56(9):182-187.WU Haihua, SUN Yu, CHEN Kui, et al. Preparation of high-strength low thermal conductivity graphite/ceramic composites by selective laser sintering and gel injection molding[J]. Advances in Laser and Optoelectronics,2019,56(9):182-187(in Chinese). [11] CHEN S W. Fabrication of PEM fuel cell bipolar plate by indirect selective laser sintering[J]. Strength of Materials,2006,20(10):1356-1362. [12] 邵珠花. 高参数浸渍剂研制及浸渍工艺的研究[D]. 贵阳: 贵州大学, 2019.SHAO Zhuhua. Preparation of high parameter impregnant and Study on its impregnation process [D]. Guiyang: Guizhou University, 2019(in Chinese). [13] 刘占军, 郭全贵, 史景利, 等. 高导热炭/陶复合材料的制备及其性能研究[J]. 材料工程, 2007(S1):1-7.LIU Zhanjun, GUO Quangui, SHI Jingli, et al. Preparation and properties of high thermal conductivity carbon/ceramic composites[J]. Materials Engineering,2007(S1):1-7(in Chinese). [14] GUO N N, LEU M C. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering[J]. International Journal of Hydrogen Energy,2012,37(4):3558-3566. doi: 10.1016/j.ijhydene.2011.11.058 [15] 韩永军, 李青彬. 燕青芝, 等. 反应烧结制备碳化硅增强石墨复合材料及其性能[J]. 新型炭材料, 2015, 30(1):92-96.HAN Yongjun, LI Qingbin, YAN Qingzhi, et al. Properties of silicon carbide-reinforced graphite composites prepared by a reactive sintering method[J]. New Carbon Materials,2015,30(1):92-96(in Chinese). [16] 中国国家标准化管理委员会. 炭素材料显气孔率的测定方法: GB/T 24529—2009 [S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People’s Republic of China. Determination method of apparent porosity of carbon materials: GB/T 24529—2009 [S]. Beijing: China Standards Press, 2009(in Chinese). [17] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 不透性石墨材料试验方法 第3部分: 抗压强度: GB/T 13465.3—2014 [S]. 北京: 中国标准出版社, 2014.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People’s Republic of China. Test methods for impermeable graphite materials Part 3: Compressive strength: GB/T 13465.3—2014 [S]. Beijing: China Standards Press, 2009(in Chinese). [18] 韩永军. 高强石墨基复合材料的低成本制备与性能研究[D]. 北京: 北京科技大学, 2015.HAN Yongjun. Low cost preparation and properties of high strength graphite matrix composites [D]. Beijing: Beijing University of Science and Technology, 2015(in Chinese). [19] 刘瑞平, 汪长安. 造孔剂添加量对凝胶注模成型工艺制备8YSZ多孔陶瓷性能的影响[J]. 稀有金属材料与工程, 2013, 42(S1):422-425.LIU Ruiping, WANG Changan. Effect of pore forming additives on the properties of 8YSZ porous ceramics prepared by gel casting process[J]. Rare Metal Materials and Engineering,2013,42(S1):422-425(in Chinese). [20] RICE R W. Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations[J]. Journal of Materials Science,1993,28(8):2187-2190. doi: 10.1007/BF00367582 [21] 李翠伟, 邓娜娜, 武令豪, 等. 泡沫注凝法制备孔结构可调的氧化锆多孔陶瓷[J]. 硅酸学报, 2019, 47(9):1214-1221.LI Cuiwei, DENG Nana, WU Linghao, et al. Zirconia porous ceramics with adjustable pore structure prepared by foam injection method,[J]. Silica Journal,2019,47(9):1214-1221(in Chinese). [22] 邓先功, 韦婷婷, 冉松林, 等. 发泡–注凝成型法制备自结合莫来石多孔陶瓷[J]. 硅酸盐学报, 2017, 45(12):1803-1809.DENG Xiangong, WEI Tingting, RAN Songlin, et al. Preparation of self bonded mullite porous ceramics by foam injection molding[J]. Acta Silicate Sinica,2017,45(12):1803-1809(in Chinese). [23] GONG L L, WANG Y H, CHENG X D, et al. Thermal conductivity of highly porous mullite materials[J]. International Journal of Heat and Mass Transfer,2013,67:253-259. [24] 龚伦伦. 基于发泡和固化法的硅酸盐无机外墙保温材料制备与性能研究[D]. 合肥: 中国科学技术大学, 2014.GONG lunlun. Preparation and properties of silicate inorganic exterior insulation materials based on foaming and curing method [D]. Hefei: University of Science and Technology of China, 2014(in Chinese). [25] 方凯. 氧化铝纤维基可膨胀隔热材料的制备与性能研究[D]. 北京: 中国建筑材料科学研究总院, 2016.FANG Kai. Preparation and properties of alumina fiber based expandable thermal insulation materials [D]. Beijing: China Academy of Building Materials Science, 2016(in Chinese). [26] 黄春舒. 多孔轻质莫来石陶瓷制备及性能的研究[D]. 天津: 天津大学, 2012.HUANG Chunshu. Preparation and properties of porous lightweight mullite ceramics [D]. Tianjin: Tianjin University, 2012(in Chinese). [27] FRIEDRICH Wegner, 钱承顺, 王元化. 用炭纤维和石墨纤维制造的高温隔热材料[J]. 炭素技术, 1983(3):11-13.FRIEDRICH Wegner, QIAN Chengshun, WANG Yuanhua. High temperature insulation materials made of carbon fiber and graphite fiber[J]. Carbon Technology,1983(3):11-13(in Chinese). [28] YANG W, CHEN Z F, YU S J, et al. Preparation and characterization of new-type high-temperature vacuum insulation composites with graphite felt core material[J]. Materials & Design,2016,99:369-377.