Self-assembly of montmorillonite-cellulose nanocrystal for enhancing mechanical properties of poly(vinyl alcohol) films
-
摘要: 自然生物体由于多级有序的结构、复杂的有机/无机界面相互作用使其具有优异的力学性能,而合成材料仅通过组分和结构的模拟通常无法实现强度、韧性、断裂伸长率的同步提升。基于此,本文通过静电自组装结合溶剂蒸发获得了蒙脱土-纤维素纳米晶/聚乙烯醇(MMT-PCNC/PVA)层状结构复合膜,利用TEM跟踪组装体的形成过程,结合FTIR图谱结果显示复合膜中存在静电、氢键等多重弱相互作用。系统研究了组装体中MMT与聚乙烯亚胺(PEI)修饰的PCNC之间的质量比例对PVA膜力学性能的影响。结果表明,相较纯的PVA膜,不同MMT、PCNC质量比例的组装体对PVA膜的力学性能均有提升作用。其中二者质量比例为1∶1、1∶2时最为明显,1MMT-1PCNC/PVA复合膜的拉伸强度提升了196%;1MMT-2PCNC/PVA复合膜的断裂伸长率、韧性分别提升了175%和900%。这些均得益于复合膜内部的弱相互作用,给应力的传递提供了有效的途径,同时引起裂纹偏转,达到消耗能量的目的,使其在拉伸强度提高的同时韧性也得到提升。Abstract: Natural organisms exhibit excellent mechanical properties due to hierarchical ordered structure and complex organic/inorganic interface interaction. However, the synthetic materials have proven to be difficult to achieve the synchronous improvement of strength, toughness and elongation at break, by merely mimicking their component and structural. Herein, the hybrid films of montmorillonite-cellulose nanocrystal/poly(vinyl alcohol) (MMT-PCNC/PVA) were prepared by electrostatic self-assembly and solvent evaporation. TEM was used to track the formation process. The results of FTIR spectra show that there are multiple weak interactions such as electrostatic and hydrogen bonds in the composite films. The effect of the proportion of MMT and polyethyleneimine (PEI) modified PCNC on the mechanical properties of the composite films was studied. As a result, it is most obvious when the mass ratio is 1∶1 and 1∶2 of MMT and PCNC can drastically enhance the tensile strength (196% for 1MMT-1PCNC/PVA), elongation at break (175% for 1MMT-2PCNC/PVA), and toughness (900% for 1MMT-2PCNC/PVA), which are superior to the pure PVA film. The multiple types of interactions between nanoscale building blocks improve the efficiency of load transfer and cause crack deflection, which result in a highly energy consumption and excellent mechanical properties (such as strength, toughness).
-
图 8 1MMT-2PCNC/PVA复合膜断裂形态的SEM图像和断裂示意图:(a) 断裂过程中裂纹扩展的SEM图像(白色折线表示裂纹偏转);(b) 断裂模型示意图
Figure 8. SEM image of fracture morphologies of 1MMT-2PCNC/PVA hybrid films and the proposed fracture model: (a) SEM image of crack propagation occurred during fracture (White line indicate crack propagation); (b) Schematic illustration of the fracture model
表 1 蒙脱土-纤维素纳米晶(MMT-PCNC)组装体的组成
Table 1. Compositions of the montmorillonite-cellulose nanocrystal (MMT-PCNC) assemblies
Sample 1MMT-1PCNC 1MMT-2PCNC 1MMT-4PCNC Composition Mass fraction Mass ratio Mass ratio Mass ratio MMT 0.2% 1 1 1 PCNC 1.0% 1 2 4 表 2 MMT-PCNC/PVA复合膜的力学性能
Table 2. Mechanical properties of the MMT-PCNC/PVA hybrid films
Hybrid films of filler/PVA Elongation-at-break
/%Tensile strength
/MPaYoung’s modulus
/MPaToughness
/(MJ·m−3)PVA 28±3 26±3 101±13 3±1 1MMT-1PCNC/PVA 50±4 77±7 97±6 27±6 1MMT-2PCNC/PVA 77±4 63±8 100±3 30±9 1MMT-4PCNC/PVA 42±2 54±9 92±7 13±2 -
[1] ZHANG G, YU L, HOSTER H E, et al. Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance[J]. Nanoscale,2013,5(3):877-881. doi: 10.1039/C2NR33326K [2] 张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5):1358-1370.ZHANG Menghui, MA Zhonglei, MA Jianzhong, et. al. Research progress of structure design and performance of polymer-based electromagnetic shielding composite materials[J]. Acta Materiae Compositae Sinica,2021,38(5):1358-1370(in Chinese). [3] SAJI V S, CHOE H C, BRANTLEY W A. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti–35Nb–5Ta–7Zr alloy for biomedical applications[J]. Acta Biomaterialia,2009,5(6):2303-2310. doi: 10.1016/j.actbio.2009.02.017 [4] WEINTRAUB B, ZHOU Z, LI Y, et al. Solution synthesis of one-dimensional ZnO nanomaterials and their applications[J]. Nanoscale,2010,2(9):1573-1587. doi: 10.1039/c0nr00047g [5] ZENG M G, XIAO Y, LIU J X, et al. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control[J]. Chemical Reviews,2018,118(13):6236-6296. doi: 10.1021/acs.chemrev.7b00633 [6] WU B, GUO Y, HOU C Y, et al. High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat[J]. Advanced Functional Materials,2019,29(25):1900304.1-1900304.11. [7] RITCHIE R O. The conflicts between strength and toughness[J]. Nature Materials,2011,10(11):817-822. doi: 10.1038/nmat3115 [8] HING K A. Bone repair in the twenty–first century: Biology, chemistry or engineering?[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physi-cal and Engineering Sciences,2004,362(1825):2821-2850. doi: 10.1098/rsta.2004.1466 [9] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials,2015,14(1):23-36. doi: 10.1038/nmat4089 [10] LI S, TUO P, XIE J F, et al. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution[J]. Nano Energy,2018,47:512-518. doi: 10.1016/j.nanoen.2018.03.022 [11] CHEN S M, GAO H L, SUNX H, et al. Superior biomimetic nacreous bulk nanocomposites by a multiscale soft-rigid dual-network interfacial design strategy[J]. Matter,2019,1(2):1-16. [12] YAO H B, TAN Z H, FANG H Y, et al. Artificial nacre-like bio-nanocomposite films from the self-assembly of chitosan–montmorillonite hybrid building blocks[J]. Angew-andte Chemie International Edition,2011,122(52):10325-10329. [13] WU Q, YANG X, WAN Q, et al. Layer-by-layer assembled nacre-like polyether amine/GO hierarchical structure on carbon fiber surface toward composites with excellent interfacial strength and toughness[J]. Composites Science and Technology,2020,198:108296. doi: 10.1016/j.compscitech.2020.108296 [14] SHIN M K, LEE B, KIM S H, et al. Synergistic toughening of composite fibres by self alignment of reduced graphene oxide and carbon nanotubes[J]. Nature Communications,2012,3:650. doi: 10.1038/ncomms1661 [15] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997 [16] YOO S C, PARK Y K, Park C, et al. Biomimetic artificial nacre: Boron nitride nanosheets/ gelatin nanocomposites for biomedical applications[J]. Advanced Functional Materials,2018,28(51):1805948. doi: 10.1002/adfm.201805948 [17] WOO Y J, OH J H, JO S H, et al. Nacre-Mimetic graphene oxide/cross-linking agent composite films with superior mechanical properties[J]. ACS nano,2019,13(4):4522-4529. doi: 10.1021/acsnano.9b00158 [18] ZHU W K, CONG H P, YAO H B, et al. Bioinspired, ultrastrong, highly biocompatible, and bioactive natural polymer/graphene oxide nanocomposite films[J]. Small,2015,11(34):4298-4302. doi: 10.1002/smll.201500486 [19] CHEN K, ZHANG S, LI A, et al. A bioinspired interfacial chelating-like reinforcement strategy toward mechani-cally enhanced lamellar materials[J]. ACS Nano,2018,12(5):4269-4279. doi: 10.1021/acsnano.7b08671 [20] MING P, SONG Z F, GONG S S, et al. Nacre-inspired inte-grated nanocomposites with fire retardant properties by graphene oxide and montmorillonite[J]. Journal of Mate-rials Chemistry A,2015,3(42):21194-21200. doi: 10.1039/C5TA05742F [21] CHU G, WANG X, YIN H, et al. Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles[J]. ACS Applied Materials & Interfaces,2015,7(39):21797-21806. [22] XU S, LI J, YE Q, et al. Flame-retardant ethylene vinyl ace-tate composite materials by combining additions of alumi-num hydroxide and melamine cyanurate: Preparation and characteristic evaluations[J]. Journal of Colloid and Interface Science,2021,589:525-531. doi: 10.1016/j.jcis.2021.01.026 [23] HUANG Z, LIU J, LIU Y, et al. Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process[J]. Journal of Membrane Science,2021,623:119080. doi: 10.1016/j.memsci.2021.119080 [24] WU M, CHEN Y, LIN H, et al. Membrane fouling caused by biological foams in a submerged membrane bioreactor: Mechanism insights[J]. Water Research,2020,181:115932. [25] 司联蒙, 陆赵情, 赵永生, 等. 基于真空辅助层层自组装的透明柔性纳米芳纶薄膜的制备[J]. 复合材料学报, 2019, 36(08):1847-1853.SI Lianmeng, LU Zhaoqing, ZHAO Yongsheng, et al. preparation of transparent and flexible nano-aramid film based on vacuum-assisted layer-by-layer self-assembly[J]. Acta Materiae Compositae Sinica,2019,36(08):1847-1853(in Chinese). [26] ZENG H, WU J, PEI H, et al. Highly thermally conductive yet mechanically robust composites with nacre-mimetic structure prepared by evaporation-induced self-assembly approach[J]. Chemical Engineering Journal,2021,405(3):126865. [27] ZHU B, WANG Y, LIU H, et al. Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping[J]. Composites Science and Technology,2020,190:108048. doi: 10.1016/j.compscitech.2020.108048 [28] XU D, WANG S, BERGLUND L A, et al. Surface charges control the structure and properties of layered nanocomposite of cellulose nanofibrils and clay platelets[J]. ACS Applied Materials & Interfaces,2021,13(3):4463-4472. [29] CHEN L, QIANG T, CHEN X, et al. Fabrication and evaluation of biodegradable multi-cross-linked mulch film based on waste gelatin[J]. Chemical Engineering Journal,2021,419(11):129639. [30] DONG L, XU C, LI Y, et al. Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage[J]. Advanced Materials,2016,28(8):1675-1681. doi: 10.1002/adma.201504747 [31] SUKHISHVILI S A, GRANICK S. Layered, eras able polymer multilayers formed by hydrogen-bonded sequential self-assembly[J]. Macromolecules,2002,35(1):301-310. doi: 10.1021/ma011346c [32] YUZ R, MAO M, LI S N, et al. Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbion interconnected networks for fire safety and prevention[J]. Chemical Engineering Journal,2020,405(6454):126620. [33] 曾春芽, 单慧媚, 赵超然, 等. 纳米铁-氧化石墨烯/壳聚糖复合材料的制备及其力学性能[J]. 复合材料学报, 2022, 39(4):1739-1747.ZENG Chunya, SHAN Huimei, ZHAO Chaoran, et al. Preparation and mechanical properties of nano-iron-graphene oxide/chitosan composites[J]. Acta Materiae Compositae Sinica,2022,39(4):1739-1747(in Chinese). [34] COSTA V C, COSTA H S, VASCONCELOS W L, et al. Prepa-ration of hybrid biomaterials for bone tissue engineering[J]. Materials Research,2007,10(1):21-26. doi: 10.1590/S1516-14392007000100006 [35] HABIBA U, SIDDIQUE T A, TALEBIAN S, et al. Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions[J]. Carbohydrate Polymers,2017,177:32-39. doi: 10.1016/j.carbpol.2017.08.115 [36] JIA Y T, GONG J, GU X H, et al. Fabrication and characteri-zation of poly(vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method[J]. Carbohydrate Polymers,2007,67(3):403-409. doi: 10.1016/j.carbpol.2006.06.010 [37] KHANNA P K, SINGH N, CHARAN S, et al. Syn thesis and characterization of Ag/PVA nanocomposite by chemical reduction method[J]. Materials Chemistry and Physics,2005,93(1):117-121. doi: 10.1016/j.matchemphys.2005.02.029 [38] BAI L, BOSSA N, QU F, et al. Comparison of hydrophilicity and mechanical properties of nanocomposite membranes with cellulose nanocrystals and carbon nanotubes[J]. Environmental Science & Technology,2017,51(1):253-262. [39] YAN Y X, YAO H B, YU S H. Nacre-like ternary hybrid films with enhanced mechanical properties by interlocked nano-fiber design[J]. Advanced Materials Interfaces,2016,3(17):1600296. doi: 10.1002/admi.201600296 [40] WANG J, JIN X, WU H, et al. Polyimide reinforced with hybrid graphene oxide@carbon nanotube: Toward high strength, toughness, electrical conductivity[J]. Carbon,2017,123:502-513. doi: 10.1016/j.carbon.2017.07.055 [41] HOU H, GE J J, ZENG J, et al. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes[J]. Chemistry of Materials,2005,17(5):967-973. doi: 10.1021/cm0484955