留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化硼和氧化锌晶须共掺杂环氧树脂复合材料的导热与绝缘性能

吴加雪 唐超 张天栋 迟庆国

吴加雪, 唐超, 张天栋, 等. 氮化硼和氧化锌晶须共掺杂环氧树脂复合材料的导热与绝缘性能[J]. 复合材料学报, 2022, 39(5): 2183-2191. doi: 10.13801/j.cnki.fhclxb.20210903.003
引用本文: 吴加雪, 唐超, 张天栋, 等. 氮化硼和氧化锌晶须共掺杂环氧树脂复合材料的导热与绝缘性能[J]. 复合材料学报, 2022, 39(5): 2183-2191. doi: 10.13801/j.cnki.fhclxb.20210903.003
WU Jiaxue, TANG Chao, ZHANG Tiandong, et al. Thermal conductivity and electrical insulating properties of epoxy composites mixed with boron nitride and zinc oxide whisker[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2183-2191. doi: 10.13801/j.cnki.fhclxb.20210903.003
Citation: WU Jiaxue, TANG Chao, ZHANG Tiandong, et al. Thermal conductivity and electrical insulating properties of epoxy composites mixed with boron nitride and zinc oxide whisker[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2183-2191. doi: 10.13801/j.cnki.fhclxb.20210903.003

氮化硼和氧化锌晶须共掺杂环氧树脂复合材料的导热与绝缘性能

doi: 10.13801/j.cnki.fhclxb.20210903.003
基金项目: 黑龙江省自然科学基金(TD2019E002);国家自然科学基金区域创新发展联合基金(U20A20308)
详细信息
    通讯作者:

    张天栋,博士,副教授,博士生导师,研究方向为聚合物电容薄膜改性研究、橡胶基复合绝缘材料研发、电子封装绝缘材料研发 E-mail: tdzhang@hrbust.edu.cn

  • 中图分类号: TM215.92

Thermal conductivity and electrical insulating properties of epoxy composites mixed with boron nitride and zinc oxide whisker

  • 摘要: 双酚A环氧树脂(EP)因其具有优异电绝缘性能而被广泛应用于电子器件中,但EP的热导率较低,通过填充高导热无机填料而构建导热通路是当前提高聚合物复合材料热导率的有效策略。本文综合利用溶液共混与热压工艺制备得到了六方氮化硼(h-BN)-四针状氧化锌晶须(T-ZnOw)/EP复合材料,并对复合材料的微观形貌与物相结构、导热性能及绝缘性能进行了系统表征与分析。结果表明,复合填充h-BN-T-ZnOw/EP复合材料兼具良好的导热性和绝缘性,当h-BN-T-ZnOw的填充含量为30wt%/5wt%时,25℃下热导率为0.55 W/(m·K),相比于纯EP提升了2.9倍,同时复合材料体积电阻率大于1015 Ω·m,表现出良好的绝缘性。

     

  • 图  1  环氧树脂(EP)基复合材料的制备流程图

    Figure  1.  Preparation process of epoxy resin (EP)-based composites

    h-BN—Hexagonal boron nitride; T-ZnOw—Four needle zinc oxide whisker

    图  2  六方氮化硼(h-BN)和四针状氧化锌晶须(T-ZnOw)无机填料的微观结构表征

    Figure  2.  Microstructural aspects of with hexagonal boron nitride (h-BN) and four needle zinc oxide whisker (T-ZnOw) inorganic fillers (((a), (b)) SEM images of h-BN; (c) TEM image of h-BN; (d) SEM image of T-ZnOw)

    图  3  h-BN/EP和h-BN-T-ZnOw/EP复合材料断面形貌结构SEM图像

    Figure  3.  SEM images of the section appearance with h-BN/EP and h-BN-T-ZnOw/EP composites ((a) EP; (b) 10wt%h-BN; (c) 20wt%h-BN; (d) 30wt%h-BN; (e) 10wt%h-BN-5wt%T-ZnOw; ((f), (g)) 20wt%h-BN-5wt%T-ZnOw; ((h), (i)) 30wt%h-BN-5wt%T-ZnOw)

    图  4  30wt%h-BN-5wt%T-ZnOw/EP断面元素分布图

    Figure  4.  Element map of the section with 30wt%h-BN-5wt%T-ZnOw/EP ((a) SEM image of 30wt%h-BN-5wt%T-ZnOw/EP; ((b)-(e)) Distribution of B, N, O, Zn, respectively)

    图  5  h-BN/EP和h-BN-T-ZnOw/EP复合材料的XRD图谱

    Figure  5.  XRD patterns of h-BN/EP and h-BN-T-ZnOw/EP composite

    图  6  h-BN/EP和h-BN-T-ZnOw/EP复合材料的导热系数

    Figure  6.  Thermal conductivity of h-BN/EP and h-BN-T-ZnOw/EP composite

    图  7  h-BN/EP和h-BN-T-ZnOw/EP复合材料的介电特性

    Figure  7.  Dielectric property of h-BN/EP and h-BN-T-ZnOw/EP composite

    图  8  h-BN/EP和h-BN-T-ZnOw/EP复合材料在不同温度下的体积电阻率

    Figure  8.  Volume resistivity of h-BN/EP and h-BN-T-ZnOw/EP composite at variable temperature

    图  9  h-BN/EP与h-BN-T-ZnOw/EP复合材料在不同电场强度下的累计击穿概率

    Figure  9.  Cumulative breakdown probability at different electric strength of h-BN/EP and h-BN-T-ZnOw/EP composite

    α—Scale parameter, breakdown field strength when the breakdown probability is 63.2%; β—Shape parameter, breakdown data dispersion

    图  10  h-BN/EP与h-BN-T-ZnOw/EP复合材料的击穿场强

    Figure  10.  Breakdown strength of h-BN/EP and h-BN-T-ZnOw/EP composite

    图  11  h-BN/EP与h-BN-T-ZnOw/EP复合材料的拉伸强度

    Figure  11.  Tensile strength of h-BN/EP and h-BN-T-ZnOw/EP composite

  • [1] CUI Y, LI M, HU Y J, et al. Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities[J]. Journal of Materials Chemistry C,2020,8(31):10568-10586. doi: 10.1039/C9TC05415D
    [2] MOSANENZADEH S G, NAGUIB H E. Effect of filler arrangement and networking of hexagonal boron nitride on the conductivity of new thermal management polymeric composites[J]. Composites, Part B: Engineering,2016,85:24-30. doi: 10.1016/j.compositesb.2015.09.021
    [3] LANCASTER A, KESWANI M. Integrated circuit packaging review with an emphasis on 3D packaging[J]. Integration the VLSI Journal,2017,60:204-212.
    [4] CHEN C, XUE Y, LI X W, et al. High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging[J]. Composites Part A: Applied Science and Manufacturing,2019,118:67-74. doi: 10.1016/j.compositesa.2018.12.019
    [5] 曾正, 李晓玲, 林超彪, 等. 功率模块封装的电-热-力多目标优化设计[J]. 中国电机工程学报, 2019, 39(17):5161-5171, 5297.

    ZENG Zheng, LI Xiaolin, LIN Chaobiao, et al. Electric-thermal-stress oriented multi-objective optimal design of power module package[J]. Proceedings of the CSEE,2019,39(17):5161-5171, 5297(in Chinese).
    [6] 盛况, 董泽政, 吴新科. 碳化硅功率器件封装关键技术综述及展望[J]. 中国电机工程学报, 2019, 39(19):5576-5584, 5885.

    SHENG Kuang, DONG Zezheng, WU Xinke. Review and prospect of key packaging technologies for silicon carbide power devices[J]. Proceedings of the CSEE,2019,39(19):5576-5584, 5885(in Chinese).
    [7] XUE Y, LI X F, WANG H S, et al. Thermal conductivity improvement in electrically insulating silicone rubber composites by the construction of hybrid three-dimensional filler networks with boron nitride and carbon nanotubes[J]. Journal of Applied Polymer Science,2019,136(2):46929. doi: 10.1002/app.46929
    [8] 胡延鹏, 袁双龙, 方斌, 等. 纳米铜/环氧树脂导热复合材料的制备、结构与性能[J]. 北京化工大学学报(自然科学版), 2019, 46(6):28-35.

    HU Yanpeng, YUAN Shuanglong, FANG Bin, et al. Preparation, structure and properties of nano-copper/epoxy thermal conductive composites[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition),2019,46(6):28-35(in Chinese).
    [9] 周二振, 应济. 碳纳米管阵列/环氧树脂的导热导电性能[J]. 浙江大学学报(工学版), 2016, 50(9):1671-1676.

    ZHOU Erzhen, YING Ji. Thermal and electrical conducti-vity of carbon nanotube arrays/epoxy[J]. Journal of Zhe-jiang University (Engineering Science),2016,50(9):1671-1676(in Chinese).
    [10] HUSSEIN S I, ABD-ELNAIEM A M, ASAFA T B, et al. Effect of incorporation of conductive fillers on mechanical pro-perties and thermal conductivity of epoxy resin compo-site[J]. Applied Physics A: Materials Science & Processing,2018,124(7):475.
    [11] HU J, HUANG Y, YAO Y, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN[J]. ACS Applied Materials & Interfaces,2017,9(15):13544-13553.
    [12] 祁蓉, 王劲, 张立, 等. 碳纳米管-纳米ZnO改性环氧复合材料的制备与性能[J]. 材料导报, 2016, 30(S1):82-86.

    QI Rong, WANG Jin, ZHANG Li, et al. Preparation and properties of carbon nanotube-nano ZnO modified epoxy composites[J]. Materials Reports,2016,30(S1):82-86(in Chinese).
    [13] CHEN Y P, HOU X, LIAO M Z, et al. Constructing a "pea-pod-like" alumina-graphene binary architecture forenhancing thermal conductivity of epoxy composite[J]. Chemi-cal Engineering Journal,2020,381:122690. doi: 10.1016/j.cej.2019.122690
    [14] 张有茶, 贾成厂, 贾鹏, 等. 六方氮化硼填充导热树脂复合材料的研究进展[J]. 粉末冶金技术, 2017, 35(1):68-72, 78. doi: 10.3969/j.issn.1001-3784.2017.01.011

    ZHANG Youcha, JIA Chengchang, JIA Pen, et al. Development of the heat conducted resin composites filled with hexagonal boron nitride[J]. Powder Metallurgy Technology,2017,35(1):68-72, 78(in Chinese). doi: 10.3969/j.issn.1001-3784.2017.01.011
    [15] 贺树华, 周建萍, 傅万里. 四角状氧化锌晶须/聚丙烯复合材料的导电性能研究[J]. 精细与专用化学品, 2007, 11:29-32. doi: 10.3969/j.issn.1008-1100.2007.17.008

    HE Shuhua, ZHOU Jianpin, FU Wanli. Study on electroconductivity of tetragonal zinc oxide whisker (T-ZnOW)/polypropylene composite[J]. Fine and Specialty Chemicals,2007,11:29-32(in Chinese). doi: 10.3969/j.issn.1008-1100.2007.17.008
    [16] ZHAI L, LIU Z X, LI C, et al. Cyanate ester resin based composites with high toughness and thermal conductivity[J]. RSC Advances,2019,9(10):5722-5730. doi: 10.1039/C8RA10244A
    [17] YUAN C, DUAN B, LI L, et al. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets[J]. ACS Applied Materials & Interfaces,2015,7(23):13000-13006.
    [18] SHUAI C J, DENG J J, GAO C D, et al. Mechanisms of tetraneedle like ZnO whiskers reinforced forsterite/bioglass scaffolds[J]. Journal of Alloys and Compounds,2015,636:341-347. doi: 10.1016/j.jallcom.2015.02.077
    [19] LI C B, LIU B, GAO Z D F, et al. Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties[J]. Journal of Applied Polymer Science,2018,135(27):46454. doi: 10.1002/app.46454
    [20] HYO T K. High thermal conductivity ceramics and their composites for thermal management of integrated electronic packaging[J]. Thermal Engineering,2018,16:75798.
    [21] FANG L J, WU C, QIAN R, et al. Nano-micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength[J]. RSC Advances,2014,4(40):21010-21017. doi: 10.1039/C4RA01194E
    [22] MA J B, ZHOU X F, DING S Y, et al. Solvent evaporation induced self-assembly of graphene foam for thermally conductive polymers[J]. RSC Advances,2017,7(25):15469-15474. doi: 10.1039/C7RA01670K
    [23] LIU C, WU W, DRUMMER D, et al. ZnO nanowire-deco-rated Al2O3 hybrids for improving the thermal conducti-vity of polymer composites[J]. Journal of Materials Che-mistry C,2020,8(16):5380-5388. doi: 10.1039/C9TC06805H
    [24] KOHL P A. Low-dielectric constant insulators for future integrated circuits and packages[J]. Annual Review of Che-mical and Biomolecular Engineering,2011,2:379-401. doi: 10.1146/annurev-chembioeng-061010-114137
    [25] 张明艳, 王登辉, 吴子剑, 等. 改性碳纳米管/环氧树脂复合材料的介电性能[J]. 复合材料学报, 2020, 37(6):1285-1294.

    ZHANG Mingyan, WANG Denghui, WU Zijian, et al. Dielectric properties of modified carbon nanotube/epoxy composites[J]. Acta Materiae Compositae Sinica,2020,37(6):1285-1294(in Chinese).
    [26] 周宏, 张玉霞, 范勇, 等. 片状纳米Al2O3/环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2014, 31(5):1142-1147.

    ZHOU Hong, ZHANG Yuxia, FAN Yong, et al. Preparation and properties of Al2O3 nanosheets/epoxy composites[J]. Acta Materiae Compositae Sinica,2014,31(5):1142-1147(in Chinese).
    [27] LIU Y P, LI L Y, SHI J C, et al. High dielectric constant composites controlled by a strontium titanate barrier layer on carbon nanotubes towards embedded passive devices[J]. Chemical Engineering Journal,2019,373:642-650. doi: 10.1016/j.cej.2019.05.087
    [28] WANG Z L, ZHANG X R, WENG L, et al. Low dielectric constant and high toughness epoxy resin based on hyperbranched polyester grafted by flexible chain modified[J]. Journal of Materials Science,2019,30(6):5936-5946.
    [29] XU X W, HU R C, CHEN M Y, et al. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach[J]. Chemical Engineering Journal,2020,397:125447. doi: 10.1016/j.cej.2020.125447
    [30] 王军, 胡晓丹, 吴新健, 等. 导热绝缘有机硅复合材料的制备与性能[J]. 高分子材料科学与工程, 2018, 34(10):140-145.

    WANG Jun, HU Xiaodan, WU Xinjian, et al. Preparation and property of thermally conductive and electrically insulating organic silicon composites[J]. Polymer Materials Science & Engineering,2018,34(10):140-145(in Chinese).
    [31] 许杰, 高峰. 锌硼硅-氧化铝微晶玻璃的制备及性能[J]. 硅酸盐学报, 2009, 37(3):409-413. doi: 10.3321/j.issn:0454-5648.2009.03.015

    XU Jie, GAO Feng. Preparation and properties of ZBS-Al2O3 glass-ceramics[J]. Journal of the Chinese Ceramic Society,2009,37(3):409-413(in Chinese). doi: 10.3321/j.issn:0454-5648.2009.03.015
    [32] WANG C, SUN Q, ZHAO L, et al. Mechanical and dielectric strength of laminated epoxy dielectric graded materials[J]. Polymers,2020,12(3):622. doi: 10.3390/polym12030622
    [33] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16):25-36.

    WANG Weiwang, LI Shengtao, LIU Wenfeng. Dielectric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society,2017,32(16):25-36(in Chinese).
    [34] 王旗, 李喆, 尹毅. 微、纳米无机颗粒/环氧树脂复合材料击穿强度性能[J]. 电工技术学报, 2014, 29(12):230-235. doi: 10.3969/j.issn.1000-6753.2014.12.030

    WANG Qi, LI Zhe, YIN Yi. The effect of micro and nano inorganic filler on the breakdown strength of epoxy resin[J]. Transactions of China Electrotechnical Society,2014,29(12):230-235(in Chinese). doi: 10.3969/j.issn.1000-6753.2014.12.030
    [35] LIU W Q, MA S Q, WANG Z F. Morphologies and mechani-cal and thermal properties of highly epoxidized polysiloxane toughened epoxy resin composites[J]. Macromolecular Research,2010,18(9):853-861. doi: 10.1007/s13233-010-0912-3
  • 加载中
图(11)
计量
  • 文章访问数:  1386
  • HTML全文浏览量:  567
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-08-05
  • 录用日期:  2021-08-18
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回