留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多道次热辊轧制Al/Mg层状复合板材结合面特性

梅瑞斌 史现利 包立 李长生 刘相华

梅瑞斌, 史现利, 包立, 等. 多道次热辊轧制Al/Mg层状复合板材结合面特性[J]. 复合材料学报, 2022, 39(7): 3485-3497. doi: 10.13801/j.cnki.fhclxb.20210902.006
引用本文: 梅瑞斌, 史现利, 包立, 等. 多道次热辊轧制Al/Mg层状复合板材结合面特性[J]. 复合材料学报, 2022, 39(7): 3485-3497. doi: 10.13801/j.cnki.fhclxb.20210902.006
MEI Ruibin, SHI XianLi, BAO Li, et al. Interface characteristics study of Al/Mg laminated composite sheets by multi-passes RHR[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3485-3497. doi: 10.13801/j.cnki.fhclxb.20210902.006
Citation: MEI Ruibin, SHI XianLi, BAO Li, et al. Interface characteristics study of Al/Mg laminated composite sheets by multi-passes RHR[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3485-3497. doi: 10.13801/j.cnki.fhclxb.20210902.006

多道次热辊轧制Al/Mg层状复合板材结合面特性

doi: 10.13801/j.cnki.fhclxb.20210902.006
基金项目: 河北省自然科学基金钢铁联合基金项目(E2018501016)
详细信息
    通讯作者:

    梅瑞斌,博士,副教授,硕士生导师,研究方向为镁基复合材料轧制工艺及组织性能预测 E-mail:meiruibin@neuq.edu.cn

  • 中图分类号: TG146.2;TG113.25

Interface characteristics study of Al/Mg laminated composite sheets by multi-passes RHR

  • 摘要: 为研究热辊轧制对层状复合材料组织性能的影响,本文采用多道次热辊轧制工艺制备了Al/AZ31B/Al多层复合板材,通过OM、XRD、SEM及设计模具测试,分析了不同压下率、退火温度对复合板材界面微观形貌和结合性能的影响规律。结果表明:热辊轧制兼具变形和促进扩散层的形成双重作用,大压下率复合板材结合界面形成不连续的扩散层。随着压下率增加,结合面由平直逐渐呈显著的“波浪”型,相近的剪切坡度成对出现且角度相近,过大压下率导致异质材料变形过程难以协调,镁层厚度方向减薄明显的部分区域出现裂纹。退火后Al/Mg结合界面形成了更有效的冶金结合,随着退火温度的升高,扩散层厚度不断增加且有分层现象,金属间化合物为Al3Mg2(β相)和Mg17Al12(γ相)。剥离形貌为准解理断裂,退火温度过高时,板条状的金属间化合物变得更加粗大,两金属板材会从金属间化合物层开裂。在压下率为60%~70%,退火温度为200~250℃时有利于热辊轧制复合板材的结合强度提升。

     

  • 图  1  Al/Mg/Al层状复合板轧制示意图

    Figure  1.  Schematic diagram of rolling Al/Mg/Al laminated composite plate

    图  2  剪切试样及模具示意图

    Figure  2.  Schematic diagram of shear sample and die

    RD—Rolling direction; ND—Normal direction

    图  3  不同压下率Al/Mg/Al复合板材结合界面光学显微组织

    Figure  3.  Optical microstructure of the bonding interface of Al/Mg/Al laminated sheets with different reduction

    图  4  不同退火温度下Al/Mg/Al复合板材Mg层光学显微组织

    Figure  4.  Optical microstructure of Mg layer in Al/Mg/Al laminated composite at different annealing temperatures

    图  5  不同压下率下Al/Mg/Al复合板材结合界面SEM图像

    Figure  5.  SEM images of the bonding interface of Al/Mg/Al laminated composites at different reduction

    图  6  不同退火温度Al/Mg/Al复合板材结合界面的SEM图像

    Figure  6.  SEM images of the bonding interface of Al/Mg/Al laminated composites at different annealing temperatures

    图  7  不同退火温度的Al/Mg结合界面EDS图谱

    Figure  7.  EDS spectra of the Al/Mg bonding interface at different annealing temperature

    l1 and l3—Boundary between the two metal compounds; l2—Boundary between Al matrix and intermetallic compound; l4—Boundary between Mg matrix and intermetallic compound

    图  8  Al/Mg/Al复合板材Al/Mg结合界面XRD结果

    Figure  8.  XRD phase analysis of Al/Mg bonding interface of Al/Mg/Al composite plate

    图  9  Al/Mg/Al复合板材的Al/Mg结合界面EDS图像

    Figure  9.  EDS images of Al/Mg bonding interface of Al/Mg/Al laminated composite

    图  10  300℃退火后镁层基体剥离面SEM图像及EDS图谱

    Figure  10.  SEM images and EDS spectra of magnesium layer matrix peeling surface after annealing at 300℃

    TD—Transverse direction

    图  11  不同退火温度下Al/Mg/Al复合板材结合界面经剥离后的镁层SEM图像

    Figure  11.  SEM images of Mg layer after peeling off the bonding interface of Al/Mg/Al laminated composite at different annealing temperatures

    图  12  不同压下率、退火温度的Al/Mg结合界面剪切强度变化曲线

    Figure  12.  Change curve of shear strength of Al/Mg bonding interface at different reduction and annealing temperatures

  • [1] AGARWAL S, CURTIN J, DUFFY B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications[J]. Materials Science& Engineering C,2016,68:948-963. doi: 10.1016/j.msec.2016.06.020
    [2] ZHANG Q, LI Q A, CHEN X Y. Research progress of ultrafine grained magnesium alloy prepared by equal channel angular pressing[J]. Materials Research Express,2021,8(2):022001.
    [3] 常海, 徐超, 胡小石. 累积叠轧纯Mg/ZK60镁合金层状金属复合材料的组织与性能[J]. 复合材料学报, 2019, 36(1):178-185.

    CHANG Hai, XU Chao, HU Xiaoshi. Microstructure evolution and mechanical properties of Mg/ZK60 laminated composite fabricated by accumulated roll-bonding[J]. Acta Materiae Compositae Sinica,2019,36(1):178-185(in Chinese).
    [4] 陈振华. 镁合金[M]. 北京: 化学工业出版社, 2004.

    CHEN Zhenhua. Magnesium alloys[M]. Beijing: Chemical Industry Press, 2004(in Chinese).
    [5] 祖国胤. 层状金属复合材料制备理论与技术[M]. 沈阳: 东北大学出版社, 2013: 1-6.

    ZU Guoyin. Layered metal composite material preparation theory and technology[M]. Shenyang: Northeastern University Press, 2013: 1-6(in Chinese).
    [6] SURYANARAYANA C, AL-AQEELI N. Mechanically alloyed nanocomposites[J]. Progress in Materials Science,2013,58(4):383-502. doi: 10.1016/j.pmatsci.2012.10.001
    [7] 梅瑞斌. 金属塑性加工过程有限元数值模拟及软件应用[M]. 北京: 科学出版社, 2020: 4.

    MEI Ruibin. Finte element simulation and software application in metal forming[M]. Beijing: Science Press, 2020: 4(in Chinese).
    [8] CHEN L, TANG J W, ZHAO G Q, et al. Fabrication of Al/Mg/Al laminate by a porthole die co-extrusion process[J]. Journal of Materials Processing Technology,2018,258:165-173. doi: 10.1016/j.jmatprotec.2018.03.027
    [9] 陈琦, 迟之东. 镁/铝复合板材制备工艺及性能研究[J]. 有色金属加工, 2015, 44(1):26-28. doi: 10.3969/j.issn.1671-6795.2015.01.008

    CHEN Qi, CHI Zhidong. Study of preparation and properties of Mg/Al composite sheet[J]. Nonferrous Metals Processing,2015,44(1):26-28(in Chinese). doi: 10.3969/j.issn.1671-6795.2015.01.008
    [10] CHANG H, ZHENG M Y, GAN W M, et al. Texture evolution of the Mg/Al laminated composite fabricated by the accumulative roll bonding[J]. Scripta Materialia,2009,61(7):717-720. doi: 10.1016/j.scriptamat.2009.06.014
    [11] CHANG H, ZHENG M Y. Effect of intermetallic compounds on the fracture behavior of Mg/Al laminated composite fabricated by accumulative roll bonding[J]. Rare Metal Materials and Engineering,2016,45(9):2242-2245. doi: 10.1016/S1875-5372(17)30010-3
    [12] WU K, CHANG H, MAAWAD E, et al. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB)[J]. Mater-ials Science and Engineering: A,2010,527(13-14):3073-3078. doi: 10.1016/j.msea.2010.02.001
    [13] MOTEVALLI P D, EGHBALI B. Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding[J]. Materials Science and Engineering: A,2015,628:135-142. doi: 10.1016/j.msea.2014.12.067
    [14] CHEN M C, KUO C W, CHANG C M, et al. Diffusion and formation of intermetallic compound during accumulative roll-bonding of Al/Mg alloys[J]. Materials Transactions,2007,48(10):2595-2598. doi: 10.2320/matertrans.MD200718
    [15] ZHANG X P, YANG T H, CASTAGNE S, et al. Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling[J]. Materials Science and Engineering: A,2011,528(4-5):1954-1960. doi: 10.1016/j.msea.2010.10.105
    [16] WEI A L, LIU X H, DONG L, et al. Binding property of Al/Mg/Al thin plates fabricated by one-pass hot rolling with different reduction ratios, temperatures and annealing treatments[J]. Rare Metals,2018,37(2):136-142. doi: 10.1007/s12598-015-0519-0
    [17] XU Z H, TANG G Y, TIAN S Q, et al. Research of electroplastic rolling of AZ31Mg alloy strip[J]. Journal of Materials Processing Tech,2006,182(1):128-133.
    [18] 官磊. 电致塑性轧制AZ31镁合金的变形机制及其组织和性能研究[D]. 北京: 清华大学, 2010.

    GUAN Lei. Microstructure evolution, mechanical properties and mechanism analysis of AZ31 magnesium alloy by electroplastic rolling[D]. Beijing: Tsinghua University, 2010(in Chinese).
    [19] 孙颖, 韩晶. 内加热轧辊对镁合金叠轧板材轧制实验的改进研究[J]. 山西冶金, 2018, 41(1):1-2.

    SUN Ying, HAN Jing. Study on the improvement of experiment of pack rolling on magnesium alloy by internal heating rollers[J]. Shanxi Metallurgy,2018,41(1):1-2(in Chinese).
    [20] KIM W Y, KIM W J. Fabrication of ultrafine-grained Mg-3Al-Zn alloy sheets using a continuous high-ratio differential speed rolling technique[J]. Materials Science & Engineering A,2014,594:189-192.
    [21] YU H L, YU Q B, KANG J W, et al. Investigation on tempera-ture change of cold magnesium alloy strips rolling process with heated roll[J]. Journal of Materials Engineering and Performance,2012,21(9):1841-1848. doi: 10.1007/s11665-011-0091-1
    [22] SUN T, LI J P. Method for outlet temperature control during warm rolling of AZ31 sheets with heated rolls[J]. ISIJ International,2017,57(9):1577-1585. doi: 10.2355/isijinternational.ISIJINT-2016-744
    [23] 梅瑞斌, 包立, 张欣, 等. 一种镁合金带材热辊加热轧制装置及方法: 中国, CN201610077523.5[P]. 2016-04-27.

    MEI Ruibin, BAO Li, ZHANG Xin, et al. A hot roller heating rolling device and method for magnesium alloy strip: China, CN201610077523.5[P]. 2016-04-27(in Chinese).
    [24] BAO L, QI X W, MEI R B, et al. Investigation and modeling of work roll temperature in induction heating by finite element method[J]. Journal of the Southern African Institute of Mining and Metallurgy,2018,118(7):735-743.
    [25] 彭大署. 金属塑性加工原理[M]. 长沙: 中南大学出版社, 2004.

    PENG Dashu. Metal plastic processing principle[M]. Changsha: Central South University Press, 2004(in Chinese).
    [26] BRENNAN S, BERMUDEZ K, KULKARNI N S, et al. Interdiffusion in the Mg-Al system and intrinsic diffusion in beta-Mg2Al3[J]. Metallurgical and Materials Transactions A,2012,43(11):4043-4052. doi: 10.1007/s11661-012-1248-8
  • 加载中
图(12)
计量
  • 文章访问数:  1037
  • HTML全文浏览量:  662
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-07-31
  • 录用日期:  2021-08-16
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回