Bending and tensile properties of carbon fiber triaxial woven fabric/epoxy resin composites with holey structure
-
摘要: 以T300碳纤维为增强纤维材料,环氧树脂为树脂基体,采用树脂膜熔渗(Resin film infusion,RFI)工艺制备碳纤维三轴机织物/环氧树脂(Triaxial woven fabric/epoxy resin,TWF/EP)复合材料。通过三点弯曲试验和拉伸试验研究了复合材料试样的面内弯曲性能和面内拉伸性能,采用3D轮廓仪观察拉伸试验后试样的损伤形貌,并分析其损伤机制。研究结果表明:TWF/EP复合材料的弯曲弹性模量表现为准各向同性,复合材料的孔洞率、碳纤维束规格与弯曲弹性模量呈现显著正相关性,与拉伸模量呈现负相关性。在拉伸载荷作用下,TWF/EP复合材料的主要失效模式包括纤维束断裂、纤维束拔出和交错失效,拉伸断裂机制主要为纯剪切破坏、扭转剪切破坏、拉剪耦合破坏。此外,在渐进损伤过程中,应变集中区发生在纱线交织点处。
-
关键词:
- 碳纤维三轴机织复合材料 /
- 准各向同性 /
- 弯曲性能 /
- 拉伸性能 /
- 损伤模式
Abstract: Carbon fiber triaxial woven fabric/epoxy resin (TWF/EP) composite was prepared by resin film infusion (RFI) method, in which T300 carbon fiber was reinforced material, and epoxy resin was matrix.Three-point bending test and tensile test were carried out to study the in-plane bending and in-plane tensile properties. Moreover, 3D profilometer was used to observe the damage morphology of sample after tensile test, and damage mechanism was analyzed. The results show that the bending elastic modulus of TWF/EP composites is quasi-isotropic. The porosity of composite and width of the fiber bundle have significant positive correlation with the bending elastic modulus, and have a negative correlation with the tensile modulus. The primary tensile failure patterns of composites may include tows pull-out, tows fracture and staggered failure. The tensile fracture mechanisms are mainly pure shear failure, torsional shear failure and tenso-shear coupling failure. In addition, the strain concentration region occurs at the interlacing point of the yarn during the progressive damage process. -
图 1 试验路线示意图:(a)三轴机织物(TWF)织造;(b)基础组织结构示意图;(c)复合成型铺层;(d)三点弯曲试验;(e)面内拉伸试验
Figure 1. Schematic diagram of experimental route: (a) Triaxial woven fabric (TWF) weaving; (b) Schematic diagram of basic triaxial woven fabric; (c) Composite molding layer; (d) Three-point bending test; (e) In-plane tensile test
a—Hexagonal hole side length; b— Triangular hole side length; c—Width of yarn after weaving; L—Yarn center distance; DIC—Digital image correlation method
表 1 三轴机织复合材料结构参数
Table 1. Structural parameters of triaxial woven fabric composites
No. Carbon fiber Yarn center distance/mm Porosity/% Thickness/mm Area density /(g·m−2) SK-3-1 T300-3K 4.5 34 0.389 250.0 SK-3-2 5.5 41 0.345 212.2 SK-6-1 T300-6K 5.5 34 0.458 383.3 SK-6-2 6.0 37 0.403 330.3 -
[1] RAO Y, ZHNAG C, LI W. Structural analysis for triaxial woven fabric composites of carbon fiber[J]. Composite Structures,2019,219:42-50. doi: 10.1016/j.compstruct.2019.03.013 [2] TYLER T. Developments in triaxial woven fabrics[M]. UK: Woodhead Publishing, 2011: 141-163. [3] 孙洁, 施楣梧, 钱坤. 平面三向织物的结构与性能[J]. 纺织学报, 2014, 35(6):154-162.SUN Jie, SHI Meiwu, QIAN Kun. Structure and properties of planar three-dimensional fabrics[J]. Journal of Textile Rsearch,2014,35(6):154-162(in Chinese). [4] DATASHVILI L, BAIER H. Active and morphing aerospace structures—A synthesis between advanced materials, structures and mechanisms[J]. International Journal of Aeronautical and Space Sciences,2011,12(3):225-240. doi: 10.5139/IJASS.2011.12.3.225 [5] SANTIAGO P J, BAIER H. Advances in deployable structures and surfaces for large apertures in space[J]. CEAS Space Journal,2013,5(3-4):89-115. doi: 10.1007/s12567-013-0048-3 [6] ERICSSON A, RUMPLER R, SJOBERG D, et al. A combined electromagnetic and acoustic analysis of a triaxial carbon fiber weave for reflector antenna applications[J]. Aerospace Science and Technology,2016,58:401-417. doi: 10.1016/j.ast.2016.08.033 [7] RUDO D N. Triaxial weave for reinforcing dental resins: US Patent, 121063B1[P]. 2009-01-21. [8] MESSIRY M E, ELTAHAN E. Stab resistance of triaxial woven fabrics for soft body armor[J]. Journal of Industrial Textiles,2016,45(5):1062-1082. doi: 10.1177/1528083714551441 [9] MATSUMOTO N, WAKABAYASHI M, SANEKAT H. Golf club shaft: US Patent, 20090305811A1[P]. 2009-6-3. [10] 白江波, 熊峻江, 高军鹏, 等. 间隙率对三轴向机织复合材料弹性性能的影响[J]. 材料工程, 2014(3):14-20. doi: 10.3969/j.issn.1001-4381.2014.03.003BAI Jiangbo, XIONG Junjiang, GAO Junpeng, et al. Effect of gap ratio on elastic properties of triaxial woven composites[J]. Journal of Materials Engineering,2014(3):14-20(in Chinese). doi: 10.3969/j.issn.1001-4381.2014.03.003 [11] AOKI T, KOSUGI Y, WATANABE A. Fatigue characteristic and damage accumulation mechanism of triaxially-woven fabric composite[C]//Colorado, USA: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011: 1-13. [12] KUEH A B H. Buckling of sandwich columns reinforced by triaxial weave fabric composite skin-sheets[J]. International Journal of Mechanical Sciences,2013,66:45-54. doi: 10.1016/j.ijmecsci.2012.10.007 [13] 周红涛. 平面三向织物增强橡胶复合材料力学性能及损伤行为研究[D]. 无锡: 江南大学, 2020.ZHOU Hongtao. Study on mechanical properties and damage behavior of planar three-dimensional fabric reinforced rubber composites [D]. Wuxi: Jiangnan University, 2020(in Chinese). [14] 沙迪, 禹旭敏, 赵将, 等. 碳纤维三向织物/环氧树脂复合材料的制备与力学性能[J]. 高等学校化学学报, 2020, 41(4):838-845. doi: 10.7503/cjcu20190513SHA Di, YU Xumin, ZHAO Jiang, et al. Preparation and mechanical properties of carbon fiber triaxial woven fabric/epoxy resin composites[J]. Chemical Journal of Chinese Universities,2020,41(4):838-845(in Chinese). doi: 10.7503/cjcu20190513 [15] 易淼. 三向织物织造及其复合材料拉伸机理研究[D]. 上海: 东华大学, 2019.YI Miao. Study on the tensile mechanism of three-dimensional fabric weaving and its composites [D]. Shanghai: Donghua University, 2019(in Chinese). [16] KUEH A, PELLEGRINO S. Triaxial weave fabric composites, D-STRUCT/TR223[R]. Cambridgeshire, UK: European Space Agency Contractor Report, 2007. [17] AOKI T, KOSUGIY, WATANABE A, et al. Durability of tri-axially woven fabric composites for space applications[C]//Jeiu, Island: 18th International Conference on Composite Materials, 2011: 1-6. [18] AOKI T, YOSHIDA K. Mechanical and thermal behaviors of triaxially-woven carbon/epoxy fabric composite[C]//Rhode, Island: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006: 1-9. [19] ZHAO Q, HOA S V, OUELLETTE P. Progressive failure of triaxial woven fabric (TWF) composites with open holes[J]. Composite Structures,2004,65(3-4):419-431. doi: 10.1016/j.compstruct.2003.12.004 [20] DATASHVILI L. Multifunctional and dimensionally stable flexible fiber composites for space applications[J]. Acta Astronautica,2010,66(7-8):1081-1086. doi: 10.1016/j.actaastro.2009.09.026 [21] American Society for Testing Materials. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM-D790—2017 [S]. United States: American Society for Testing Materials International, 2017. [22] American Society for Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM-D3039/D3090M—2007[S]. United States: American Society for Testing Materials International, 2007. [23] ZHOU X T , MA X F , FAN Y S , et al. Tensile and bending behavior of thin-walled triaxial weave fabric composites[J]. Journal of Engineered Fibers and Fabrics,2019,14:1-10. [24] 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 北京: 清华大学出版社, 2013: 178-185.SHEN Guanlin, HU Gengkai, LIU Bin. Mechanics of composite materials [M]. Beijing: Tsinghua University Press, 2013: 178-185(in Chinese). [25] HESLEHURST B R. 复合材料及结构的缺陷与损伤[M]. 张晓军, 张玮, 张有宏, 译. 北京: 国防工业出版社, 2017: 56-63.HESLEHURST B R. Defects and damage of composite materials and structures [M]. Translated by ZHANG Xiaojun, ZHANG Wei, ZHANG Youhong. Beijing: National Defense Industry Press, 2017: 56-63(in Chinese)