留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP-钢层状复合结构的表面划痕损伤容限

王斌华 康思思

王斌华, 康思思. CFRP-钢层状复合结构的表面划痕损伤容限[J]. 复合材料学报, 2022, 39(7): 3530-3541. doi: 10.13801/j.cnki.fhclxb.20210820.004
引用本文: 王斌华, 康思思. CFRP-钢层状复合结构的表面划痕损伤容限[J]. 复合材料学报, 2022, 39(7): 3530-3541. doi: 10.13801/j.cnki.fhclxb.20210820.004
WANG Binhua, KANG Sisi. Scratch damage tolerance at the surface of CFRP-steel laminated composite structure[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3530-3541. doi: 10.13801/j.cnki.fhclxb.20210820.004
Citation: WANG Binhua, KANG Sisi. Scratch damage tolerance at the surface of CFRP-steel laminated composite structure[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3530-3541. doi: 10.13801/j.cnki.fhclxb.20210820.004

CFRP-钢层状复合结构的表面划痕损伤容限

doi: 10.13801/j.cnki.fhclxb.20210820.004
基金项目: 陕西省自然科学基金(2021JM-148)
详细信息
    通讯作者:

    王斌华,博士,教授,博士生导师,研究方向为结构/材料的变形、损伤与断裂 E-mail:wangbh@chd.edu.cn

  • 中图分类号: TB332

Scratch damage tolerance at the surface of CFRP-steel laminated composite structure

  • 摘要: 碳纤维增强树脂复合材料(CFRP)-钢层状结构在实际运营过程中,脆性碳纤维层容易出现划痕等表面损伤,因此为了保障损伤后复合结构的安全运行,需要对其进行损伤容限研究。基于边界效应理论模型(Boundary effect model,BEM),建立了表面划痕损伤后的CFRP-钢层状结构三点弯曲断裂强度解析模型,并在CFRP表面分别预制了0.2 mm和0.4 mm深度的表面初始划痕缺陷,通过三点弯曲梁的成组试验验证了理论模型的可行性。研究结果表明:(1)利用金相显微镜观测了CFRP-钢层状结构三点弯曲极限荷载时的断裂特征,确定了表面划痕损伤后CFRP的结构特征参数Cch,代入解析模型获得了CFRP层的拉伸强度,并与CFRP直接拉伸试验测试的拉伸强度对比,两者偏差小于10%;(2)该解析模型为“断裂荷载=拉伸强度×等效面积”的线性方程形式,“等效面积”仅与CFRP-钢层状结构和表面裂纹的几何参数有关,因此,通过CFRP的直接拉伸强度可以预测表面损伤后CFRP-钢层状结构的断裂强度,实现损伤容限设计。

     

  • 图  1  碳纤维增强树脂复合材料 (CFRP)-钢复合结构的几何模型

    Figure  1.  Geometric model of carbon fiber reinforc-ed polymer (CFRP)-steel composite structure

    CFRP—Carbon fiber reinforced polymer; S—Span length; L—Sample length; B—Sample width; Pmax—Maximum fracture load

    图  2  CFRP裂纹处截面的应力-应变图

    Figure  2.  Stress-strain diagram of CFRP crack section

    h1—Thickness of steel plate; h2—Thickness of CFRP plate; Δafic—Crack tip damage zone/fictitious crack growth; σn—Nominal stress at crack tip damage zone; εn—Nominal stress at crack tip damage zone; σs—Stress at upper surface of steel plate; εs—Strain at upper surface of steel plate; Es—Elastic modulus of steel plate; σs—Stress at the interface between steel and CFRP on steel plate; εs—Strain at the interface between steel and CFRP; En—Equivalent elastic modulus of CFRP; a0—Initial crack depth; x—Distance from the neutral axis of CFRP/steel layered structure to the bonding interface between CFRP and steel; M—Moment in CFRP/steel layered structure

    图  3  CFRP拉伸试件

    Figure  3.  Tensile specimen of CFRP

    图  4  CFRP板拉伸试件断裂照片

    Figure  4.  Fracture pictures of CFRP tensile specimens

    图  5  CFRP-钢复合结构的位移-载荷曲线

    Figure  5.  Displacement-load curves of CFRP-steel composite structure

    图  6  a0=0.2 mm的CFRP-钢层状复合结构Pmax时刻对应的裂纹扩展

    Figure  6.  Crack growth of CFRP-steel layered composite structure at Pmax (a0=0.2 mm)

    图  7  a0=0.4 mm的CFRP-钢层状复合结构Pmax时刻对应的裂纹扩展

    Figure  7.  Crack growth of CFRP-steel layered composite structure at Pmax (a0=0.4 mm)

    图  8  CFRP抛磨断面示意图

    Figure  8.  Polishing location for CFRP

    图  9  金相显微镜下观察CFRP-钢复合结构的裂纹扩展长度(Δafic)

    Figure  9.  Crack growth length of CFRP-steel composite structure at metallographic microscope (Δafic)

    图  10  CFRP-钢复合结构的Pmax-Ae 曲线

    Figure  10.  Pmax-Ae curves of CFRP-steel composite structure

    μ—Average; σ—Standard deviation; ft—Tensile strength of CFRP plate; Ae—Equivalent area

    图  11  CFRP-钢复合结构的σn-ae曲线

    Figure  11.  σn-ae curves of CFRP-steel composite structure

    σn—Nominal stress; ae—Equivalent crack length; KIC—Fracture toughness of CFRP plate; $a_{{\rm{ch}}}^*$—Length of characteristic crack; Cch—Characteristic composite microstructure

    图  12  CFRP-钢复合结构的Pmax-Ae曲线预测

    Figure  12.  Pmax-Ae curves prediction of CFRP-steel composite structure

    图  13  CFRP-钢复合结构的${\rm{\sigma}}_{\rm{n}}$-$ a_{\rm{e}} $曲线预测

    Figure  13.  ${\rm{\sigma}}_{\rm{n}}$-$ a_{\rm{e}} $ curves prediction of CFRP-steel composite structure

    表  1  A-38/3K碳纤维丝材料性能

    Table  1.   Material properties of A-38/3K carbon fiber

    TypeElastic modulus/GPaYield strength/MPaElongation/%
    A-38/3K 240 3800 1.6
    下载: 导出CSV

    表  2  环氧树脂胶粘剂材料性能

    Table  2.   Material properties of epoxy adhesive

    TypeViscosity/(mPa·s)Hardness/shoreDTensile strength/MPaBending strength/MPa
    YT-CC302S200-30090320230
    下载: 导出CSV

    表  3  钢板的力学性能

    Table  3.   Mechanical properties of steel plate

    TypeElastic modulus/GPaYield strength/MPaTensile strength/MPa
    Q235206235420
    下载: 导出CSV

    表  4  CFRP板直接拉伸试验结果

    Table  4.   Direct tensile test results of CFRP plate

    Specimen numberMaximum tension/NElastic modulus/GPaTensile strength/MPa
    CFRP-1 24225.4 43 402.86
    CFRP-2 24657.5 40 374.22
    CFRP-3 26330.7 39 387.20
    CFRP-4 29312.6 40 478.96
    CFRP-5 30215.4 40 523.39
    CFRP-6 22608.1 42 379.23
    下载: 导出CSV

    表  5  CFRP-钢层状复合结构三点弯曲试验数据

    Table  5.   Three point bending test datas of CFRP-steel laminated composite structure

    Specimen type
    (2D-CFRP-steel)
    a0/mmh1/mmh2/mmPmax/Nft/MPaKIC/(MPa·m0.5)
    0.2 mm-1 0.190 2.98 1.50 1919.9 412.85 9.91
    0.2 mm-2 0.285 3.00 1.51 1959.1 457.04 10.97
    0.2 mm-3 0.205 2.99 1.50 1824.3 398.56 9.57
    0.2 mm-4 0.194 2.99 1.51 1906.8 409.92 9.84
    0.2 mm-5 0.183 2.99 1.52 1963.1 414.96 9.96
    0.2 mm-6 0.196 2.99 1.52 1824.3 396.25 9.51
    0.2 mm-7 0.249 3.00 1.52 1840.8 419.31 10.06
    0.2 mm-8 0.285 2.99 1.53 1818.5 426.80 10.24
    0.4 mm-1 0.427 3.01 1.45 1728.2 437.50 10.50
    0.4 mm-2 0.418 3.01 1.48 1853.5 469.37 11.26
    0.4 mm-3 0.434 3.00 1.51 1769.5 455.93 10.94
    0.4 mm-4 0.418 3.01 1.49 1688.2 427.90 10.27
    0.4 mm-5 0.372 3.01 1.50 1794.5 442.24 10.61
    0.4 mm-6 0.392 2.99 1.51 1733.5 437.09 10.49
    0.4 mm-7 0.394 2.99 1.52 1731.8 437.28 10.49
    0.4 mm-8 0.432 3.00 1.50 1720.2 440.27 10.57
    Notes: a0—Initial crack depth; h1—Steel thickness; h2—CFRP thickness; Pmax—Limit load; ft—Tensile strength; KIC—Fracture toughness.
    下载: 导出CSV

    表  6  不同表面裂纹深度的CFRP-钢复合结构极限承载力Pmax预测值

    Table  6.   Pmax prediction of CFRP-steel composite structures with different surface crack depths

    ${a_0}$/mmUpper limit of ultimate load/NLower limit of ultimate load /NAverage of limit load/NAverage decline/%
    0 3274.11 2711.28 2992.74
    0.001 3272.94 2710.31 2991.67 0.04
    0.01 3163.20 2619.43 2891.36 3.39
    0.1 2532.80 2097.40 2315.14 22.64
    0.2 2017.21 1976.75 1996.98 33.27
    0.4 1719.44 1678.98 1699.21 43.22
    下载: 导出CSV

    表  7  不同Cch值对CFRP-钢复合结构断裂性能的影响

    Table  7.   Effects of various Cch values on fracture properties of CFRP-steel composite structures

    ft/MPaKIC/(MPa·m0.5)
    Cch/μm 33.6 48 62.4 33.6 48 62.4
    Average µ 487.24 430.20 395.41 9.78 10.32 10.82
    Standard deviation σ 26.96 20.23 16.20 0.54 0.49 0.44
    Error/% 13.26 0 −8.08 −5.23 0 4.84
    下载: 导出CSV
  • [1] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650.

    XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1629-1650(in Chinese).
    [2] 肖何, 陈藩, 刘寒松, 等. 国产ZT7H碳纤维表面状态及其复合材料界面性能[J]. 复合材料学报, 2021, 38(8): 2554-2567.

    XIAO He, CHEN Fan, LIU Hansong, et al. Surface state of domestic ZT7H carbon fiber and interface property of composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2554-2567(in Chinese).
    [3] 李红, 刘旭升, 张宜生, 等. 新能源电动汽车异种材料连接技术的挑战、趋势和进展[J]. 材料导报, 2019, 33(23):3853-3861. doi: 10.11896/cldb.19020049

    LI Hong, LIU Xusheng, ZHANG Yisheng, et al. Challenges, trends and progress of dissimilar material bonding technology for new energy electric vehicles[J]. Material Guide,2019,33(23):3853-3861(in Chinese). doi: 10.11896/cldb.19020049
    [4] 籍龙波, 朱学武, 丁建鹏, 等. 乘用车碳纤维复合材料研究及应用进展[J]. 汽车文摘, 2020(9):17-22.

    JI Longbo, ZHU Xuewu, DING Jianpeng, et al. Research and application progress of carbon fiber composites for passenger cars[J]. Automotive Digest,2020(9):17-22(in Chinese).
    [5] 杨桂英, 赵睿, 肖冰, 等. 碳纤维复合材料在汽车轻量化中的应用[J]. 当代石油石化, 2020, 28(10):24-28. doi: 10.3969/j.issn.1009-6809.2020.10.005

    YANG Guiying, ZHAO Rui, XIAO Bing, et al. Application of carbon fiber composite in automobile lightweight[J]. Petroleum & Petrochemical Today,2020,28(10):24-28(in Chinese). doi: 10.3969/j.issn.1009-6809.2020.10.005
    [6] 王军照, 丁存光, 肖云健, 等. 车用碳纤维复合材料应用研究[J]. 中国新技术新产品, 2020(18):53-57. doi: 10.3969/j.issn.1673-9957.2020.18.027

    WANG Junzhao, DING Cunguang, XIAO Yunjian, et al. Research on the application of carbon fiber composites for vehicles[J]. New Technology and New Products in China,2020(18):53-57(in Chinese). doi: 10.3969/j.issn.1673-9957.2020.18.027
    [7] 张莉, 董磊, 刘志远. 碳纤维复合材料在轨道交通车辆转向架上的应用[J]. 城市轨道交通研究, 2020, 23(8):190-193.

    ZHANG Li, DONG Lei, LIU Zhiyuan. Application of carbon fiber composite material in bogie of rail transit vehicle[J]. Urban Mass Transit,2020,23(8):190-193(in Chinese).
    [8] 梁云, 谌亮, 杨集友, 等. 碳纤维复合材料在轨道交通车辆转向架上的应用[J]. 城市轨道交通研究, 2020, 23(1):129-133.

    LIANG Yun, SHEN Liang, YANG Jiyou, et al. Application of carbon fiber composite material in bogie of rail transit vehicle[J]. Urban Mass Transit,2020,23(1):129-133(in Chinese).
    [9] 李荣翔. 海洋环境下CFRP复合桩水平承载特性研究[D]. 开封: 河南大学, 2019.

    LI Rongxiang. Study on horizontal bearing characteristics of CFRP composite pile in marine environment[D]. Kaifeng: Henan University, 2019(in Chinese).
    [10] 完海鹰, 李瑭颖. CFRP加固钢管柱极限承载力正交模拟与数值分析[J]. 安徽建筑, 2019, 26(9):110-112.

    WAN Haiying, LI Tangying. Orthogonal simulation and numerical analysis of ultimate bearing capacity of steel tubular columns strengthened with CFRP[J]. Anhui Architecture,2019,26(9):110-112(in Chinese).
    [11] 查晓玮. CFRP加固偏压H型钢柱承载力试验研究与数值模拟[D]. 合肥: 合肥工业大学, 2020.

    ZHA Xiaowei. Experimental study and numerical simulation of the bearing capacity of H-shaped steel column reinforced by CFRP[D]. Hefei: Hefei University of Technology, 2020(in Chinese).
    [12] WANG Y, LI J H, DENG J, et al. Bond behaviour of CFRP/steel strap joints exposed to overloading fatigue and wetting/drying cycles[J]. Engineering Structures,2018,172:1-12. doi: 10.1016/j.engstruct.2018.05.112
    [13] 张彤彤, 吴健, 王纬波. CFRP加固损伤钢板的弯曲性能研究[J]. 复合材料科学与工程, 2020(12):26-30. doi: 10.3969/j.issn.1003-0999.2020.12.005

    ZHANG Tongtong, WU Jian, WANG Weibo. Bending behavior of damaged steel plate strengthened with CFRP[J]. Composite Materials Science and Engineering,2020(12):26-30(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.12.005
    [14] LEPRETRE E, CHATAIGNER S, DIENG L, et al. Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material[J]. Construction and Building Materials,2018,174:421-432. doi: 10.1016/j.conbuildmat.2018.04.063
    [15] CHEN T, YAO J X, LIU R Y, et al. Fatigue behavior of steel plates with multi-holes repaired by CFRP[J]. Composite Structures,2020,242:112163. doi: 10.1016/j.compstruct.2020.112163
    [16] 李旭. CFRP布加固压弯钢构件极限承载力理论分析与试验研究[D]. 沈阳: 沈阳大学, 2018.

    LI Xu. Theoretical analysis and experimental study on ultimate bearing capacity of steel members strengthened with CFRP sheets [D]. Shenyang: Shenyang University, 2018(in Chinese).
    [17] 路志浩. 碳纤维在重型厂房钢吊车梁加固中的应用[J]. 上海建设科技, 2020, 238(2):13-17.

    LU Zhihao. Application of carbon fiber in reinforcement of steel crane beam of heavy workshop[J]. Shanghai Construction Science & Technology,2020,238(2):13-17(in Chinese).
    [18] HUO J S, ZHANG X F, YANG J, et al. Experimental study on dynamic behavior of CFRP-to-steel interface[J]. Structures,2019,20:465-475. doi: 10.1016/j.istruc.2019.05.007
    [19] 郭奥, 杨勇新, 贾彬. 碳纤维布加固H型钢梁的抗弯性能及承载力计算[J]. 西南科技大学学报, 2019, 34(1):45-48. doi: 10.3969/j.issn.1671-8755.2019.01.008

    GUO Ao, YANG Yongxin, JIA Bin. Flexural behavior and bearing capacity calculation of H-beam strengthened with CFRP sheets[J]. Journal of Southwest University of Science and Technology,2019,34(1):45-48(in Chinese). doi: 10.3969/j.issn.1671-8755.2019.01.008
    [20] TAFSIROJJAMAN T, FAWZIA S, THAMBIRATNAM D, et al. Behaviour of CFRP strengthened CHS members under monotonic and cyclic loading[J]. Composite Structures,2019,220:592-601. doi: 10.1016/j.compstruct.2019.04.029
    [21] 王家栋. 纤维增强复合材料加固钢梁受力性能试验研究[D]. 成都: 西南交通大学, 2019.

    WANG Jiadong. Experimental study on mechanical behavior of steel beams strengthened with fiber reinforced composites [D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese).
    [22] CAMINERO M A, RODRÍGUEZ G P, MUÑOZ V. Effect of stacking sequence on Charpy impact and flexural damage behavior of composite laminates[J]. Composite Structures,2016,136:345-357. doi: 10.1016/j.compstruct.2015.10.019
    [23] 施琪, 吴亚平, 王丽霞, 等. 碳纤维复合材料抗拉性能测试结果的影响因素分析[J]. 兰州交通大学学报, 2008(4):57-59.

    SHI Qi, WU Yaping, WANG Lixia, et al. Analysis of influence factors on tensile test results of carbon fiber composites[J]. Journal of Lanzhou Jiaotong University,2008(4):57-59(in Chinese).
    [24] YUAN B Y, HU Y S, HU X Z. Critical bending load of CFRP panel with shallow surface scratch determined by a tensile strength model[J]. Composites Science and Technology,2020,191:108072. doi: 10.1016/j.compscitech.2020.108072
    [25] HU X Z, WITTMANN F. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics,2000,65(2-3):209-221. doi: 10.1016/S0013-7944(99)00123-X
    [26] HU X Z, GUAN J F, WANG Y S, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics,2017,175:146-167. doi: 10.1016/j.engfracmech.2017.02.005
    [27] WANG Y S, HU X Z. Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples[J]. Rock Mechanics and Rock Engineering,2016,50(1):1-12.
    [28] ASTM international. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M [S]. West Conshohocken, United States: ASTM international, 2017.
    [29] WANG B H, BAI Y X, HU X Z, et al. Enhanced epoxy adhesion between steel plates by surface treatment and CNT/short-fibre reinforcement[J]. Composites Science and Technology,2016,127:149-157. doi: 10.1016/j.compscitech.2016.03.008
    [30] WANG B H, HU X Z, LU P M. Improvement of adhesive bonding of grit-blasted steel substrates by using diluted resin as a primer[J]. International Journal of Adhesion & Adhesives,2017,73:92-99.
    [31] 管俊峰, 胡晓智, 王玉锁, 等. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(10):1298-1306.

    GUAN Junfeng, HU Xiaozhi, WANG Yusuo, et al. The influence of fracture toughness and tensile strength on failure is considered by boundary effect theory[J]. Journal of Hydraulic Engineering,2016,47(10):1298-1306(in Chinese).
    [32] 管俊峰, 胡晓智, 李庆斌, 等. 边界效应与尺寸效应模型的本质区别及相关设计应用[J]. 水利学报, 2017, 48(8):955-967.

    GUAN Junfeng, HU Xiaozhi, LI Qingbin, et al. Essential difference between boundary effect model and size effect model and related design application[J]. Journal of Hydraulic Engineering,2017,48(8):955-967(in Chinese).
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  1160
  • HTML全文浏览量:  460
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-09
  • 修回日期:  2021-07-12
  • 录用日期:  2021-07-26
  • 网络出版日期:  2021-08-20
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回