Investigation on photocatalysis and room temperature gas sensing of MoS2-ZnO nanocomposite synthesized by hydrothermal method
-
摘要: 为开发一种高性能、可回收、低成本的光催化剂,本论文使用水热法制备了多孔结构的ZnO纳米片复合MoS2 (MoS2-ZnO) 光催化材料。通过XRD、SEM、光致发光光谱(PL)、XPS等手段对样品的形貌、光学性质等进行了测试表征。结果表明,所制备的MoS2-ZnO样品为多孔片状结构;这种复合结构中MoS2不仅有助于增强ZnO中光生载流子的分离效率,而且还能增强可见光区的吸收,从而提高光催化和气敏性能。在模拟太阳光下,MoS2-ZnO纳米复合材料对高浓度(15 mg/L)的亚甲基蓝染液(MB)表现出较高的光催化降解活性。同时,MoS2-ZnO制备的气敏传感器对低浓度(2.05 mg/m3)NO2还具有较高的灵敏度。本工作为制备高效太阳能驱动的光催化剂和气体传感器提供了重要参考。Abstract: To develop a high performance, recyclable, low cost photocatalyst. In this work, MoS2 modified ZnO (MoS2-ZnO) nanocomposites were prepared by a hydrothermal method. The morphology and optical properties of the samples were characterized by XRD, SEM, photoluminescence spectroscopy (PL) and XPS. We find that the prepared MoS2-ZnO samples own a porous structure from SEM. And MoS2 can not only enhance the separation efficiency of photocarriers in MoS2-ZnO, but also increase the absorption of visible light region, resulting in improving the photo-catalytic and gas sensitive properties. Under simulated sunlight, the MoS2-ZnO nanocomposite exhibits high photo-catalytic degradation activity for high concentration (15 mg/L) methylene blue dye (MB). At the same time, the MoS2-ZnO-based gas sensor possesses a high sensitivity for NO2 concentration of 2.05 mg/m3. This work offers a simple strategy to prepare highly efficient visible light-driven photocatalysts and gas sensors.
-
Key words:
- ZnO /
- MoS2 /
- photocatalysis /
- gas sensing /
- methylene blue /
- porous structure /
- nanocomposite
-
图 8 (a) MoS2-ZnO样品在模拟阳光下的MB光降解曲线; (b)在模拟阳光下MB的拟合曲线; (c)在不同pH条件和模拟的阳光下1.75%MoS2-ZnO的MB降解曲线; (d)在模拟阳光下对MB、RhB和MO进行光降解; (e)在模拟阳光下五个周期内1.75%MoS2-ZnO样品的MB降解; (f)在模拟阳光下,不同牺牲剂对MB的1.75%MoS2-ZnO纳米异质结构的光催化降解效率(PCD)的影响
Figure 8. (a) MB photodegradation curves for the MoS2-ZnO samples under simulated sunlight; (b) Fitted curves for MB under simulated sunlight; (c) MB degradation curves for 1.75%MoS2-ZnO under different pH conditions and simulated sunlight; (d) Photodegradation of MB, RhB and MO under simulated sunlight; (e) MB degradation by the 1.75%MoS2-ZnO sample over five cycles under simulated sunlight; (f) Effects of different quenchers on the photocatalytic degradation efficiency (PCD) of the 1.75%MoS2-ZnO nanoheterostructure for MB under simulated sunlight
K—Quasi first order kinetic constant; c0—Initial solution concentration; ct—Solution measurement concentration; MB—Methylene blue; RhB—Rhodamine B; MO—Methyl orange; EDTA-2Na—Ethylenediaminetetraacetic acid disodium salt; IPA—Iso-propyl alcohol; BQ—1, 4-Benzoquinone
表 1 MoS2-ZnO样品成分配比
Table 1. Composition ratio of MoS2-ZnO samples
Samples Mole ratio of n(Zn): n(Mo) 0%MoS2-ZnO
1%MoS2-ZnO
1.75%MoS2-ZnO
2.5%MoS2-ZnO100∶0
99∶1
98.25∶1.75
97.5∶2.5表 2 根据XRD计算得到的MoS2-ZnO样品晶粒尺寸
Table 2. Grain size calculated according to XRD datas of MoS2-ZnO samples
Samples 0%MoS2-ZnO 1%MoS2-ZnO 1.75%MoS2-ZnO 2.5%MoS2-ZnO Grain size/nm 25.66 25.59 25.65 25.61 表 3 1.75%MoS2-ZnO和ZnO颗粒的比表面积、孔径及孔体积
Table 3. Specific surface area, pore size and pore volume data of 1.75%MoS2-ZnO and ZnO particles
Samples Surface area/(m2·g−1) Average pore sizes/nm Pore volume/(cm3·g−1) 1.75%MoS2-ZnO
ZnO particles32.09
22.5116.15
15.320.1296
0.0862 -
[1] LIC Y, MA Y Y, ZHENG S Z, et al. Acid etching followed by hydrothermal preparation of nanosized Bi2O4/Bi2O3 p-n junction as highly efficient visible-light photocatalyst for organic pollutants removal[J]. Journal of Colloid and Interface Science,2020,576:291-301. doi: 10.1016/j.jcis.2020.02.115 [2] WANG Z Q, ZHANG L L, ZHANG X, et al. Enhanced photocatalytic destruction of pollutants by surface W vacancies in VW-Bi2WO6 under visible light[J]. Journal of Colloid and Interface Science,2020,576:385-393. doi: 10.1016/j.jcis.2020.05.047 [3] 左士祥, 曹晓曼, 吴红叶, 等. g-C3N4量子点-TiO2/导电凹凸棒石复合材料的制备及其光催化性能[J]. 复合材料学报, 2021, 38(8):2725-2733.ZUO Shixiang, CAO Xiaoman, WU Hongye, et al. Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance[J]. Acta Materiae Compositae Sinica,2021,38(8):2725-2733(in Chinese). [4] HUANG W, YU Q M, WANG Y Y, et al. Preparation of magnetic Ni0.5Zn0.5Fe2O4/ZnO nanocomposites and their photocatalytic performances for methylene blue in aqueous solution[J]. Journal of Nanoscience and Nanotechnology,2020,20(12):7506-7515. doi: 10.1166/jnn.2020.18876 [5] 陈奕桦, 胡俊俊, 丁同悦, 等. CeO2/ZnO复合光催化剂制备及其可见光催化性能 [J]. 复合材料学报, 2021, 38(9): 3000-3007.CHEN Yihua, HU Junjun, DING Tongyue, et al. Preparation and visible light catalytic performance of CeO2/ZnO composite photocatalyst [J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3000-3007(in Chinese). [6] KWON D, KIM J. Copper-doped ZnO visible light photocatalyst for degradation of methylene blue[J]. Journal of Nanoscience and Nanotechnology,2020,20(9):5608-5604. [7] XIE Y S, ZHANG N, TANG Z R, et al. Tip-grafted Ag-ZnO nanorod arrays decorated with Au clusters for enhanced photocatalysis[J]. Catalysis Today,2020,340:121-127. doi: 10.1016/j.cattod.2018.09.010 [8] 黄慧玲, 张隐, 甘露, 等. Ag-ZnO/生物质炭纳米复合材料的制备及协同可见光催化性能[J]. 复合材料学报, 2020, 37(5):1148-1155.HUANG Huiling, ZHANG Yin, GAN Lu, et al. Preparation and synergetic visible-light photocatalysis properties of Ag-ZnO/biochar nanocomposites[J]. Acta Materiae Compositae Sinica,2020,37(5):1148-1155(in Chinese). [9] VIGNESH S, KALYANA S J. Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity[J]. Applied Surface Science,2018,449:617-630. doi: 10.1016/j.apsusc.2017.11.167 [10] VASILAKI E, VAMVAKAKI M, KATSARAKIS N. Complex ZnO-TiO2 core-shell flower-like architectures with enhanced photocatalytic performance and superhydrophilicity without UV irradiation[J]. Langmuir,2018,34(31):9122-9132. doi: 10.1021/acs.langmuir.8b01619 [11] 王儒杰, 余锡孟, 王芳芳, 等. 竹炭基铈掺杂氧化锌制备及催化降解亚甲基蓝[J]. 复合材料学报, 2021, 38(6):1896-1910.WANG Rujie, YU Ximeng, WANG Fangfang, et al. Preparation of carbon supported cerium doped zinc oxide composite material and its photocatalytic properties study in degradation of methylene blue dye[J]. Acta Materiae Compositae Sinica,2021,38(6):1896-1910(in Chinese). [12] KWON D, KIM J. Silver-doped ZnO for photocatalytic degradation of methylene blue[J]. Korean Journal of Chemical Engineering,2020,37(7):1226-1232. doi: 10.1007/s11814-020-0520-7 [13] THINH V D, LAM V D, BACH T N, et al. Enhanced optical and photocatalytic properties of Au/Ag nanoparticle-decorated ZnO films[J]. Journal of Electronic Materlals,2020,49(4):2625-2632. doi: 10.1007/s11664-020-07973-7 [14] YU Z J, KUMA R M R, CHU Y, et al. Photocatalytic decomposition of RHB by newlydesigned and highly effective CF@ZnO/CdS hierarchical heterostructures[J]. ACS Sustainable Chemistry & Engineering,2018,6:155-164. [15] WANG H Y, LI S Y, WAN Q, et al. Highly efficient solution exfoliation of few-layer molybdenum disulfide nanosheets for photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science,2020,577:38-47. doi: 10.1016/j.jcis.2020.05.034 [16] KUMAR V, SHUKLA R K, SHAKYA J. Effect of ultraviolet irradiation on photo-physical and surface electronic properties of MoS2[J]. Journal of Nanoscience and Nanotechology,2020,20(10):6500-6504. doi: 10.1166/jnn.2020.18581 [17] XU Y M, YAN L H, SI J H, et al. Nonlinear absorption pro-perties and carrier dynamics in MoS2/graphene Van Der Waals heterostructures[J]. Carbon,2020,165:421-427. doi: 10.1016/j.carbon.2020.04.092 [18] KEERTI R, ANAVEEN K, KAUSHIK P. Fabrication of flexible La-MoS2 hybrid-heterostructure based sensor for NO2 gas sensing at room temperature[J]. Nanotechnology,2020,31(39):395504. doi: 10.1088/1361-6528/ab9c55 [19] DONG H C, LI J Z, CHEN M G, et al. High-throughput production of ZnO-MoS2-graphene heterostructures for highly efficient photocatalytic hydrogen evolution[J]. Materials,2019,12(14):2233. doi: 10.3390/ma12142233 [20] ZHANG L, YIN J J, WEI K, et al. Fabrication of hierarchical SrTiO3@MoS2 heterostructure nanofibers as efficient and low-cost electrocatalysts for hydrogen-evolution reactions[J]. Nanotechnology,2020,31:205604. doi: 10.1088/1361-6528/ab70ff [21] JOYNER J, OLIVEIRA E F, YAMAGUCHI H, et al. Graphene supported MoS2 structures with high defect density for an efficient HER electrocatalysts[J]. ACS Applied Materials & Interfaces,2020,12:12629-12638. [22] HO T A, BAE C, JOE J, et al. Heterojunction photoanode of atomic-layer-deposited MoS2 on single-crystalline CdS nanorod arrays[J]. ACS Applied Materials & Interfaces,2019,11:37586-37594. [23] LI Y, WANG Z, ZHAO H J, et al. 3D MoS2@TiO2@poly (methyl methacrylate) nanocomposite with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science,2019,557:709-721. doi: 10.1016/j.jcis.2019.09.074 [24] ZHANG Z L, WANG Z L, HENG L Y, et al. Improving the electromagnetic wave absorption properties of the layered MoS2 by cladding with Ni nanoparticles[J]. Journal of the Physical Society of Japan,2018,87:54402. doi: 10.7566/JPSJ.87.054402 [25] KAUR M, UMAR A, MEHTA S K, et al. Rapid solar-light driven superior photocatalytic degradation of methylene blue using MoS2-ZnO heterostructure nanorods photocatalyst[J]. Materials,2018,11(11):2254. doi: 10.3390/ma11112254 [26] FU Y M, REN Z Q, WU J Z, et al. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances[J]. Applied Catalysis B: Environmental,2021,285:119785. doi: 10.1016/j.apcatb.2020.119785 [27] WANG J Y, DENG J H, LI Y B, et al. ZnO nanocrystal-coated MoS2 nanosheets with enhanced ultraviolet light gas sensitive activity studied by surface photovoltage technique[J]. Ceramics International,2020(46):11427-11431. [28] ZHAO S F, WANG G J, LIAO J C, et al. Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities[J]. Applied Surface Science,2018,456:808-816. doi: 10.1016/j.apsusc.2018.06.103 [29] LUO K Y, ZHANG Q P, YUAN H, et al. Facile synthesis of Ag/Zn1-xCuxO nanoparticle compound photocatalyst for high-efficiency photocatalytic degradation: Insights into the synergies and antagonisms between Cu and Ag[J]. Ceramics International,2021,47:48-56. doi: 10.1016/j.ceramint.2020.06.102 [30] ZHANG Q P, PANG Z M, HU W Y, et al. Performance degradation mechanism of the light-activated room temperature NO2 gas sensor based on Ag-ZnO nanoparticles[J]. Applied Surface Science,2021,541:148418. doi: 10.1016/j.apsusc.2020.148418 [31] 胡文宇, 王笑乙, 袁欢, 等. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10):10018-10023. doi: 10.11896/cldb.19050066HU Wenyu, WANG Xiaoyi, YUAN Huan, et al. Study on sol-gel synthesis and photocatalytic properties of CuO-ZnO nanocomposites deposited by Ag[J]. Materials Review B: Research Papers,2020,34(10):10018-10023(in Chinese). doi: 10.11896/cldb.19050066 [32] 井立强, 袁福龙, 侯海鸽, 等. ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系[J]. 中国科学(B辑):化学, 2004(4):310-314.JING Liqiang, YUAN Fulong, HOU Haige, et al. The relationship between the surface oxygen vacancy of ZnO nanoparticles and their photoluminescence and photocatalytic properties[J]. Science in China B: Chemistry,2004(4):310-314(in Chinese). [33] YUAN H, XU M, DUX S. Effects of Co doping on the structural and optical properties of Zn-CuO thin films[J]. Materials Letters,2015,154:94-97. doi: 10.1016/j.matlet.2015.04.069 [34] LIU Y T, ZHANG Q P, XU M, et al. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation[J]. Applied Surface Science,2019,476:632-640. doi: 10.1016/j.apsusc.2019.01.137 [35] GE L, HAN C C, XIAO X L, et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity[J]. International Journal of Hydrogen Energy,2013,38(17):6960-6969. doi: 10.1016/j.ijhydene.2013.04.006 [36] ZHAO D W, WU T T, ZHOU Y. Dual II heterojunctions metallic phase MoS2/ZnS/ZnO ternary composite with superior photocatalytic performance for removing contaminants[J]. Chemistry A European Journal,2019,25(41):9710-9720. [37] 杜春艳, 宋佳豪, 谭诗杨, 等. 石墨烯桥联的 ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能[J]. 复合材料学报, 2021, 38:2259-2269.DU Chunyan, SONG Jiahao, TAN Shiyang, et al. Preparation of graphene bridged ZnO/Ag3PO4 composite and its degradation performance for ciprofloxacin[J]. Acta Materiae Compositae Sinica,2021,38:2259-2269(in Chinese). [38] LI J, YUAN H, ZHANG Q P, et al. Designed Ag-decorated Mn: ZnO nanocomposite: Facile synthesis, and enhanced visible light absorption and photogenerated carrier separation[J]. Physical Chemistry Chemical Physics,2020,46(22):27272-27279. [39] TAN Y H, YU K, LI J Z, et al. MoS2@ZnO nanoheterojunctions with enhanced photocatalysis and field emission properties[J]. Journal of Applied Physics,2014,116(6):064305. doi: 10.1063/1.4893020 [40] SOOHO C, ZHANG S L, WOOCHUL Y. Layer-number-dependent work function of MoS2 nanoflakes[J]. Journal of the Korean Physical Society,2014,64(10):1550-1555. doi: 10.3938/jkps.64.1550 [41] GUO W W, LIU T M, ZHANG H J, et al. Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology[J]. Sensors and Actuators B: Chemical,2012,166/167:492-499. [42] YAN H H, SONG P, ZHANG S, et al. Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol[J]. RSC Advances,2015,97:79593-79599.