Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance
-
摘要: 为了提高单一磁性吸波材料的吸波性能,以聚乳酸(PLA)作为基体材料,将磁性材料羰基铁粉(CIP)与石墨烯(RGO)进行复合,制备RGO-CIP/PLA复合材料。通过TG、XRD等多种测试手段对复合材料的结构、形貌等进行表征。同时使用矢量网络分析仪对复合材料的电磁参数进行测试,计算出不同厚度的吸波性能,研究了RGO的添加量对RGO-CIP/PLA复合材料的吸波性能影响。结果表明:当RGO质量分数为4wt%,CIP质量分数为20wt%时,RGO-CIP/PLA复合材料吸波性能最优;吸收厚度为3 mm时,达到了−27.25 dB最小的RL值,同时其吸收带宽为2.922 GHz (7.227~10.149 GHz)。同时,随着其吸收厚度的增加,有效吸收带宽(RL<−10 dB)会移动至较低的频带。Abstract: In order to improve the microwave absorbing properties of single magnetic absorbing material, polylactic acid (PLA) was used as the matrix material, and the magnetic material carbonyl iron powder (CIP) as well as reduced graphene oxide (RGO) were compounded to prepare RGO and CIP/PLA composites. The structure and morphology of the composites were characterized by TG, XRD and other testing methods. Meanwhile, the electromagnetic parameters of the composites were measured by vector network analyzer, and the microwave absorbing properties of different thickness were calculated. The influence of RGO addition on the microwave absorbing properties of RGO and CIP/PLA composites was studied. The results show that when the graphene content is 4wt% and the carbonyl iron powder content is 20wt%, the RGO-CIP/PLA composite has the best absorbing performance. When the absorption thickness is 3 mm, the minimum RL value of −27.25 dB is reached, and at the same time its absorption bandwidth is 2.922 GHz (7.227-10.149 GHz). At the same time, as its absorption thickness increases, the effective absorption bandwidth (RL<−10 dB) can move to a lower frequency band.
-
图 7 不同RGO含量同轴环的电磁参数:在2~18 GHz频率范围内,介电常数的实部(a)、虚部(b);磁导率的实部(c)、虚部(d);介电损耗角正切(e)和磁损耗角正切(f)
Figure 7. Electromagnetic parameters of coaxial rings with different RGO contents: In the frequency range of 2-18 GHz, real part (a) and imaginary part (b) of the complex permittivity; Real part (c) and imaginary part (d) of the complex magnetic conductivity; Dielectric loss tangent (e) and magnetic loss tangent (f)
图 10 不同RGO含量的RGO-CIP/PLA复合材料的三维微波反射损耗图:(a) 0wt% RGO;(b) 1wt% RGO;(c) 2wt% RGO;(d) 3wt%RGO;(e) 4wt% RGO;(f) 5wt% RGO
Figure 10. Three-dimensional microwave reflection loss diagrams of RGO-CIP/PLA composites with different RGO contents: (a) 0wt% RGO; (b) 1wt% RGO; (c) 2wt% RGO; (d) 3wt% RGO; (e) 4wt% RGO; (f) 5wt% RGO
表 1 RGO-CIP/ PLA复合粉末的组成
Table 1. Composition of RGO-CIP/PLA composite powder
Sample number Mass fraction/wt% RGO CIP PLA 0wt%RGO-CIP/PLA 0 20 80 1wt%RGO-CIP/PLA 1 20 79 2wt%RGO-CIP/PLA 2 20 78 3wt%RGO-CIP/PLA 3 20 77 4wt%RGO-CIP/PLA 4 20 76 5wt%RGO-CIP/PLA 5 20 75 Notes: RGO—Reduced graphene oxide; CIP—Carbonyl iron powder; PLA— Polylactic acid. 表 2 RGO-CIP/PLA复合粉末DSC曲线数据
Table 2. DSC curve datas of RGO-CIP/PLA composite powder
Sample number RGO
content/
wt%Tm/℃ Tc/℃ Tg/℃ 0wt%RGO-CIP/PLA 0 113.79 97.98 82.86 1wt%RGO-CIP/PLA 1 112.1 100.38 81.67 2wt%RGO-CIP/PLA 2 112.6 98.99 79.69 3wt%RGO-CIP/PLA 3 111.9 99.30 82.59 4wt%RGO-CIP/PLA 4 112.1 99.65 83.52 5wt%RGO-CIP/PLA 5 112.6 101.24 82.59 Notes: Tm—The melting temperature of the composite material; Tc—The crystallization temperature of the composite material; Tg—The glass transition temperature of the composite material. 表 3 熔融沉积3D (FDM3D)打印参数
Table 3. FDM3D printing parameters
Item Printing parameters Nozzle 1 temperature/℃ 150 Nozzle 2 temperature/℃ 0 Panel temperature/℃ 40 表 4 RGO-CIP/PLA复合材料与其他复合吸波材料的性能比较
Table 4. Performance comparisons of RGO-CIP/PLA composite materials and other composite absorbing materials
-
[1] CHENG Y, ZHU W D, LU X F, et al. Recent progress of electros pun nanofibrous materials for electromagnetic interference shielding[J]. Composites Communications,2021,27:100823. [2] ZHANG Z, CHEN X, WANG Z, et al. Carbonyl iron/graphite microspheres with good impedance matching for ultra-broadband and highly efficient electromagnetic absorption[J]. Optical Materials Express,2018,8(11):3319-3331. doi: 10.1364/OME.8.003319 [3] MA J, SHU J, CAO W, et al. A green fabrication and variable temperature electromagnetic properties for thermal stable microwave absorption towards flower-like Co3O4@ rGO/SiO2 composites[J]. Composites Part B: Engineering,2019,166:187-195. doi: 10.1016/j.compositesb.2018.11.119 [4] YE F, SONG Q, ZHANG Z, et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption[J]. Advanced Functional Materials,2018,28(17):1707205. doi: 10.1002/adfm.201707205 [5] MA X T, JIANG Z P, WANG F S, et al. Numerical study of thermal effect in silicone rubber filled with carbonyl iron powder under microwave radiation[J]. Journal of Materials Science,2021,56:10264-10281. [6] GONG M J, DONG Y Q, HUANG J J, et al. The enhanced magnetic properties of FeSiCr powder cores composited with carbonyl iron powder[J]. Journal of Materials Science: Materials in Electronics,2021,32(7):8829-8836. [7] JING H X, LI Q L, YE Y, et al. Preparationand microwave absorbing properties of Fe(CO)5/BaTiO3 composites[J]. Journal of Materials Engineering,2015,43(7):38-42. [8] DING G X, CHEN C X, TAI H X, et al. Structural characterization and microwave absorbing performance of CuFe2O4/RGO composites[J]. Journal of Solid State Chemistry,2021,297:122051. [9] WANG X, SHU J C, HE X M, et al. Green approach to conductive PEDOT: PSS decorating magnetic-graphene to recover conductivity for highly efficient absorption[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):14017-14025. doi: 10.1021/acssuschemeng.8b02534 [10] ZHANG M M, ZHANG J W, LV X Y, et al. How to exhibit the efficient electromagnetic wave absorbing performance of rgo aerogels: Less might be better[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(7): 5496-5500. [11] ZHANG M M, ZHANG J W, LV X Y, et al. How to exhibit the efficient electromagnetic wave absorbing performance of RGO aerogels: Less might be better[J]. Journal of Materials Science: Materials in Electronics,2018,29(7):5496-5500. [12] GAO Y, GAO X, LI J, et al. Microwave absorbing and mechanical properties of alternating multilayer carbonyl iron powder-poly(vinylchloride) composites[J]. Journal of Applied Polymer Science,2017,135(12):45846. [13] LIU X G, WU N D, CUI C Y, et al. Facilepreparation of carbon-coated Mg nanocapsulesas light microwave absorber[J]. Materials Letters,2015,149:12-14. [14] PRAVEEN C, BINOD K K, SANTANU D, et al. Theoretical circuit modeling of tetra bands DNG metamaterial by transmission line theory with very small frequency[J]. Journal of Computational Electronics,2021,20:1439-1451. [15] WANG Y, LUO F, ZHOU W C, et al. Dielectric and electromagnetic wave absorbing properties of TiC/epoxy composites in the GHz range[J]. Ceramics International,2014,3(64):10749-10754. [16] ZHANG Z Q, WEI J Q, YANG W F, et al. Effect of shape of sendust particles on their electromagnetic properties within 0.1-18 GHz range[J]. Physica B,2011,406:3896-3900. [17] 杜捷. 氧化石墨烯/聚脲复合材料制备与性能研究[D]. 广州: 暨南大学, 2020.DU Jie. Preparation and properties of graphene oxide/polyurea composite materials[D]. Guangzhou: Jinan University, 2020(in Chinese). [18] WANG X X, MA T, SHU J C, et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth[J]. Chemical Engineering Journal,2018,332:321-330. doi: 10.1016/j.cej.2017.09.101 [19] LI Y, SUN N, LIU J, et al. Multifunctional BiFeO3 composites: Absorption attenuation dominated effective electromagnetic interferenceshielding and electromagnetic absorption induced by multiple dielectric and magnetic relaxations[J]. Composites Science and Technology,2018,159:240-250. doi: 10.1016/j.compscitech.2018.02.014 [20] YUAN Z F, ZHAO H, ZHOU J. Design and preparation of the epoxy resin based sandwich composite with broad-band wave-absorbing properties in C-band[J]. Rare Metal Materials and Engineering,2020,49(11):3782-3789. [21] 范明远. 羰基铁粉/热塑性树脂复合材料的制备及其吸波性能研究[D]. 上海: 东华大学, 2019.FAN Mingyuan. Preparation of carbonyl iron powder/thermoplastic resin composite and its microwave absorbing properties[D]. Shanghai: Donghua University, 2019(in Chinese). [22] 景红霞, 李巧玲, 叶云, 等. 纳米Fe3O4及Fe3O4-SrFe12O19吸波复合材料的制备及性能[J]. 复合材料学报, 2013, 30(1):130-134.JING Hongxia, LI Qiaoling, YE Yun, et al. Preparation and properties of nano-Fe3O4 and Fe3O4-SrFe12O19 absorbing composite materials[J]. Acta Materiae Compositae Sinica,2013,30(1):130-134(in Chinese). [23] 吴海华, 胡正浪, 李雨恬, 等. 铁镍合金/聚乳酸复合材料的熔融沉积成形制备及其电磁吸收性能和力学性能[J]. 复合材料学报, 2022, 39(1): 158-168.WU Haihua, HU Zhenglang, LI Yutian, et al. Electromagnetic absorption properties and mechanical properties of Fe-Ni alloy/polylactic acid composites fabricated by fused deposition modeling[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 158-168(in Chinese). [24] 黄海波, 沈勇, 杨明荣, 等. 海胆状MnO2/RGO复合材料的制备及吸波性能研究[J]. 现代化工, 2018, 38(6):154-157+159.HUANG Haibo, SHEN Yong, YANG Mingrong, et al. Study on preparation and microwave absorbin g properties of sea urchin-like MnO2/RGO composite materials[J]. Modern Engineering,2018,38(6):154-157+159(in Chinese). [25] 黄琪惠, 张豹山, 唐东明, 等. 石墨烯-Fe@Fe3O4纳米复合材料的制备及其电磁性能研究[J]. 无机化学学报, 2012, 28(10):2077-2082.HUANG Qihui, ZHANG Baoshan, TANG Dongming, et al. Preparation and electromagnetic properties of graphene-Fe@Fe3O4 nanocomposites[J]. Chinese Journal of Inorganic Chemistry,2012,28(10):2077-2082(in Chinese). [26] ZUO Y X, YAO Z J, LIN H Y, et al. Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption[J]. Composites Part B: Engineering,2019,179:107533. [27] NING M, LI J, KUANG B, et al. One-step fabrication of N-doped CNTs encapsulating M nanoparticles(M=Fe, Co, Ni) for efficient microwave absorption[J]. Applied Surface Science,2018,447:244-253. doi: 10.1016/j.apsusc.2018.03.242 [28] LIU P, NG HONG V M, YAO Z, et al. Facile synthesis and hierarchical assembly of flowerlike NiO2 structures with enhanced dielectric and microwave absorption properties[J]. ACS Applied Materials & Interfaces,2017,9(19):16404-16416. doi: 10.1021/acsami.7b02597 [29] WEI X, GEN Y, SONG B, et al. Construction of caterpillar-like hierarchically structured Co/MnO2/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption[J]. Carbon,2021,3(173):521-527.