留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超疏水材料在防/除冰技术中的应用研究进展

李君 矫维成 王寅春 殷宇昕 楚振明 赫晓东

李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38. doi: 10.13801/j.cnki.fhclxb.20210819.007
引用本文: 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38. doi: 10.13801/j.cnki.fhclxb.20210819.007
LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38. doi: 10.13801/j.cnki.fhclxb.20210819.007
Citation: LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38. doi: 10.13801/j.cnki.fhclxb.20210819.007

超疏水材料在防/除冰技术中的应用研究进展

doi: 10.13801/j.cnki.fhclxb.20210819.007
基金项目: 国家自然科学基金(51872065);国家重点研发计划课题(2018YFA0702802);深圳市科技计划(KQTD2016112814303055)
详细信息
    通讯作者:

    矫维成,博士,教授,博士生导师,研究方向为树脂基复合材料、防/除冰材料 E-mail:xiaojiao458@163.com

  • 中图分类号: TB331;TB332

Research progress on application of superhydrophobic materials in anti-icing and de-icing technology

  • 摘要: 结冰结霜给人们的生活带来诸多不便,大量结冰积冰会影响飞机的飞行安全、推迟火箭发射任务、引起电力网络故障、造成交通运输障碍,甚至引发重大的经济问题和人身安全问题。传统的防/除冰技术耗能大、效率低、易对环境造成污染。超疏水技术利用材料的本征属性,延缓结冰,显著降低冰与基底表面的黏附力,是极具发展前景的防/除冰技术。本文首先对固体表面润湿现象及结冰机制进行了介绍,指出超疏水防/除冰材料面临着低温高湿环境下憎水性丧失,耐久性较差,面向工程的大面积制备方法制约等问题。随后,对低温高湿环境用超疏水防/除冰材料、耐久性、制备方法、多功能复合超疏水防/除冰材料等方面的研究进展进行了综述和分析。最后,对超疏水防/除冰材料在实际工程中的应用进行归纳和总结。在此基础上,展望了超疏水防/除冰材料的研究前景和发展趋势。

     

  • 图  1  低温高湿环境下超疏水表面形成冷凝液滴[12]

    Figure  1.  Condensation of water vapor on a superhydrophobic surface at low temperature and high humidity[12]

    图  2  高过饱和度下冷凝水滴在纳米结构 (a) 和微纳米孔结构 (b) 超疏水表面的形成示意图[15]

    Figure  2.  Schematic illustration of condensation on the nanostructured superhydrophobic surface (a) and superhydrophobic surface (b) with a micropore array at a high supersaturation[15]

    图  3  刻蚀后的铝基底((a), (b))、苯基三乙氧基硅烷(PTES)修饰 ((c), (d))、十六酸(PA)修饰 ((e), (f)) 及聚二甲基硅氧烷(TTPS)修饰 ((g), (h)) 的改性基底表面形貌和三维表面轮廓[17]

    Figure  3.  SEM images and three-dimensional surface profiles of theetched sample Al ((a), (b)), and the phenyltriethoxysilane (PTES) ((c), (d)), palmitic acid (PA) ((e), (f)), as well as polydimethylsiloxane (TTPS) ((g), (h)) modified samples[17]

    Ra—Surface roughness of the sample

    图  4  ((a)~(c)) 三元微纳分级结构制备过程示意图;((d)~(d2)) 表面形貌[18]

    Figure  4.  ((a)-(c)) Schematic of the fabrication steps and the morphology of the triple-scale micro/nanostructured superhydrophobic surfaces; ((d)-(d2)) Typical morphologies of the triple-scale micro/nanostructures[18]

    图  5  (a)自相似方式失效示意图;(b)磨损前后超疏水表面的SEM图像[22-23]

    Figure  5.  (a) Schematic of fail in a self-similar manner; (b) SEM images of superhydrophobic surfaces before and after abrasion[22-23]

    图  6  SiO2疏水防冰涂层制备机制示意图及其耐久性[37]

    Figure  6.  Schematic of the surface feature formation mechanisms of SiO2 anti-icing coating and durability[37]

    图  7  部分耐久性测试示意图((a) 紫外线辐射;(b)泰伯尔磨损测试;(c)胶带粘结测试;(d)砂砾冲击测试;(e)喷水/滴水测试;(f)砂纸磨损测试[20, 28, 33-34])

    Figure  7.  Schematic of parts of quantify the durability((a) UV irradiation; (b) Taber abrasion test; (c) Tape adhesion test; (d) Sand impact test; (e) Water jet/dripping test; (f) Sandpaper abrasion test[20, 28, 33-34])

    H1—Height of impacting sand; at—Inclination angle of the sample; H2—Height of jetting water; d—Diameter of jetting water

    图  8  模板法制备超疏水表面[45]

    Figure  8.  Preparation of superhydrophobic surface by template method[45]

    图  9  等离子刻蚀制备示意图[49]

    Figure  9.  Plasma etching process of silicon micro-cubic structures[49]

    图  10  喷涂法制备超疏水涂层示意图[50]

    Figure  10.  Schematic of fabrication of superhydrophobic coating by spray[50]

    图  11  15 V加载电压下超疏水电热薄膜的除霜过程 (a) 和除冰过程 (b)[54]

    Figure  11.  Defrosting process (a) and deicing process (b) of the superhydrophobic electrothermal film after applying a DC voltage of 15 V[54]

    图  12  SiC/CNTs超疏水光热涂层除冰示意图[57]

    Figure  12.  Schematic of photothermal deicing of SiC/CNTs coating[57]

    图  13  超疏水复合电加热涂层 (a)、超疏水层表面 (b) 和电加热层 (c) 的SEM图像[62]

    Figure  13.  SEM images of superhydrophobic electrothermal coating section (a), superhydrophobic electrothermal coating surface (b) and electrothermal coating surface (c)[62]

    图  14  (a) 超疏水电加热涂层红外热成像;(b1) 除冰实验结果:(b2) 无加热层、(b3) 有加热层[62]

    Figure  14.  (a) Thermal infrared image of the blade coated with superhydrophobic electrothermal coating; (b1) Digital images after anti-icing test in low icing conditions of the overall rotating blades : (b2) No heating coating, (b3) Blade with superhydrophobic electrothermal coating[62]

    图  15  绝缘子户外防冰实验[64]

    Figure  15.  Anti-icing effects of as prepared electrical insulator in outdoor[64]

    图  16  河南电力公司试验站的绝缘子户外防冰结果[64]

    Figure  16.  Anti-icing effects of as-prepared electrical insulator in Experimental Station of Henan Power Company[64]

    图  17  风洞实验后,铝基底表面(左图)和超疏水表面(右图)的积冰效果[65]

    Figure  17.  After the wind tunnel experiments,ice accretion on an Al (left) and superhydrophobic surface (right)[65]

    表  1  耐久性测试方法总结

    Table  1.   A summary of common durability characterization techniques

    TechniqueAdopted operation conditionStandardReference
    UV irradiation Wavelength: Typically 320 nm to 400 nm in the UVA range
    (e.g., 365 nm, 340 nm and 325 nm), but 254 nm (UVC) also used
    Intensity: Several mW·cm−2 to 100 mW·cm−2
    Irradiation time: Several hours
    ASTM D4329[39] [19,22,24,29-30]
    Plasma Plasma ype: O2 plasma
    Time: Several seconds (e.g, 5 s, 15 s)
    [20-21]
    Tape adhesion test Tapes: Scotch 810 Magic Tape, Scotch 600 tape,VHB 4910 tape
    Applied pressure: typical pressure 10 kPa (up to 130 kPa)
    ASTM D3359[40] [20,23-24,28,31]
    Taber abrasion test Using a Taber abrasion machine
    Applied loads: 150 g, 200 g, 250 g
    Speed: Typically 60 r/min
    ASTM D4060[41] [29,34]
    Sandpaper abrasion test Sandpaper grade: Typically from 80 to 800 grit
    Applied pressure: Typically 15 kPa or less (up to 20 kPa)
    [20,22,26-28,30-34]
    Sand impacting Sand particle size: Typically 100 to 300 μm
    Height: Typically 25 to 40 cm (up to 110 cm)
    Amount: Typically 10 g to 100 g
    Sample angle: 45 °
    [24,28,37]
    Water jet/dripping test Droplet size: 22 μL or 100 μL per drop
    Height: 30 cm to 50 cm
    [24,34,37]
    Knife scratching test Scratching by hand with a knife [20,23,25-26]
    Solution immersion test Aqueous solutions: Pure water, 3.5wt% or 5wt% NaCl
    in water, pH 0 to 14, hot or cold
    [23-28,32,34]
    Ice formation/ice removal By mechanical removal, or by melting [26,36-37]
    Thermal/Freezing test Environment: air, liquid nitrogen
    Temperature: from −196℃ to 350℃
    [28,36]
    下载: 导出CSV
  • [1] 王晋, 纪双英, 益小苏, 等. 飞行器防/除冰技术研究进展[J]. 航空制造技术, 2015(S2):30-32.

    WANG Jin, JI Shuangying, YI Xiaosu, et al. Progress of the aircraft anti-icing/de-icing[J]. Aeronautical Manufacturing Technology,2015(S2):30-32(in Chinese).
    [2] 张薇, 刘长志, 范书群. 基于运载火箭使用环境的超疏水涂层防水防结冰应用研究[J]. 材料科学, 2020, 10(2):84-94. doi: 10.12677/MS.2020.102011

    ZHANG Wei, LIU Changzhi, FAN Shuqun. Application of super-hydrophobic coating on the waterproof and anti-icing functions based on the environment of space launch vehicles[J]. Material Sciences,2020,10(2):84-94(in Chinese). doi: 10.12677/MS.2020.102011
    [3] 刘韬文, 蒙文川, 戴承伟, 等. 风力发电机防冻融冰综述[J]. 湖北电力, 2019, 43(1):10-13.

    LIU Taowen, MENG Wenchuan, DAI Chengwei, et al. An overview of wind turbine generator anti-freezing and deicing[J]. Hubei Electric Power,2019,43(1):10-13(in Chinese).
    [4] HUANG X, TEPYLO N, POMMIER-BUDINGER V, et al. A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications[J]. Progress in Aerospace Sciences,2019,105:74-97. doi: 10.1016/j.paerosci.2019.01.002
    [5] LV J, SONG Y, JIANG L, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano,2014,8(4):3152-3169. doi: 10.1021/nn406522n
    [6] YOUNG T. An essay on the cohesion of fluids[J]. Proceedings of the Royal Society of London,1805(95):65-87.
    [7] WENZEL, ROBERT N. Resistance of soild surfaces to wetting by water[J]. Transactions of the Faraday Society,1936,28(8):988-994.
    [8] CASSIE A, BAXTER S. Wettability of porous surface[J]. Transactions of the Faraday Society,1944,40:546-550. doi: 10.1039/tf9444000546
    [9] EBERLE P, TIWARI M K, MAITRA T, et al. Rational nanostructuring of surfaces for extraordinary icephobicity[J]. Nanoscale,2014,6(9):4874-4881. doi: 10.1039/C3NR06644D
    [10] JUNG S, DORRESTIJN M, RAPS D, et al. Are superhydrophobic surfaces best for icephobicity?[J]. Langmuir,2011,27(6):3059-3066. doi: 10.1021/la104762g
    [11] HEYDARI G, THORMANN E, JÄRN M, et al. Hydrophobic surfaces: Topography effects on wetting by supercooled water and freezing delay[J]. The Journal of Physical Chemistry C,2013,117(42):21752-21762. doi: 10.1021/jp404396m
    [12] VARANASI K K, HSU M, BHATE N, et al. Spatial control in the heterogeneous nucleation of water[J]. Applied Physics Letters,2009,95(9):94101. doi: 10.1063/1.3200951
    [13] VARANASI K K, DENG T, SMITH J D, et al. Frost formation and ice adhesion on superhydrophobic surfaces[J]. Applied Physics Letters,2010,97(23):234102. doi: 10.1063/1.3524513
    [14] MILJKOVIC N, ENRIGHT R, WANG E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces[J]. ACS Nano,2012,6(2):1776-1785. doi: 10.1021/nn205052a
    [15] ZHANG Q, HE M, CHEN J, et al. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets[J]. Chemical Communications,2013,49(40):4516. doi: 10.1039/c3cc40592c
    [16] WEN M, WANG L, ZHANG M, et al. Antifogging and icing-delay properties of composite micro- and nanostructured surfaces[J]. ACS Applied Materials & Interfaces,2014,6(6):3963-3968.
    [17] WANG Y, LI M, LV T, et al. Influence of different chemical modifications on the icephobic properties of superhydrophobic surfaces in a condensate environment[J]. Journal of Materials Chemistry A,2015,3(9):4967-4975. doi: 10.1039/C4TA07077A
    [18] PAN R, ZHANG H, ZHONG M. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials& Interfaces,2021,13(1):1743-1753.
    [19] WANG N, XIONG D, DENG Y, et al. Mechanically robust superhydrophobic steel surface with anti-icing, uv-durability, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces,2015,7(11):6260-6272.
    [20] LI Y, LI B, ZHAO X, et al. Totally waterborne, nonfluorinated, mechanically robust, and self-healing superhydrophobic coatings for actual anti-icing[J]. ACS Applied Materials & Interfaces,2018,10(45):39391-39399.
    [21] QIN L, CHEN N, ZHU X, et al. A superhydrophobic aerogel with robust self-healability[J]. Journal of Materials Chemistry A,2018,6(10):4424-4431. doi: 10.1039/C8TA00323H
    [22] ZHANG X, GUO Y, CHEN H, et al. A novel damage-tolerant superhydrophobic and superoleophilic material[J]. Journal of Materials Chemistry A,2014,2(24):9002-9006. doi: 10.1039/C4TA00869C
    [23] DAVIS A, SURDO S, CAPUTO G, et al. Environmentally benign production of stretchable and robust superhydrophobic silicone monoliths[J]. ACS Applied Materials& Interfaces,2018,10(3):2907-2917.
    [24] WANG F, PI J, SONG F, et al. A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physicalrobustness[J]. Chemical Engineering Journal,2020,381:122539. doi: 10.1016/j.cej.2019.122539
    [25] ZHANG X, ZHU W, HE G, et al. Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie–Baxter state[J]. Journal of Materials Chemistry A,2016,4(37):14180-14186. doi: 10.1039/C6TA06493K
    [26] LIU Y, FU K, LIU J, et al. Design and preparation of a multi-fluorination organic superhydrophobic coating with high mechanical robustness and icing delay ability[J]. Applied Surface Science,2019,497:143663. doi: 10.1016/j.apsusc.2019.143663
    [27] TIAN G, ZHANG M, YAN H, et al. Nonfluorinated, mechanically stable, and durable superhydrophobic 3D foam iron for high efficient oil/water continuous separation[J]. Applied Surface Science,2020,527:146861. doi: 10.1016/j.apsusc.2020.146861
    [28] WU B, LYU J, PENG C, et al. Inverse infusion processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness[J]. Chemical Engineering Journal,2020,387:124066. doi: 10.1016/j.cej.2020.124066
    [29] WONG W S Y, STACHURSKI Z H, NISBET D R, et al. Ultra-durable and transparent self-cleaning surfaces by large-scale self-assembly of hierarchical interpenetrated polymer networks[J]. ACS Applied Materials & Interfaces,2016,8(21):13615-13623.
    [30] ZHI D, LU Y, SATHASIVAM S, et al. Large-scale fabrication of translucent and repairable superhydrophobic spray coatings with remarkable mechanical, chemical durability and UV resistance[J]. Journal of Materials Chemistry A,2017,5(21):10622-10631. doi: 10.1039/C7TA02488F
    [31] BOBAN M, GOLOVIN K, TOBELMANN B, et al. Smooth, all-solid, low-hysteresis, omniphobic surfaces with enhanced mechanical durability[J]. ACS Applied Materials & Interfaces,2018,10(14):11406-11413.
    [32] CHEN W, ZHANG P, ZANG R, et al. Nacre-inspired mineralized films with high transparency and mechanically robust underwater superoleophobicity[J]. Advanced Materials,2020,32(11):1907413. doi: 10.1002/adma.201907413
    [33] SOJOUDI H, WANG M, BOSCHER N D, et al. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces[J]. Soft Matter,2016,12:1938-1963. doi: 10.1039/C5SM02295A
    [34] PENG C, CHEN Z, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials,2018,17(4):355-360. doi: 10.1038/s41563-018-0044-2
    [35] QING Y, SHI S, LV C, et al. Microskeleton-nanofiller composite with mechanical super-robust superhydrophobicity against abrasion and impact[J]. Advanced Functional Materials,2020,30(39):1910665. doi: 10.1002/adfm.201910665
    [36] JAMIL M I, ZHAN X, CHEN F, et al. Durable and scalable candle soot icephobic coating with nucleation and fracture mechanism[J]. ACS Applied Materials & Interfaces,2019,11(34):31532-31542.
    [37] WU X, ZHAO X, HO J W C, et al. Design and durability study of environmental-friendly room-temperature processable icephobic coatings[J]. Chemical Engineering Journal,2019,355:901-909. doi: 10.1016/j.cej.2018.07.204
    [38] KREDER M J, ALVARENGA J, KIM P, et al. Design of anti-icing surfaces: smooth, textured or slippery[J]. Nature Reviews Materials,2016,1(1):15003.
    [39] ASTM. Standard practice for fluorescent ultraviolet (UV) lamp apparatus exposure of plastics: ASTM D4329[S].West Conhohcken: ASTM, 2013.
    [40] ASTM. Standard test methods for rating adhesion by tape test: ASTM D3359[S]. West Conhohcken: ASTM, 2017.
    [41] ASTM. Standard test method for abrasion resistance of organic coatings by the taber abraser: ASTM D4060[S]. West Conhohcken: ASTM, 2014.
    [42] 赵美蓉, 周惠言, 康文倩, 等. 超疏水表面制备方法的比较[J]. 复合材料学报, 2021, 38(2):361-379.

    ZHAO Meirong, ZHOU Huiyan, KANG Wenqian, et al. A comparison of methods for fabricating superhydrophobic surface[J]. Acta Materiae Compositae Sinica,2021,38(2):361-379(in Chinese).
    [43] 张磊, 王斐, 潘蕾. CF/PEEK复合材料表面构筑微纳米结构及其防冰性能的研究[J]. 航空制造技术, 2019, 62(17): 95-101.

    ZHANG Lei, WANG Fei, PAN Lei. Fabricating micro-nano structure on surface of CF/PEEK composite and study on its anti–icing property[J]. 2019, 62(17): 95-101(in Chinese).
    [44] 沈一洲, 陶杰, 朱春玲, 等.树脂基复合材料表面制备超疏水微结构防覆冰表面的方法: 中国, CN108044922B[P]. 2019-08-13.

    SHEN Yizhou, TAO Jie, ZHU Chunling, et al. Preparation of superhydrophobic microstructure anti icing surface on resin matrix composites: China, CN108044922B[P]. 2019-08-13 (in Chinese).
    [45] SHAO Y, ZHAO J, FAN Y, et al. Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect”[J]. Chemical Engineering Journal,2020,382:122989. doi: 10.1016/j.cej.2019.122989
    [46] WANG Y, XUE J, WANG Q, et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface[J]. ACS Applied Materials & Interfaces,2013,5(8):3370-3381.
    [47] EMELYANENKO A M, BOINOVICH L B, BEZDOMNIKOV A A, et al. Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions[J]. ACS Applied Materials & Interfaces,2017,9(28):24210-24219.
    [48] JIN M, SHEN Y, LUO X, et al. A combination structure of microblock and nanohair fabricated by chemical etching for excellent water repellency and icephobicity[J]. Applied Surface Science,2018,455:883-890. doi: 10.1016/j.apsusc.2018.06.043
    [49] HOU W, SHEN Y, TAO J, et al. Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,586:124180. doi: 10.1016/j.colsurfa.2019.124180
    [50] 尹园. 基于POSS和MOF纳米粒子的防冰表面设计及性能研究[D]. 长春: 吉林大学, 2018.

    YIN Yuan. Design and property research of anti-icing surfaces based on nanosized POSS and MOF particles[D]. Changchun: Jinlin University, 2018 (in Chinses).
    [51] SHEN Y, WU Y, TAO J, et al. Spraying fabrication of durable and transparent coatings for anti-icing application: Dynamic water repellency, icing delay, and ice adhesion[J]. ACS Applied Materials & Interfaces,2018,11(3):3590-3598.
    [52] ZHU T, CHENG Y, HUANG J, et al. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning[J]. Chemical Engineering Journal,2020,399:125746. doi: 10.1016/j.cej.2020.125746
    [53] WANG T, ZHENG Y, RAJI A O, et al. Passive anti-icing and active deicing films[J]. ACS Applied Materials & Interfaces,2016,8(22):14169-14173.
    [54] CHU Z, JIAO W, HUANG Y, et al. FDTS-modified SiO2/rGO Wrinkled films with a micro-nanoscale hierarchical structure and anti-icing/deicing properties under condensation condition[J]. Advanced Materials Interfaces,2019,7(1):1901446.
    [55] MATSUBAYASHI T, TENJIMBAYASHI M, MANABE K, et al. Integrated anti-icing property of super-repellency and electrothermogenesis exhibited by PEDOT:PSS/cyanoacrylate composite nanoparticles[J]. ACS Applied Materials & Interfaces,2016,8(36):24212-24220.
    [56] WU L, WANG L, GUO Z, et al. Durable and multifunctional superhydrophobic coatings with excellent joule heating and electromagnetic interference shielding performance for flexible sensing electronics[J]. ACS Applied Materials & Interfaces,2019,11(37):34338-34347.
    [57] JIANG G, CHEN L, ZHANG S, et al. Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties[J]. ACS Applied Materials & Interfaces,2018,10(42):36505-36511.
    [58] LIU Y, WU Y, LIU Y, et al. Robust photothermal coating strategy for efficient ice removal[J]. ACS Applied Materials & Interfaces,2020,12(41):46981-46990.
    [59] MA L, WANG J, ZHao F, et al. Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications[J]. Composites Science and Technology,2019,181:107696. doi: 10.1016/j.compscitech.2019.107696
    [60] WU B, CUI X, JIANG H, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances[J]. Journal of Colloid and Interface Science,2021,590:301-310. doi: 10.1016/j.jcis.2021.01.054
    [61] 冯放, 沈虎, 赵宏伟, 等. 超疏水MoS2纳米涂层叶片防覆冰特性研究[J]. 工程热物理学报, 2021, 42(5):1169-1175.

    FENG Fang, SHEN Hu, ZHAO Hongwei, et al. Research on anti-icing characteristics of superhydrophobic MoS2 nano-coated blade[J]. Journal of Engineering Thermophysics,2021,42(5):1169-1175(in Chinese).
    [62] ZHAO Z, CHEN H, LIU X, et al. Development of high-efficient synthetic electric heating coating for anti-icing/de-icing[J]. Surface and Coatings Technology,2018,349:340-346. doi: 10.1016/j.surfcoat.2018.06.011
    [63] 杨洋, 黄文龙, 李剑, 等. 一种绝缘子超疏水防覆冰涂层覆冰初期的电气试验研究[J]. 高压电器, 2013, 49(1):46-49.

    YANG Yang, HUANG Wenlong, LI Jian, et al. Electrical tests of super-hydrophobic coating in early stage of icing on insulators[J]. High Voltage Apparatus,2013,49(1):46-49(in Chinese).
    [64] LI X, YANG B, ZHANG Y, et al. A study on superhydrophobic coating in anti-icing of glass/porcelain insulator[J]. Journal of Sol-Gel Science and Technology,2014,69(2):441-447. doi: 10.1007/s10971-013-3243-y
    [65] DE PAUW D, DOLATABADI A. Effect of superhydrophobic coating on the anti-icing and deicing of an airfoil[J]. Journal of Aircraft,2017,54(2):490-499. doi: 10.2514/1.C033828
    [66] 朱宝. 低能耗超疏水电热蒙皮设计及防冰性能研究[D]. 西安: 西北工业大学, 2018.

    ZHU Bao. Low Power superhydrophobic electrothermal skin and its anti-icing performance[D]. Xi'an: Northwestern Polytechnical University, 2018(in Chinese).
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  2663
  • HTML全文浏览量:  988
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2021-07-25
  • 录用日期:  2021-08-07
  • 网络出版日期:  2021-08-20
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回