Sectionalization-based reinforcement optimization of composite-wound case dome through multi-island genetic algorithm
-
摘要: 针对Ф150 mm非等极孔复合材料缠绕壳体,开展了水压爆破试验研究,并通过建立基于三维Hashin失效准则的壳体精细化渐进损伤有限元模型,对壳体复合材料失效模式、爆破位置以及爆破压强进行了准确预测,以验证有限元模型的可靠性。以此为基础,根据壳体封头应力分布状态,建立了基于多岛遗传算法的封头分区补强优化模型,对补强层数和补强角度进行优化,揭示了不同分区补强角度及其耦合作用对封头纤维应力的影响机制,继而获得不同分区最优的补强角度及补强层数,并通过分区补强试验进行验证。结果表明,封头赤道圆至金属接头肩部区域补强角度对纤维应力的影响更为显著,宜采用小角度进行补强;而接头肩部至极孔范围内需采用较大角度分别对轴向和环向进行补强。通过分区补强水压爆破试验结果可知,壳体爆压提高了37.5%,壳体特性系数提高16.6%,说明该优化模型是准确且可靠的。Abstract: The hydrostatic tests for the Ф1
50 mm composite-wound cases with unequal poler openings were carried out. In order to precisely predict the failure modes, burst position and the burst pressure of the composite cases, the progressive damage model based on the 3D Hashin failure criteria was established and its reliability was evaluated by experimental results. Based on the finite element model, the sectionalization-based reinforcement optimization model through multi-island genetic algorithm was established to optimize the reinforcing layers and angles according to the stress distribution on domes. The influence mechanism of the reinforcing angles in different subareas and its coupling effect on the fiber stress were revealed and then the optimal reinforcing angles and layers were obtained. In addition, the subareaalization-based reinforcement test was implemented to validate the optimization model. The results of the numerical model show that the reinforcing angle from the equator of the dome to the shoulder of the metal boss has a more significant effect on the fiber stress and the relative small angle should be employed to reinforce domes; however, the relative large reinforcing angle in the subarea ranging from the poler openings to the shoulder of the boss should be applied to reinforce the axial and circumferential directions. The results of hydraulic burst test of the reinforcing case show that the burst pressure and the performance factor increase by 37.5% and 16.6%, respectively, compared with that of composite case without reinforcement, which indicates that the optimization model is accurate and reliable. -
表 1 复合材料壳体水压爆破试验结果
Table 1. Results of hydrostatic burst tests of composite cases
1# 2# 3# Average value Burst pressure P/MPa 17.5 17.0 18.0 17.5 Performance factor PV/W/km 26.5 25.8 27.3 26.5 Notes: V—Volume; W—Mass of composite materials. 表 2 内衬和金属接头材料属性
Table 2. Mechanical properties of liner and metal boss
Parameter Liner Metal boss Elasticity modulus E/GPa 0.9 196 Poisson’s ratio µ 0.4 0.3 表 3 T700碳纤维/环氧树脂复合材料力学性能参数
Table 3. Mechanical properties of T700 carbon fiber/epoxy composite
Parameter Value Extensional modulus in1- direction E11/GPa 140 Extensional modulus in 2- direction E22/GPa 9.68 Extensional modulus in 3- direction E33/GPa 9.98 Shear modulus G12/GPa 3.92 Shear modulus G23/GPa 2.92 Shear modulus G13/GPa 3.92 Poisson’s ratio μ12 0.32 Poisson’s ratio μ23 0.43 Poisson’s ratio μ13 0.32 Longitudinal tensile strength Xt/MPa 2250 Longitudinal compressive strength Xc/MPa 1250 Transverse tensile strength in Yt/MPa 49 Transverse compressive Yc/MPa 180 Shear strength S/MPa 61 表 4 复合材料壳体封头分区尺寸
Table 4. Subarea dimensions of domes of the composite case
Dome reinforcement information Subarea A Subarea B Back dome Subarea a1+
Subarea l1Subarea b1+
Subarea l1Front dome Subarea a2+
Subarea l2Subarea b2+
Subarea l2Range of
subareas/mmBack dome 0-22 15-36 Front dome 0-24 17-36 Width of
subareas/mmBack dome 26 53 Front dome 29 50 表 5 复合材料壳体补强角度变化后纤维应力轴向分力对比
Table 5. Comparison of the axial component of fiber stress after reinforcement angle changing of composite case
Parameter Original reinforcement angle Maximum reinforcement angle after change Subarea A Subarea B Subarea A Subarea B Reinforcement angle/(°) α=3 α=37 α1=10.5 α1=40 α2=34 Axial component of fiber stress ($ F\cos \alpha$) 0.9986F 0.7986F 0.9833F 0.766F 0.829F Error/% − − −1.5 −4.1 3.8 Notes: F—Stress in fiber direction; α—Reinforcement angle; α1 and α2—Maximum and minimum reinforcement angle, respectively. -
[1] HAYMES R, GAL E. Transient thermal multiscale analysis for rocket motor case: Mechanical homogenization approach[J]. Journal of Thermophysics and Heat Transfer,2017,31(2):324-336. doi: 10.2514/1.T4929 [2] 鲁昊钺, 徐晓卫, 郑庆, 等. 带药缠绕复合材料壳体张力分析及优化研究[J]. 固体火箭技术, 2021, 44(5):574-580.LU Haoyue, XU Xiaowei, ZHENG Qing, et al. Tension analysis and optimum of winding composite cases with grain core mandrel[J]. Journal of Solid Rocket Technology,2021,44(5):574-580(in Chinese). [3] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650.XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1629-1650(in Chinese). [4] 冯彬彬, 袁金, 胡旭辉, 等. 大长径比固体火箭发动机壳体轻量化设计[J]. 复合材料科学与工程, 2021(5):43-48.FENG Binbin, YUAN Jin, HU Xuhui, et al. Lightweight design of solid rocket motor case with large aspect ratio[J]. Composites Science and Engineering,2021(5):43-48(in Chinese). [5] 李莹新, 莫纪安, 王秀云, 等. 固体火箭发动机壳体复合材料研究进展[J]. 航天制造技术, 2020, 222(4):69-73.LI Yingxin, MO Ji’an, WANG Xiuyun, et al. Progress of composite for solid rocket motor case[J]. Aerospace Manufacturing Technology,2020,222(4):69-73(in Chinese). [6] NIHARIKA B, VARMA B B. Design and analysis of composite rocket motor casing[J]. IOP Conference Series Materials Science and Engineering,2018,455:012034. doi: 10.1088/1757-899X/455/1/012034 [7] 耿宇欣, 强洪夫, 王路仙. 复合材料壳体封头补强技术研究[J]. 纤维复合材料, 2007, 24(4):23-26. doi: 10.3969/j.issn.1003-6423.2007.04.007GENG Yuxin, QIANG Hongfu, WANG Luxian. Development on dome reinforcement of composite case[J]. Fiber Composites,2007,24(4):23-26(in Chinese). doi: 10.3969/j.issn.1003-6423.2007.04.007 [8] GEORGE K, PANDA B P, MOHANTY S, et al. Recent developments in elastomeric heat shielding materials for solid rocket motor casing application for future perspective[J]. Polymers for Advanced Technologies,2018,29(1):8-21. doi: 10.1002/pat.4101 [9] ROH H S, HUA T Q, AHLUWALIA R K. Optimization of carbon fiber usage in type 4 hydrogen storage tanks for fuel cell automobiles[J]. International Journal of Hydrogen Energy,2013,38(29):12795-12802. doi: 10.1016/j.ijhydene.2013.07.016 [10] 张军, 汪宁. 大型玻璃纤维_环氧复合材料壳体开孔补强工艺技术研究[J]. 航天制造技术, 2007(4):31-34.ZHANG Jun, WANG Ning. Study on opening reinforcement technology of large glass fiber/epoxy composite coase[J]. Aerospace Manufacturing Technology,2007(4):31-34(in Chinese). [11] 王欢, 刘勇琼, 廖英强, 等. 碳纤维/环氧复合材料壳体补强新工艺及方法对比研究[J]. 宇航材料工艺, 2013, 2(2):88-91. doi: 10.3969/j.issn.1007-2330.2013.02.020WANG Huan, LIU Yongqiong, LIAO Yingqiang, et al. Comparison with new reinforcement technology of carbon/epoxy composite case[J]. Aerospace Materials & Technology,2013,2(2):88-91(in Chinese). doi: 10.3969/j.issn.1007-2330.2013.02.020 [12] 吕广普, 刘洪上, 杜相荣. 大直径纤维缠绕水容器封头增强研究[J]. 纤维复合材料, 2015(4):8-11. doi: 10.3969/j.issn.1003-6423.2015.04.002LÜ Guangpu, LIU Hongshang, DU Xiangrong. Study on the reinforcement of the end closure of large diameter filament winding water treatment vessels[J]. Fiber Composites,2015(4):8-11(in Chinese). doi: 10.3969/j.issn.1003-6423.2015.04.002 [13] 周伟江, 廖英强, 张世杰, 等. T800HB_环氧复合材料壳体爆破性能分析[J]. 宇航材料工艺, 2014, 44(3):95-97.ZHOU Weijiang, LIAO Yingqiang, ZHANG Shijie, et al. Analysis on burst pressure of T800HB/epoxy composite case[J]. Aerospace Materials & Technology,2014,44(3):95-97(in Chinese). [14] 张世杰, 王汝敏, 廖英强, 等. T800HB碳纤维复合材料壳体定量化等强度补强技术[J]. 宇航材料工艺, 2018, 48(3):51-55. doi: 10.12044/j.issn.1007-2330.2018.03.011ZHANG Shijie, WANG Rumin, LIAO Yingqiang, et al. Quantitative isostrength reinforcement of composite case made of T800HB carbon fiber[J]. Aerospace Materials & Technology,2018,48(3):51-55(in Chinese). doi: 10.12044/j.issn.1007-2330.2018.03.011 [15] 关云, 宋学宇, 贾有军, 等. 炭纤维复合材料壳体封头新型环向补强的数值模拟及试验[J]. 固体火箭技术, 2018, 41(3):356-362, 382.GUAN Yun, SONG Xueyu, JIA Youjun, et al. Experimental and simlation investigation on a novel hoop reinforcement of carbon filament-wound composite case dome[J]. Journal of Solid Rocket Technology,2018,41(3):356-362, 382(in Chinese). [16] ZHANG Q, XU H, JIA X L, et al. Design of a 70MPa type IV hydrogen storage vessel using accurate modeling techniques for dome thickness prediction[J]. Composite Structures,2020,236:111915. doi: 10.1016/j.compstruct.2020.111915 [17] VAN HIEN D, NGOC THANH T, TUNG LAM V, et al. Design of planar wound composite vessel based on preventing slippage tendency of fibers[J]. Composite Structures,2020,254:112854. doi: 10.1016/j.compstruct.2020.112854 [18] LIN S, YANG L, XU H, et al. Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion[J]. Composite Structures,2021,255:113046. doi: 10.1016/j.compstruct.2020.113046 [19] HU Z Y, CHEN M H, ZU L. Investigation on failure behaviors of 70 MPa Type IV carbon fiber overwound hydrogen storage vessels[J]. Composite Structures,2020,259(9):113387. [20] ZU L, XU H, JIA X L, et al. Winding path design based on mandrel profile updates of composite pressure vessels[J]. Composite Structures,2020,235:111766. [21] 崔浩, 闫群, 王向明, 等. 激光选区熔化成形铝合金板与CFR_省略_合板螺栓连接结构失效分析方法评估[J]. 复合材料学报, 2017, 12:126-133.CUI Hao, YAN Qun, WANG Xiangming, et al. Assessment of failure analysis method for the bolted structure betwween selective laser melting aluminum plate and CFRP composite laminate[J]. Acta Materiae Compositae Sinica,2017,12:126-133(in Chinese). [22] 吕青泉, 赵振强, 李超, 等. 2.5D机织复合材料的渐进损伤与失效模拟[J]. 复合材料学报, 2021, 38(8):2758-2768.LÜ Qingquan, ZHAO Zhenqiang, LI Chao, et al. Progressive damage and failure simulation of 2.5D woven composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2758-2768(in Chinese). [23] SONG B, LYU D, JIANG J. Optimization of composite ring stiffened cylindrical hulls for unmanned underwater vehicles using multi-island genetic algorithm[J]. Journal of Reinforced Plastics and Composites,2018,37(10):668-684. doi: 10.1177/0731684418760203 [24] NIU Y R, XU X W, GUO S X. Structural optimization design of a typical adhesive bonded honeycomb-core sandwich T-joint in side bending using multi-island genetic algorithm[J]. Applied Composite Materials,2021,28:1039-1066. [25] LIU Z H, TIAN S L, ZENG Q L, et al. Optimization design of curved outrigger structure based on buckling analysis and multi-island genetic algorithm[J]. Science Progress,2021,104(2):368504211023277. [26] REN P H, MENG S H, YI W M. Scheduling technology of satellites parallel final assembly based on Multi-island Genetic Algorithm[J]. Journal of Physics: Conference Series,2021,1650(3):032201.