Thermoplastic starch-based biodegradable plastics reinforced by carboxylated surface modification of nano silica
-
摘要: 为了提高热塑性淀粉(TPS)的力学和耐水性能,用硅烷偶联剂KH550及丁二酸酐对纳米SiO2微球(SM-COOH)表面进行羧基化改性以提高界面结合力,并通过挤出注塑工艺制备SM-COOH/TPS复合材料,研究了不同含量的SM-COOH对复合材料力学、动态热力学、热稳定、表面耐水及流变加工性能的影响。结果表明:SM-COOH的加入可显著提高TPS的性能。当SM-COOH含量为2.0wt%时,复合材料的拉伸强度及冲击强度分别达到最大值12.71 MPa和15.918 kJ/m2,相比纯TPS,分别提高近4倍和2.6倍;复合材料的热稳定性能达到最大值,最大分解速率所对应的温度为322.1℃;此时,复合材料的峰值和平衡扭矩适中,也具有较好的流变加工性能。此外,复合材料的转变温度和表面接触角则随着SM-COOH含量的增加而提高。因此,羧基化表面改性纳米SiO2是一种能有效提高SM-COOH/TPS复合材料的力学和耐水等性能的方法,在淀粉基生物降解塑料领域具有广阔的发展和应用前景。Abstract: In order to improve the mechanical properties and water resistance of thermoplastic starch (TPS), the carboxylated silica microspheres (SM-COOH) modified by coupling agent KH550 and succinic anhydride were used to prepare the SM-COOH/TPS composites by extrusion and injection molding process. The effects of different contents of SM-COOH on the mechanical properties, dynamic thermodynamics, thermal stability, surface water resistance and rheological properties of the composites were studied in details. The results show that the added SM-COOH can improve the performance of TPS. When the content of SM-COOH is 2.0wt%, the tensile strength and impact strength of the composites reach the maximum value of 12.71 MPa and 15.918 kJ/m2, respectively, which are nearly 4 times and 2.6 times higher than that of pure TPS. The temperature corresponding to the maximum decomposition rate in DTG curves reaches the maximum of 322.1℃, and the peak value and equilibrium torque of the composites are moderate, which shows the better rheological processing properties. In addition, with the increased SM-COOH content, the transition temperature and surface contact angle of composites also increase. Therefore, adding the carboxylated modified nano-SiO2 into TPS is an effective method to improve the performance of SM-COOH/TPS composites, and will be useful in the area of starch-based biodegradable plastics.
-
表 1 不同SM-COOH添加量的SM-COOH/TPS复合材料的转变温度(频率:1 Hz)
Table 1. Transition temperature of SM-COOH /TPS composites with different SM-COOH contents (Frequency: 1 Hz)
Sample Tα/℃ Tβ/℃ TPS 35.20 −50.97 0.5wt%SM-COOH/TPS 44.89 −47.03 1.0wt%SM-COOH/TPS 47.87 −46.86 1.5wt%SM-COOH/TPS 49.43 −46.15 2.0wt%SM-COOH/TPS 53.43 −43.13 2.5wt%SM-COOH/TPS 60.03 −41.12 3.0wt%SM-COOH/TPS 61.55 −41.03 Notes:Tα—High temperature peak; Tβ—Low temperature peak; SM-COOH—Carboxylated silica microspheres; TPS—Thermoplastic starch. 表 2 不同SM-COOH含量的SM-COOH/TPS复合材料的流变数据
Table 2. Rheological data of SM-COOH/TPS composites with different SM-COOH contents
Sample TPS 1.0wt%SM-COOH/TPS 2.0wt%SM-COOH/TPS 3.0wt%SM-COOH/TPS Initial torque/(N·m) 0 0 0 0 Peak torque/(N·m) 32.01 38.34 47.32 52.47 Equilibrium torque/(N·m) 9.04 10.02 11.32 11.78 -
[1] 查东东, 郭斌, 李本刚, 等. 热塑性淀粉耐水性的化学与物理作用机制[J]. 化学进展, 2019, 31(1):156-166.ZHA Dongdong, GUO Bin, LI Bengang, et al. Chemical and physical mechanism of water resistance for thermoplastic starch[J]. Progress in Chemistry,2019,31(1):156-166(in Chinese). [2] 查东东, 周文, 银鹏, 等. 热塑性淀粉力学性能的提升途径及作用机理[J]. 化学进展, 2019, 31(7):1044-1055.ZHA Dongdong, ZHOU Wen, YIN Peng, et al. Ways and mechanism of improving the mechanical properties of thermoplastic starch[J]. Progress in Chemistry,2019,31(7):1044-1055(in Chinese). [3] 周文, 张鑫, 马宏鹏, 等. 热塑性淀粉制备的化学与物理机制及方法[J]. 化学进展, 2021, 33(11): 1972-1982.ZHOU Wen, ZHANG Xin, MA Hongpeng, et al. Chemical and physical mechanism and method of preparation of thermoplastic starch[J]. Progress in Chemistry, 2021, 33(11): 1972-1982(in Chinese). [4] 周茜, 张瑶, 陈蓉, 等. SiO2表面改性对高填充SiO2/聚四氟乙烯复合薄膜性能的影响[J]. 复合材料学报, 2020, 37(9):2144-2151.ZHOU Qian, ZHANG Yao, CHEN Rong, et al. Effect of surface modification of SiO2 on properties of highly filled SiO2/polytetrafluoroethylene composite films[J]. Acta Materiae Compositae Sinica,2020,37(9):2144-2151(in Chinese). [5] 杨威, 詹迎青, 奉庆萤, 等. 低介电耐温改性空心SiO2填充含氟聚芳醚腈复合材料的制备及性能[J]. 复合材料学报, 2022, 39(5):2095-2106.YANG Wei, ZHAN Yingqing, FENG Qingying, et al. Preparation and properties of low dielectric and temperature-resistant poly (aryl ether nitrile) composites filled with modified hollow SiO2[J]. Acta Materiae Compositae Sinica,2022,39(5):2095-2106(in Chinese). [6] 赵莉, 杜蘅, 刘虎, 等. 纳米SiO2微球在PMMA凝胶聚合物电解质中的尺寸效应及其在全固态电致变色器件中的应用[J]. 复合材料学报, 2021, 38(5):1446-1454.ZHAO Li, DU Heng, LIU Hu, et al. Size effect of nano SiO2 microspheres in PMMA gel polymer electrolyte and its application in all-solid-state electrochromic devices[J]. Acta Materiae Compositae Sinica,2021,38(5):1446-1454(in Chinese). [7] LIU W Y, CHEN Y, TU X, et al. Processing and mechanical properties of starch and PVA composite reinforced by nano-SiO2[J]. Advanced Materials Research,2012,557-559:201-204. doi: 10.4028/www.scientific.net/AMR.557-559.201 [8] LIU W Y, CHEN Y, OUYANG L, et al. Processing and mechanical properties of starch and PCL composite reinforced by nano-SiO2[J]. Advanced Materials Research,2012,496:134-137. doi: 10.4028/www.scientific.net/AMR.496.134 [9] FROST K, BARTHES J, KAMINSKI D, et al. Thermoplastic starch–silica–polyvinyl alcohol composites by reactive extrusion[J]. Carbohydrate Polymers,2011,84(1):343-350. doi: 10.1016/j.carbpol.2010.11.042 [10] JIE Z, WEI G, BWA B, et al. Preparation and evaluation of starch-based extrusion-blown nanocomposite films incorporated with nano-ZnO and nano-SiO2[J]. International Journal of Biological Macromolecules,2021,183:1371-1378. doi: 10.1016/j.ijbiomac.2021.05.118 [11] LIU Y, FAN L, MO X, et al. Effects of nanosilica on retrogradation properties and structures of thermoplastic cassava starch[J]. Journal of Applied Polymer Science,2018,135(2):45687. doi: 10.1002/app.45687 [12] YAO K, CAI J, LIU M, et al. Structure and properties of starch/PVA/nano-SiO2 hybrid films[J]. Carbohydrate Polymers,2011,86(4):1784-1789. doi: 10.1016/j.carbpol.2011.07.008 [13] HUANG C, WANG D. Surface modification of nano-SiO2 particles with polycarboxylate ether-based superplasticizer under microwave irradiation[J]. ChemistrySelect,2017,2(29):9349-9354. doi: 10.1002/slct.201701493 [14] SOLEYMANIBROJENI M, SHI H, LIU F, et al. Effects of surface modification of nano-SiO2 imbedded in organic matrix on interfacial accumulation of water molecules: An atomistic simulation study[J]. Surfaces and Interfaces,2021,23:100942. doi: 10.1016/j.surfin.2021.100942 [15] SHANG Q Q, ZHOU Y H. Facile fabrication of hollow mesoporous silica microspheres with hierarchical shell structure via a sol-gel process[J]. Journal of Sol-Gel Science and Technology,2015,75(1):206-214. doi: 10.1007/s10971-015-3691-7 [16] YU Y X, GUO D Q, FANG J Y. Synthesis of silica aerogel microspheres by a two-step acid-base sol-gel reaction with emulsification technique[J]. Journal of Porous Materials,2015,22(3):621-628. doi: 10.1007/s10934-015-9934-8 [17] TIAN S J, GAO W, LIU Y J, et al. Effects of surface modification nano-SiO2 and its combination with surfactant on interfacial tension and emulsion stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,595:124682. doi: 10.1016/j.colsurfa.2020.124682 [18] 李传习, 李游, 高有为, 等. 纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响[J]. 复合材料学报, 2020, 37(10):2619-2635.LI Chuanxi, LI You, GAO Youwei, et al. Effect of nano-SiO2 mass fraction on the interface performance of glued carbon fiber reinforced polymer composite-steel specimen[J]. Acta Materiae Compositae Sinica,2020,37(10):2619-2635(in Chinese). [19] 王成江, 范正阳, 赵宁, 等. 硅烷偶联剂修饰下SiO2-甲基乙烯基硅橡胶分子界面的粘结性[J]. 复合材料学报, 2020, 37(12):3079-3090.WANG Chengjiang, FAN Zhengyang, ZHAO Ning, et al. Adhesion of SiO2-methyl vinyl silicone rubber molecular interface modified by silane coupling agents[J]. Acta Materiae Compositae Sinica,2020,37(12):3079-3090(in Chinese). [20] 刘钰馨, 盛家荣, 莫羡忠, 等. 二氧化硅粒子对热塑性木薯淀粉稳定性能的影响[J]. 弹性体, 2014(6):55-58. doi: 10.3969/j.issn.1005-3174.2014.06.011LIU Yuxin, SHENG Jiarong, MO Xianzhong, et al. Effect of silica particle on stability of thermoplastic cassava starch[J]. China Elastomerics,2014(6):55-58(in Chinese). doi: 10.3969/j.issn.1005-3174.2014.06.011 [21] 刘钰馨, 盛家荣, 莫羡忠, 等. 二氧化硅对热塑性木薯淀粉力学性能及加工行为的影响[J]. 高分子材料科学与工程, 2015(7):81-86.LIU Yuxin, SHENG Jiarong, MO Xianzhong, et al. Effect of silica on mechanical properties and processing behavior of thermoplastic cassava starch[J]. Polymer Materials Science & Engineering,2015(7):81-86(in Chinese). [22] 郭斌, 韩梓军, 薛灿, 等. 注塑工艺制备二氧化硅/热塑性淀粉复合材料[J]. 塑料, 2017, 46(4):23-25.GUO Bin, HAN Zijun, XUE Can, et al. Preparation of SiO2 reinforced thermoplastic starch composite by injection molding[J]. Plastics,2017,46(4):23-25(in Chinese). [23] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第1部分: 总则: GB/T 1040.1—2018 [S]. 北京: 中国标准出版社, 2018.Standardization Administration of the People’s Republic of China. Plastics determination of tensile properties part 1: General principles: GB/T 1040.1—2018 [S]. Beijing: China Standards Press, 2018 (in Chinese). [24] 田庆丰, 唐源, 刘亚兰, 等. 表面功能化纳米SiO2的制备及其在溶液聚合丁苯橡胶-顺丁橡胶中的应用[J]. 复合材料学报, 2020, 37(7):1703-1712.TIAN Qingfeng, TANG Yuan, LIU Yalan, et al. Preparation of surface functionalized nano SiO2 and its application in solution polymerized styrene butadiene rubber-polybutadiene rubber[J]. Acta Materiae Compositae Sinica,2020,37(7):1703-1712(in Chinese). [25] GUO B, ZHA D D, LI B G, et al. Polyvinyl alcohol microspheres reinforced thermoplastic starch composites[J]. Materials,2018,11(4):640. doi: 10.3390/ma11040640