Preparation of titanium dioxide ceramic slurry and its 3D printing for direct-ink-writing
-
摘要: 直写成型技术是一种基于浆料挤出的3D打印技术,具有设备简单、投入低,可在温和条件下制备出精细复杂的三维结构的优点,在先进陶瓷制备领域潜力巨大。但直写成型技术目前面临材料缺乏、浆料制备困难等难题。为此,首先自主研发了一种基于气压式的新型直写成型3D打印机。在此基础上,以二氧化钛为原料,选用聚乙烯醇(PVA)作为流动助剂和粘结剂,制备了适用于直写成型的二氧化钛陶瓷浆料,研究了PVA含量对浆料流变行为及其直写成型可打印性的影响。在此基础上,打印加工了具有复杂形状和结构的二氧化钛制件,考察了其断面形貌、打印精度,并进一步分析了其烧结后的性能等。结果表明PVA的加入有效的降低浆料的黏度,提高其流动性,有助于其3D打印,改善了打印制件层与层之间的粘结情况,但PVA含量大于10wt%后,会导致浆料在沉积阶段出现坍塌现象。此外,PVA含量增加后,会导致烧结件硬度降低,收缩率增加。Abstract: Based on slurry extrusion, direct-ink-writing (DIW), which is a simple and cost-effective 3D printing technology, enables the manufacturing of parts with fine and complex three-dimensional architecture under a mild condition. Accordingly, it has great potential and opportunities in the field of advanced ceramic preparation. However, DIW is currently facing problems such as lack of materials and difficulty in the preparation of suitable slurry, hindering its practical and commercial applications. In view of this, a new type of DIW 3D printer based on air pressure was developed in this work. On this basis, a titanium dioxide (TiO2) ceramic slurry suitable for direct writing molding was prepared by using TiO2 as raw material and polyvinyl alcohol (PVA) as a flow aid as well as a binder. The effect of PVA contents on the rheological behavior of the slurry and the DIW printability was systematically studied. Subsequently, TiO2 parts with complex shapes and structures were constructed successfully. The cross-sectional morphologies, printing accuracy as well as the shrinkage of the as-printed parts after sintering was further investigated. The results show that PVA can effectively reduce the viscosity of the slurry and improve its fluidity, which is beneficial to improve the 3D printability, and promote the adhesion between adjacent layers of the printed part. However, ceramic slurry with PVA content above 10wt% could suffer from slump during the deposition stage. With the increasing PVA content, the vickers hardness of the sintered parts decreases, and the shrinkage of the as-prepared parts increases.
-
Key words:
- 3D printing /
- direct-ink-writing(DIW) /
- titanium dioxide /
- polyvinyl alcohol /
- rheological properties
-
图 3 不同PVA含量下TiO2浆料的流变特性:(a) 不同PVA含量的TiO2浆料黏度与剪切速率关系图;(b) 不同PVA含量的TiO2浆料的复数模量与剪切应力关系图;(c) 不同PVA含量的TiO2浆料的屈服应力图;(d) 不同PVA含量的TiO2浆料的临界挤出压力图
Figure 3. Rheological properties of TiO2 slurry with different PVA contents: (a) Viscosity versus shear rate of TiO2 slurry with different PVA contents; (b) Complex modulus versus shear stress of TiO2 slurry with different PVA contents; (c) Yield stress of TiO2 slurry with various PVA contents; (d) Critical extrusion pressure of TiO2 slurry with various PVA contents
G'—Storage modules; G''—Loss modules
图 5 打印件横截面的扫描电镜图像及平均粒径图:((a)、(d)) 5wt%PVA;((b)、(e)) 10wt%PVA;((c)、(f)) 15wt%PVA;(g) 原始TiO2粉末;(h) 平均粒径图
Figure 5. SEM images and average particle size diagram of the cross-section of the printed parts: ((a), (d)) 5wt%PVA; ((b), (e)) 10wt%PVA; ((c), (f)) 15wt% PVA; (g) Original TiO2 powder; (h) Average particle size image
图 6 调整参数后的打印样品: (a) 圆螺旋结构;(b) 多层圆螺旋结构;(c) 迂回周期结构;(d) 多层迂回周期结构;(e) 稀疏多层木堆结构;(f) 致密多层木堆结构
Figure 6. Various complex shapes of TiO2 ceramic parts prepared by DIW 3D printing: (a) Circular spiral structure; (b) Multi-layer circular spiral structure; (c) Circuitous periodic structure; (d) Multilayer circuitous periodic structure; (e) Sparse multi-layer wood pile structure; (f) Dense multi-layer wood pile structure
图 8 不同PVA含量下打印件的金相图片及其力学性能:((a)、(d)) PVA含量为5wt%的烧结件及其金相照片;((b)、(e)) PVA含量为10wt%的烧结件及其金相照片;((c)、(f)) PVA含量为15wt%的烧结件及其金相照片;(g) 维氏硬度;(h) 烧结收缩率
Figure 8. Metallographic pictures and mechanical properties of prints with different PVA contents: ((a), (d)) Sintered part with 5wt%PVA content and its metallographic picture; ((b), (e)) Sintered part with 10wt%PVA content and its metallographic picture; ((c), (f)) Sintered part with 15wt%PVA content and its metallographic picture; (g) Vickers hardness; (h) Sintering shrinkage
表 1 TiO2浆料配比表
Table 1. Proportion table of TiO2 slurries
PVA content/wt% TiO2/% H2O/% 0 66.7 33.3 5 63.3 31.7 10 60.0 30.0 15 56.7 28.3 20 53.3 26.7 -
[1] STUDART A R, GONZENBACH U T, TERVOORT E, et al. Processing routes to macroporous ceramics: A review[J]. Journal of the American Ceramic Society,2006,89(6):1771-1789. doi: 10.1111/j.1551-2916.2006.01044.x [2] 姬梅梅, 朱时珍, 马壮. 航空航天用金属表面热防护涂层的研究进展[J]. 表面技术, 2021, 50(1):253-266.JI Meimei, ZHU Shizhen, MA Zhuang. Advance in the research of thermal protecticve coatings on aerospace metal surface[J]. Surface Technology,2021,50(1):253-266(in Chinese). [3] 方光武, 高希光, 宋迎东. 陶瓷基复合材料多层界面相应力传递的有限元模拟[J]. 复合材料学报, 2018, 35(12):3415-3422.FANG Guangwu, GAO Xiguang, SONG Yingdong, et al. Finite element simulation of stress transfer through the multilayer interphase in ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2018,35(12):3415-3422(in Chinese). [4] HAMMEL E C, IGHODARO O L R, OKOLI O I. Processing and properties of advanced porous ceramics: An application based review[J]. Ceramics International,2014,40(10):15351-15370. doi: 10.1016/j.ceramint.2014.06.095 [5] ALLEGRETTA I, ERAMO G, PINTO D, et al. The effect of mineralogy, microstructure and firing temperature on the effective thermal conductivity of traditional hot processing ceramics[J]. Applied Clay Science,2017,135:260-270. doi: 10.1016/j.clay.2016.10.001 [6] SIGMUND W M, BELL N S, BERGSTRÖM L. Novel powder-processing methods for advanced ceramics[J]. Journal of the American Ceramic Society,2000,83(7):1557-1574. [7] CHEN Z, LI Z, LI J, et al. 3D printing of ceramics: A review[J]. Journal of the European Ceramic Society,2019,39(4):661-687. doi: 10.1016/j.jeurceramsoc.2018.11.013 [8] 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5):1371-1386.FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica,2021,38(5):1371-1386(in Chinese). [9] 王艳, 范泽文, 赵建, 等. 3D打印制备碳纳米管/环氧树脂电磁屏蔽复合材料[J]. 复合材料学报, 2019, 36(1):1-6.WANG Yan, FAN Zewen, ZHAO Jian, et al. 3D-printed carbon nanotubes/epoxy composites for efficient electromagnetic interfernce shielding[J]. Acta Materiae Compositae Sinica,2019,36(1):1-6(in Chinese). [10] M’BARKI A, BOCQUET L, STEVENSON A. Linking rheology and printability for dense and strong ceramics by direct ink writing[J]. Scientific Reports,2017,7(1):1-10. doi: 10.1038/s41598-016-0028-x [11] ASGHARI ABID A, SHEIKHI A, SHAHHOSSEINI M, et al. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering[J]. Biofabrication,2020,12(4):045006. [12] LI Y Y, LI L T, LI B. Direct ink writing of 3-3 piezoelectric composite[J]. Journal of Alloys and Compounds,2015,620:125-128. doi: 10.1016/j.jallcom.2014.09.124 [13] FRANCHIN G, WAHL L, COLOMBO P. Direct ink writing of ceramic matrix composite structures[J]. Journal of the American Ceramic Society,2017,100(10):4397-4401. doi: 10.1111/jace.15045 [14] 杨海英, 郭蕊, 任泽春, 等. 抗氧剂/光稳定剂对3D打印光致变色木塑复合材料性能的影响[J]. 复合材料学报, 2021, 38(3):761-769.YANG Haiying, GUO Rui, REN Zechun, et al. Effect of antioxidant/light stabilizer on properties of 3D printed photochromic wood-plastic composites[J]. Acta Materiae Compositae Sinica,2021,38(3):761-769(in Chinese). [15] LEWIS J A. Colloidal processing of ceramics[J]. Journal of the American Ceramic Society,2000,83(10):2341-2359. [16] REVELO C F, COLORADO H A. 3D printing of kaolinite clay ceramics using the direct ink writing (DIW) technique[J]. Ceramics International,2018,44(5):5673-5682. doi: 10.1016/j.ceramint.2017.12.219 [17] AN T, HWANG K T, KIM J H, et al. Extrusion-based 3D direct ink writing of NiZn-ferrite structures with viscoelastic ceramic suspension[J]. Ceramics International,2020,46(5):6469-6476. doi: 10.1016/j.ceramint.2019.11.127 [18] LIU H J, LI D J, LI Y M. Investigation on paste extrudate features in ram extrusion process[J]. Applied Mechanics and Materials,2012,159:146-150. doi: 10.4028/www.scientific.net/AMM.159.146 [19] SMAY J E, GRATSON G M, SHEPHERD R F, et al. Directed colloidal assembly of 3D periodic structures[J]. Advanced Materials,2002,14(18):1279-1283. doi: 10.1002/1521-4095(20020916)14:18<1279::AID-ADMA1279>3.0.CO;2-A [20] SMAY J E, CESARANO J, LEWIS J A. Colloidal inks for directed assembly of 3-D periodic structures[J]. Langmuir,2002,18(14):5429-5437. doi: 10.1021/la0257135 [21] CHAN S S L, PENNINGE R M, EDWARDS L, et al. 3D printing of clay for decorative architectural applications: Effect of solids volume fraction on rheology and printability[J]. Additive Manufacturing,2020,35:101335. doi: 10.1016/j.addma.2020.101335 [22] CHAN S S L, SESSO M L, FRANKS G V. Direct ink writing of hierarchical porous alumina-stabilized emulsions: Rheology and printability[J]. Journal of the American Ceramic Society,2020,103(10):5554-5566. doi: 10.1111/jace.17305