Manufacturing and verification research for engine compartment rear structure based on AC729RTM polyimide composites
-
摘要: 针对某飞行器钛合金发动机舱尾区结构在应用中存在的结构变形、重量问题及高温环境需求,以耐温等级为350℃的AC729RTM聚酰亚胺树脂基复合材料为设计选材,开展了某飞机发动机舱尾区结构复合材料代替钛合金结构设计,建立了有限元分析模型对复合材料发动机舱尾区结构进行参数分析,最后获取了合理的结构设计参数,最后采用树脂传递模塑成型工艺(RTM)进行了复合材料发动机舱尾区结构制备,同时从静强度试验、结构变形和结构重量三个角度进行了验证评价。结果表明:聚酰亚胺复合材料发动机舱尾区结构经无损检测制件仅局部区域存在小面积孔隙(孔隙率<2%),整个制件的内部质量及外观状态良好;经静强度试验验证,发动机舱尾区结构除局部小范围脱粘外,未出现明显损伤及破坏,符合室温静强度要求;复合材料发动机舱尾区结构外形偏差控制在–0.808~0.664 mm,相比于钛合金结构取得了改善;结构质量相比钛合金减重约27.5%,取得了良好的减重收益。Abstract: In view of the structural deformation, weight and high-temperature requirements in the application of titanium engine compartment rear structure of a certain aircraft, composite structural design was carried out instead of titanium alloy for aircraft engine compartment rear structure, taking the AC729RTM polyimide composite with temperature resistance of 350℃ as design material. The finite element (FE) model of composite engine compartment rear structure was generated to perform parameter analysis and reasonable structural design parameters were obtained. The composite engine compartment rear structure was fabricated by resin transfer molding process (RTM). Finally, verification and evaluation were carried out from static strength test, structural deformation and weight. The results show that the internal quality and appearance of polyimide composite engine compartment rear structure are in good condition except for pores of small areas (porosity<2%) through non-destructive inspection. There are no obvious damages in engine compartment rear structure except for debonding of small areas through verification of static strength test, and satisfied the requirement of room temperament strength. The shape deviation of composite engine compartment rear structure is controlled in –0.808-0.664 mm and is better than titanium alloy structural. Compared with titanium alloy structural, the mass is reduced by 27.5%, achieving good benefits.
-
表 1 ZT7H3198P/AC729RTM复合材料发动机舱尾区结构材料力学性能
Table 1. Mechanical properties of ZT7H3198P/AC729RTM used for composite engine compartment rear structure
Parameter Value Parameter Value E1/GPa 67 E2/GPa 66 ν12 0.02 G12/GPa 4.5 Xt/MPa 790 Xc/MPa 632 Yt/MPa 709 Yc/MPa 594 ρ/(kg·m-3) 1550 t/mm 0.2 Notes: E1—Warp modulus; E2—Weft modulus; ν12—Poission ratio; G12—In-plane shear modulus; Xt—Warp tensile strength; Xc—Warp compressive strength; Yt—Weft tensile strength; Yc—Weft compressive strength; ρ—Density; t—Thickness. 表 2 ZT7H3198P/AC729RTM复合材料发动机舱尾区结构厚度参数
Table 2. Thickness parameters of ZT7H3198P/AC729RTM composite engine compartment rear structure
Group
No.Skin/mm T-rib/mm Ω-rib/mm Mass/
kg1 1.6 2 2 10.5 2 2 1.6 1.6 10.9 3 2 2 2 11.6 4 2.4 2 2 12.8 表 3 AC729RTM聚酰亚胺树脂性能
Table 3. Properties of AC729RTM polyimide
Item Property Glass transition temperature Tg (tanδ) 409℃ 5% decomposition temperature Td5% 542℃ Process period (η≤1 Pa·s) >8 h -
[1] 陈祥宝. 聚合物基复合材料手册[M]. 北京: 化学工业出版社, 2004: 1-3.CHEN Xiangbao. Handbook of polymer matrix composite[M]. Beijing: Chemical Industry Press, 2004: 1-3(in Chinese). [2] 邢丽英, 包建文, 礼嵩明. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.XING Liying, BAO Jianwen, LI Songming. Development status and facting challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese). [3] 杨乃宾. 新一代大型客机复合材料结构[J]. 航空学报, 2008, 29(3):596-604. doi: 10.3321/j.issn:1000-6893.2008.03.010YANG Naibin. Composite structures for new gen eration large commercial[J]. Aeronautica Sinica,2008,29(3):596-604(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.010 [4] HUNTER A B. Quality assurance of PMR-15[J]. Inter SAMPE Symposium and Exhibition,1987:375-389. [5] MICHAEL A M, MARY B, MADOR, et al. PMR polyimides with enhanced for high temperature application[C]. Inter SAMPE Symposium and Exhibition. Long Beach, California, 2001: 497-509. [6] 张朋, 周立正, 包建文, 等. 耐350℃RTM聚酰亚胺树脂及其复合材料性能[J]. 复合材料学报, 2014, 31(2):345-352.ZHANG Peng, ZHOU Lizheng, BAO Jianwen. Properties of 350℃ temperature-resistant RTM polyimide matrix resin and its composites[J]. Acta Materiae Compositae Sinica,2014,31(2):345-352(in Chinese). [7] GHOSE S, GANO R J, WARSON K A. Phenylethynyl terminated imide (PETI) composites made by high temperature VARTM[C]//14th European Conference on Composite Materials, Budapest, 2010: 306-315. [8] THOMPSON C M, CONNELL J W, HERG P. Adhesive and composite properties of a new Phenylethynyl terminated imide[C]//47th International SAMPE Symposium, Long Beach, California, 2002: 521-527. [9] HERGEN P M, SMITH JR J. Chemistry and properties of imide oligomers endcapped with phenylethy-nylphthalic anhydrides[J]. Polymer,1994,35(22):335-347. [10] YOKOTA R. Recent trends and space applications of polyimides[J]. Journal of Photopolymer Science and Technol-ogy,1999,12(2):209-216. doi: 10.2494/photopolymer.12.209 [11] HERGENROTHER P M. The use, design, synthesis, and properties of high performance/high temperature polymers: An overview[J]. High Performance Polymers,2003,15(1):3-45. doi: 10.1177/095400830301500101 [12] PARAKALAN K, LOU J Z, JAG S, et al. Characterization of fourth-generation high-temperature discontinuous fiber molding compounds[J]. International Journal of Polymer Analysis and Characterization,2009,14:588-599. doi: 10.1080/10236660903225452 [13] LINCOLN J E, MORGAN R J, CURLISS D B, et al. Effect of matrix chemical structure on the thermo-oxidative stability of addition cure poly(imide siloxane) composites[J]. Polymer Composites, 2008, 29(6): 585–596. [14] YANG Jintian, JIN Bin, HUANG Wei, et al. Synthesis and characterization of organsoluble polyimide and copolyimides from alicyclic dianhydride[J]. Chinese Journal of Polyer Science,2007,25(4):409-417. doi: 10.1142/S025676790700228X [15] DING Mengxian. Isomeric polyimides[J]. Progress in Polymer Science,2007,32:623-668. doi: 10.1016/j.progpolymsci.2007.01.007 [16] KASH L Mittal. Polyimides and other high-temperature polymers[M]. Netherlands: VSP/Brill, 2009: 19-31. [17] MEADOR M A. Recent advances in the development of processable high temperature polymes[J]. Annual Review of Materials Science,1998,28:599-630. doi: 10.1146/annurev.matsci.28.1.599 [18] LINCON J E, HOUNT S L, BROWNT J. Aging durability and high temperature mechanical performance of P2SI 900HT composite materials[C]. 39th International SAMPE Technical Conference, Cincinnati, 2007. [19] LINCOLN J E, HOUT S, FLAHERTY K, et al. High tempera-ture organic/inorganic addition cure polyimide compo-sites, Part 1: Matrix thermal properties[J]. Journal of Applied Polymer Science, 2008, 107(6): 3557–3567. [20] DONGHWAN C, GYEOMO Y. Fluorescence characterization of LaRC PETI-5, BMI, and LaRC PETI-5/BMI blends[J]. Fibers and Polymers,2002,3(2):60-67. doi: 10.1007/BF02875401 [21] CONNELL J W, SMITH J G, HERGENTHER P M, et al. High temperature transfer molding resins: Laminate properties of PETI-298 and PETI-330[J]. High Performance Polymers,2003,15(4):375. doi: 10.1177/09540083030154001 [22] CONNELL J W, SMITH J G, HERGENTHER P M, et al. High temperature transfer molding resin: Preliminary compo-site properties of PETI-375[C]//International SAMPE Symposium and Exhibition, Long Beach, California, 2004(5): 16-20. [23] 包建文, 陈祥宝. 发动机用耐高温聚酰亚胺树脂基复合材料的研究进展[J]. 航空材料学报, 2012, 32(6):3-12.BAO Jianwen, CHEN Xiangbao. Advance in high tempera-ture polyimide resin matrix composites for aeroengine[J]. Journal of Aeronautical Materials,2012,32(6):3-12(in Chinese). [24] 王震, 杨慧丽, 益小苏. 苯炔基封端的联苯型聚酰亚胺复合材料[J]. 航空材料学报, 2006, 23(3):1-4. doi: 10.3969/j.issn.1005-5053.2006.03.001WANG Zhen, YANG Huili, YI Xiaosu. Biophenyl poly-imide composite endcapped with phenylethynyl[J]. Jour-nal of Aeronautical Materials,2006,23(3):1-4(in Chinese). doi: 10.3969/j.issn.1005-5053.2006.03.001