留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机硅烷功能化碳点的制备及应用进展

曹文兵 孙争光 武钰涵 张玉红 詹园

曹文兵, 孙争光, 武钰涵, 等. 有机硅烷功能化碳点的制备及应用进展[J]. 复合材料学报, 2022, 39(3): 884-895. doi: 10.13801/j.cnki.fhclxb.20210816.001
引用本文: 曹文兵, 孙争光, 武钰涵, 等. 有机硅烷功能化碳点的制备及应用进展[J]. 复合材料学报, 2022, 39(3): 884-895. doi: 10.13801/j.cnki.fhclxb.20210816.001
CAO Wenbing, SUN Zhengguang, WU Yuhan, et al. Progresses in preparation and application of organosilane functionalized carbon dots[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 884-895. doi: 10.13801/j.cnki.fhclxb.20210816.001
Citation: CAO Wenbing, SUN Zhengguang, WU Yuhan, et al. Progresses in preparation and application of organosilane functionalized carbon dots[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 884-895. doi: 10.13801/j.cnki.fhclxb.20210816.001

有机硅烷功能化碳点的制备及应用进展

doi: 10.13801/j.cnki.fhclxb.20210816.001
基金项目: 湖北大学功能材料绿色制备与应用教育部重点实验室2020年开放课题项目
详细信息
    通讯作者:

    詹园,博士,硕士生导师,研究方向为纳米碳功能材料 E-mail:zy@hubu.edu.cn

  • 中图分类号: O613.71;O613.72;TB383

Progresses in preparation and application of organosilane functionalized carbon dots

  • 摘要: 碳点(Carbon dots,CDs)因其合成方法简单、原料来源广泛、光致发光性能优异、生物相容性好等优点,在生物成像、荧光探针等方面引起了广泛的研究兴趣。然而,CDs仍存在荧光量子产率低、聚集诱导荧光猝灭等不足,限制了其在光电器件领域中的应用。有机硅烷功能化CDs (SiCDs)不仅具有良好的液态荧光,而且能够保持其固态荧光性能,对拓展CDs的应用领域具有重要意义。综述了近年来国内外 SiCDs 的制备方法、性能调控与应用,总结了 SiCDs 在发展中存在的问题,并对 SiCDs 的发展方向进行了展望。

     

  • 图  1  一系列高发光有机硅烷功能化碳点 (SiCDs)的制备示意图[31]

    Figure  1.  Schematic diagram for the preparation of a series of highly luminescent organosilane functionalized CDs (SiCDs)[31]

    图  2  SiCDs的合成原理图及其在白光LED中的应用[32]

    Figure  2.  A schematic of synthesizing SiCDs with their application in white LED [32]

    CA—Citric acid; KH-792—N-[3-(Trimethoxysilyl)propyl]ethylenediamine

    图  3  水热法制备红色荧光SiCDs的示意图[44]

    Figure  3.  A schematic for the preparation of red emission SiCDs[44]

    图  4  CDs、SiCDs以及SiCDs凝胶玻璃的制备[54](a)和CDs 杂化硅球的制备示意图[55](b)

    Figure  4.  Schematic diagrams for the preparations of CDs, SiCDs and SiCDs gel glasses [54](a) and carbon nanodots-hybridized silica nanospheres[55](b)

    TEOS–Tetraethyl orthosilicate; CSNs–Carbon dots-hybridized silica nanospheres

    图  5  (a) SiCDs表面与Hg2+络合示意图;(b) SiCDs在添加0~5 µmol/L的Hg2+后的PL光谱[46]

    Figure  5.  (a) Schematic illustration of the Hg2+ complexation on SiCDs surface; (b) PL spectra of SiCDs in water with different Hg2+ concentrations of 0-5 µmol/L[46]

    图  6  (a) SiCDs作为荧光探针对槲皮素的检测;(b) SiCDs(5×10−5 g/mL)水溶液在添加不同浓度的槲皮素(0~40 μmol/L)后的荧光光谱图[63]

    Figure  6.  (a) Schematic illustration for quercetin sensing based on the SiCDs fluorescence system; (b) Fluorescence spectra of SiCDs (5×10−5 g/mL) in aqueous solution upon addition of different amounts of quercetin (0–40 μmol/L) [63]

    图  7  (a) SiCDs@DA的制备示意图;(b) SiCDs@DA和Ag+处理HeLa细胞的荧光显微镜图像[49]

    Figure  7.  (a) Schematic illustration of the procedure for SiCDs@DA; (b) Fluorescence microscope images of HeLa cell with different treatment with SiCDs@DA and Ag+[49]

    DA—Dopamine

    图  8  基于绿色SiCDs/红色CDs复合纳米材料的白光LEDs的示意图(a),冷和暖白光LEDs的发光光谱(b)和色坐标(c)[68]

    Figure  8.  Schematic diagram showing WLEDs based on the green SiCDs/red-CDs nanohybrids(a), EL spectra (b) and color coordinates (c) of the cold and warm WLEDs [68]

    CRI—Color rendering index; Tc—Color temperature

    图  9  氨基丙基甲基聚硅氧烷功能化碳点(AMS-CDs)及其交联硅橡胶的制备和应用[69]

    Figure  9.  Preparation and application of aminopropylmethylpolysiloxane carbon dots (AMS-CDs) and their cross-linking silicone rubbers[69]

    图  10  SiCDs用于制备闭孔结构CDs光子晶体及其亲液不浸润行为的示意图[71]

    Figure  10.  Schematic diagram of closed-cell CDs photonic crystals prepared by SiCDs and their wetting state of some organic solvents on the surface[71]

    PS—Polystyrene; PC—Photonic crystal

    图  11  高发光和UV屏蔽的SiCDs及其聚合物凝胶玻璃的制备示意图[52]

    Figure  11.  Schematic diagram for the preparation of highly luminescent and UV shielding SiCDs and their polymerized ormosil gel glasses [52]

    RT—Room temperature

    表  1  典型的前驱体直接合成法制备SiCDs的性能参数

    Table  1.   Typical performance parameters of SiCDs by direct synthesis method

    MaterialsSynthetic methodSolventT/℃Reaction timeEx/Em/nmPLQY
    /%
    Ref.
    CA, KH-602 Simple heating H2O 230 5-6 h 390/506 35-40 [20]
    CA, glucose, KH-792 Solvothermal EtOH, H2O 180 12 h 370/460 [21]
    CA, KH-792 Microwave-assisted Hydrothermal H2O 180 5 min 365/454 65.8 [34]
    CA, KH-602 Simple heating Acetone 150 5 min 580/640 9.6 [36]
    p-PD, KH-907 Solvothermal EtOH 180 12 h 500-560/604 5.5 [44]
    CA, KH-602 Solvothermal KH-602 150 4 h 360/465 51 [46]
    EDTA-2Na, KH-792 Microwave irradiation Glycerol 160 10 min 405/440 62 [47]
    CA, KH-550 Hydrothermal H2O 180 4 h 340/440 [48]
    Glycerol, KH-550 Microwave-assisted irradiation 5 min 400/476 12.4 [49]
    CA, KH-602 Simple heating KH-602 80 1 min 340-480/450-530 47 [50]
    CA, KH-602 Hydrothermal H2O 180 12 h 375/450 39.2 [51]
    CA, KH-792 Hydrothermal H2O 180 12 h 360/450 82 [52]
    CA, KH-602 Hydrothermal H2O 200 2 h 360/450 [53]
    Notes: T—Reation temperature; Ex—Excitation; Em—Emission;
    EDTA-2Na—Ethylenediaminetetraacetic acid disodium salt; p-PD—p-Phenylenediamine; PLQY—Photoluminescence quantum yield; KH-602—N-β-(Aminoethyl)-γ-aminopropyl methyl dimethoxysilane; KH-907—(3-Isocyanopropyl) triethoxysilane; KH-550—3-Aminopropyl triethoxysilane.
    下载: 导出CSV

    表  2  典型的后处理法合成SiCDs的性能参数

    Table  2.   Typical performance parameters of SiCDs by post-treatment method

    Materials of CDsSynthetic method of CDsSilaneSynthetic method of SiCDsSolventEx/Em/nmPLQY
    /%
    Ref.
    p-PD, IPT Solvothermal KH-560 Polycondensation EtOH 490/569-626 40 [54]
    Carbon fibers Simple heating KH-550 Polycondensation Ace 400/533 1.7 [55]
    CA, urea Hydrothermal KH-550 Polycondensation EtOH 350/445 55 [56]
    Chitosan, EDA Hydrothermal GPDMS Solvothermal EtOH 10.4 [57]
    Starch Ultrasonic KH-570 Modified Stöber approach EtOH 270-370/343-433 [58]
    PAR, EDA Ultrasonic KH-570 Ultrasonic H2O 420/510 28.3 [59]
    Notes: IPT—n-Propyl isocyanate; Ace—Acetonitrile; EDA—Ethylenediamine;
    GPDMS—3-Glycidoxypropyldimethoxymethylsilane; KH-560—3-Glycidoxypropyltrimethoxysilane;
    PAR—Polyamide resin; KH-570—γ-Methacryloxypropyltrimethoxysilane.
    下载: 导出CSV
  • [1] ZHANG J, YU S H. Carbon dots: Large-scale synthesis, sensing and bioimaging[J]. Materials Today,2016,19(7):382-393. doi: 10.1016/j.mattod.2015.11.008
    [2] XU X, RAY R, GU Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society,2015,126(40):12736-12737.
    [3] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society,2006,128(24):7756-7757. doi: 10.1021/ja062677d
    [4] LI X L, WANG W, LI Q L, et al. Design of Fe3O4@SiO2@mSiO2-organosilane carbon dots nanoparticles: Synthesis and fluorescence red-shift properties with concentration dependence[J]. Materials & Design,2018,151(8):89-101.
    [5] SANGUBOTL R, KIM J. Tripeptide and phenylboronic acid-functionalized eco-friendly carbon dots for dual sensing of dopamine and their bioimaging applications in SH-SY5Y cells[J]. Dyes and Pigments,2021,191:109364-109375. doi: 10.1016/j.dyepig.2021.109364
    [6] HIREMATH S D, BHOSLE A A, NAYSE A, et al. A redox-coupled carbon dots-MnO2 nanosheets based sensory platform for label-free and sensitive detection of E. coli[J]. Sensors and Actuators B Chemical,2021,339:129918-129928. doi: 10.1016/j.snb.2021.129918
    [7] XU L H, FANG G Z, PAN M F, et al. One-pot synthesis of carbon dots-embedded molecularly imprinted polymer for specific recognition of sterigmatocystin in grains[J]. Biosensors & Bioelectronics,2016,77:950-956.
    [8] SATO K, SATO R, ISO Y, et al. Surface modification strategy for fluorescence solvatochromism of carbon dots prepared from p-phenylenediamine[J]. Chemical Communications,2020,56(14):2174-2177.
    [9] DAS B, HOSSAIN S M, PRAMANICK A K, et al. One-pot synthesis of gel glass embedded with luminescent silicon nanoparticles[J]. ACS Applied Materials & Interfaces,2019,11(2):2507-2515.
    [10] WU J, XIN W, WU Y H, et al. Solid-state photoluminescent silicone-carbon dots/dendrimer composites for highly efficient luminescent solar concentrators[J]. Chemical Engineering Journal,2021,422:130158. doi: 10.1016/j.cej.2021.130158
    [11] OSTADHOSSE F, VULUGUNDAM G, MISRA S K, et al. Chirality inversion on the carbon dot surface via covalent surface conjugation of cyclic α-amino acid capping agents[J]. Bioconjugate Chemistry,2018,29(11):3913-3922. doi: 10.1021/acs.bioconjchem.8b00736
    [12] FITE M C, IMAE T. Capacitance enhancement of nitrogen-doped graphene oxide/magnetite with polyaniline or carbon dots under external magnetic field: Supported by theoretical estimation[J]. Journal of Colloid and Interface Science,2021,594:228-244. doi: 10.1016/j.jcis.2021.02.112
    [13] WANG X, CAO L, YANG S T, et al. Bandgap-like strong fluorescence in functionalized carbon nanoparticles[J]. Angewandte Chemie International Edition,2010,122(31):5438-5442.
    [14] YAO N Q, WANG H B, ZHANG L Q, et al. One-pot hydrothermal synthesis of silane-functionalized carbon nanodots as compatibilizers for the immiscible TPU/MVQ blends[J]. Applied Surface Science,2020,530:147124-147156. doi: 10.1016/j.apsusc.2020.147124
    [15] QU D, ZHENG M, ZHANG L G, et al. Formation mecha-nism and optimization of highly luminescent N-doped graphene quantum dots[J]. Scientific Reports,2014,4:5294-5303. doi: 10.1038/srep05294
    [16] CHEN Y H, ZHENG M T, XIAO Y, et al. A self-quenching-resistant carbon-dot powder with tunable solid-state fluo-rescence and construction of dual-fluorescence morphologies for white light-emission[J]. Advanced Materials,2016,28(2):312-318. doi: 10.1002/adma.201503380
    [17] ZHU J Y, BAI X, ZHAI Y, et al. Carbon dots with efficient solid-state photoluminescence towards white light-emittingdiodes[J]. Journal of Materials Chemistry C,2017,5(44):11416-11420. doi: 10.1039/C7TC04155A
    [18] HAO A J, GUO X J, WU Q, et al. Exploring the interactions between polyethyleneimine modified fluorescent carbon dots and bovine serum albumin by spectroscopic methods[J]. Journal of Luminescence,2016,170(1):90-96.
    [19] TANG J, KONG B, HAO W, et al. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging[J]. Advanced Materials,2013,25(45):6569-6574. doi: 10.1002/adma.201303124
    [20] LIU X J, ZHANG N, BING T, et al. Carbon dots based dual-emission silica nanoparticles as a ratio metric nanosensor for Cu2+[J]. Analytical Chemistry,2014,86(5):2289-2296. doi: 10.1021/ac404236y
    [21] WU D, LIU Y C, WU Y, et al. Microporous carbons derived from organosilica-containing carbon dots with outstanding supercapacitance[J]. Dalton Transactions,2018,47(17):5961-5967. doi: 10.1039/C8DT00484F
    [22] WU M, FAN Y J, LI J W, et al. Vinyl phosphate-functionalized, magnetic, molecularly-imprinted polymeric microspheres enrichment and carbon dots fluorescence-detection of organophosphorus pesticide residues[J]. Polymers,2019,11(11):1770-1788. doi: 10.3390/polym11111770
    [23] ZHNAG Y J, FENG J L, HE M L, et al. Efficient and stable white fluorescent carbon dots and CD-based glass thin-films via screen-printing technology for use in W-LEDs[J]. RSC Advances,2017,7(78):49542-49547. doi: 10.1039/C7RA09924J
    [24] LI Z Q, GUO J X, LI Z W, et al. Incorporating self-assembled silane-crosslinked carbon dots into perovskite solar cells to improve efficiency and stability[J]. Journal of Materials Chemistry A,2020,8(11):5629-5637. doi: 10.1039/D0TA00123F
    [25] LIU H, ZHANG H W, LI J Y, et al. Organic-inorganic hybrid carbon dots for cell imaging[J]. Materials Research Express,2018,5(4):045009. doi: 10.1088/2053-1591/aab7a4
    [26] DING H, WEI J S, ZHANG P, et al. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths[J]. Small,2018,14(22):1800612. doi: 10.1002/smll.201800612
    [27] YUAN K, ZHANG X H, QIN R H, et al. Surface state modulation of red emitting carbon dots for white light-emitting diodes[J]. Journal of Materials Chemistry C,2018,6(46):12631-12637. doi: 10.1039/C8TC04468F
    [28] SENDAO R M S, CRISTA D M A, AFONSO A C P, et al. Insight into the hybrid luminescence showed by carbon dots and molecular fluorophores in solution[J]. Physical Che-mistry Chemical Physics, 2019, 21(37): 20919-20926.
    [29] LU L Q, ZHU Y C, SHI C, et al. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation[J]. Carbon,2016,109:373-383. doi: 10.1016/j.carbon.2016.08.023
    [30] WANG S J, CHEN Z G, COLE I, et al. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence[J]. Carbon,2015,82:304-313. doi: 10.1016/j.carbon.2014.10.075
    [31] XIE Z, WANG F, LIU C Y. Organic-inorganic hybrid functional carbon dot gel glasses[J]. Advanced Materials,2012,24(13):1716-1721. doi: 10.1002/adma.201104962
    [32] ZHANG F, FENG X T, ZHANG Y, et al. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs[J]. Nanoscale,2016,8(16):8618-8647. doi: 10.1039/C5NR08838K
    [33] HUANG J J, ZHONG Z F, RONG M Z, et al. An easy approach of preparing strongly luminescent carbon dots and their polymer-based composites for enhancing solar cell efficiency[J]. Carbon,2014,70(2):190-198.
    [34] ZHENG J X, WANG Y L, ZHANG F, et al. Microwave-assisted hydrothermal synthesis of solid-state carbon dots with intensive emission for white light-emitting devices[J]. Journal of Materials Chemistry C,2017,5(32):8105-8111. doi: 10.1039/C7TC01701D
    [35] HE J L, HE Y L, CHEN Y H, et al. Solid-state carbon dots with red fluorescence and efficient construction of dual-fluorescence morphologies[J]. Small,2017,13(26):1700075. doi: 10.1002/smll.201700075
    [36] CHEN Q, ZHU P P, XIONG J, et al. A new dual-recognition strategy for hybrid ratiometric and ratiometric sensing perfluorooctane sulfonic acid based on high fluorescent carbon dots with ethidium bromide[J]. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy,2020,224:117362-117371.
    [37] HAO X L, PAN X H, GAO Y, et al. Facile synthesis of nitrogen-doped green-emission carbon dots as fluorescent off–on probes for the highly selective sensing mercury and iodine ions[J]. Journal of Nanoscience and Nanotechnology,2020,20(4):2045-2054. doi: 10.1166/jnn.2020.17374
    [38] SUN X B, ZHAO J R, WANG X Y, et al. The phosphorescence property of carbon dots presenting as powder, embedded in filter paper and dispersed in solid solution[J]. Journal of Luminescence,2020,218:116851-116858. doi: 10.1016/j.jlumin.2019.116851
    [39] HUANG H Y, TALITE M J, CAI K B, et al. Utilizing host–guest interaction enables the simultaneous enhancement of the quantum yield and stokes shift in organosilane-functionalized, nitrogen-containing carbon dots for laminated luminescent solar concentrators[J]. Nanoscale, 2020, 12(46): 23537-23545.
    [40] CHEN P C, CHEN Y N, HSU P C, et al. Photoluminescent organosilane-functionalized carbon dots as temperature probes[J]. Chemical Communications,2013,49(16):1639-1641. doi: 10.1039/c3cc38486a
    [41] LI G G, TIAN Y, ZHAO Y, et al. Recent progress in luminescence tuning of Ce3+ and Eu2+ activated phosphors for pc-WLEDs[J]. Chemical Society Reviews,2015,44(23):8688-8713. doi: 10.1039/C4CS00446A
    [42] ZHU Z J, ZHAI Y L, LI Z H, et al. Red carbon dots: Optical property regulations and applications[J]. Materials Today,2019,30:52-79. doi: 10.1016/j.mattod.2019.05.003
    [43] TANG G Q, ZHANG K, FENG T L, et al. One-step preparation of silica microspheres with super-stable ultralong room temperature phosphorescence[J]. Journal of Materials Chemistry C,2019,7(28):8680-8688. doi: 10.1039/C9TC02353D
    [44] WANG Y F, WANG K, HAN Z X, et al. High color rendering index trichromatic white and red LEDs prepared from silane-functionalized carbon dots[J]. Journal of Materials Chemistry C,2017,5(37):9629-9637. doi: 10.1039/C7TC02297B
    [45] KIM T H, WHITE A R, SIRDAARTA J P, et al. Yellow-emitting carbon nanodots and their flexible and transparent films for white LEDs[J]. ACS Applied Materials & Interfaces,2016,8(48):33102-33111.
    [46] WANG W T, KIM T, YAN Z, et al. Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection[J]. Journal of Colloid & Interface Science,2015,437:28-34.
    [47] GENG X, LI Z H, HU Y L, et al. One-pot green synthesis of ultrabright N-doped fluorescent silicon nanoparticles for cellular imaging by using ethylenediaminetetraacetic acid disodium salt as an effective reductant[J]. ACS Applied Materials & Interfaces,2018,10(33):27979-27986.
    [48] AMJADI M, HALLAJ T, MANZOORI J L, et al. An amplified chemiluminescence system based on Si-doped carbon dots for detection of catecholamines[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2018,201:223-228.
    [49] JIANG Y L, WANG Z Y, DAI Z H, et al. Preparation of silicon–carbon-based dots@dopamine and its application in intracellular Ag+ detection and cell imaging[J]. ACS Applied Materials & Interfaces,2016,8(6):3644-3650.
    [50] WANG F, XIE Z, ZHANG H, et al. Highly luminescent organosilane-functionalized carbon dots[J]. Advanced Functional Materials,2011,21(6):1027-1031. doi: 10.1002/adfm.201002279
    [51] LIU J C, REN J K, XIE Z, et al. Multi-functional organosilane-polymerized carbon dots inverse opals[J]. Nanoscale,2018,10(10):4642-4649. doi: 10.1039/C7NR09387J
    [52] XIE Z, DU Q Q, WU Y Z, et al. Full-band UV shielding and highly daylight luminescent silane-functionalized graphene quantum dot nanofluids and their arbitrary polymerized hybrid gel glasses[J]. Journal of Materials Chemistry C,2016,4(41):9879-9886. doi: 10.1039/C6TC02035F
    [53] BHOGAL S, KAUR K, MAHESHWARI S, et al. Surface molecularly imprinted carbon dots-based core-shell material for selective fluorescence sensing of ketoprofen[J]. Jour-nal of Fluorescence,2019,29(1):145-154. doi: 10.1007/s10895-018-2322-4
    [54] REN J K, SUN X M, WANG Y F, et al. Controllable photoluminescent and nonlinear optical properties of polymerizable carbon dots and their arbitrary copolymerized gel glasses[J]. Advanced Optical Materials,2018,6(12):1701273-1701279. doi: 10.1002/adom.201701273
    [55] LIU C, BAO L, TANG B, et al. Fluorescence-converging carbon nanodots-hybridized silica nanosphere[J]. Small,2016,12(34):4702-4706. doi: 10.1002/smll.201503958
    [56] MURA S, LUDMERCZKI R, STAGI L, et al. Integrating sol-gel and carbon dots chemistry for the fabrication of fluorescent hybrid organic-inorganic films[J]. Scientific Reports,2020,10(1):4770-4781. doi: 10.1038/s41598-020-61517-x
    [57] ZHANG D W, PAPAIOANNOU N, DAVID N M, et al. Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging[J]. Materials Horizons,2018,5(3):423-428. doi: 10.1039/C7MH00784A
    [58] LI J P, GUO H M, WEI A Q, et al. Preparation and characterization of blue-emitting carbon quantum dots and their silicone rubber composites[J]. Materials Research Express,2019,6(4):045310. doi: 10.1088/2053-1591/aafa42
    [59] DANG H, HUANG L K, ZHANG Y, et al. Large-scale ultrasonic fabrication of white fluorescent carbon dots[J]. Industrial & Engineering Chemistry Research,2016,55(18):5335-5341.
    [60] LIU Y S, LI W, WU P, et al. Organosilane-functionalized carbon quantum dots and their applications to “on-off-on” fluorometric determination of chromate and ascorbic acid, and in white light-emitting devices[J]. Microchimica Acta,2019,186(8):516-528. doi: 10.1007/s00604-019-3603-6
    [61] BAI L H, YAN H X, FENG Y B, et al. Multi-excitation and single color emission carbon dots doped with silicon and nitrogen: Synthesis, emission mechanism, Fe3+ probe and cell imaging[J]. Chemical Engineering Journal,2019,373:963-972. doi: 10.1016/j.cej.2019.05.103
    [62] RAO H, LIU W, LU Z, et al. Silica-coated carbon dots conjugated to CdTe quantum dots: A ratiometric fluorescent probe for copper(II)[J]. Microchimica Acta,2016,183(2):581-588. doi: 10.1007/s00604-015-1682-6
    [63] ZOU Y, YAN F H, ZHENG T C, et al. Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution[J]. Talanta,2015,135:145-148. doi: 10.1016/j.talanta.2014.12.029
    [64] ZHAN Y, SHANG B, CHEN M, et al. One-step synthesis of silica-coated carbon dots with controllable solid-state fluorescence for white light-emitting diodes[J]. Small,2019,15(24):1901161. doi: 10.1002/smll.201901161
    [65] YUAN F L, WANG Y K, SHARMA G, et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination[J]. Nature Photonics,2020,14(3):171-176. doi: 10.1038/s41566-019-0557-5
    [66] WEI Y, CHENG Z Y, LIN J, et al. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chemical Society Reviews,2019,48(1):310-350. doi: 10.1039/C8CS00740C
    [67] HUANG S C, WU J K, HSU W J, et al. Particle size effect on the packaging performance of YAG: Ce phosphors in white LEDs[J]. International Journal of Applied Ceramic Technology,2009,6(4):465-469. doi: 10.1111/j.1744-7402.2009.02367.x
    [68] YUAN B, XIE Z, CHEN P, et al. Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs[J]. Journal of Materials Chemistry C,2018,6(22):5957-5963. doi: 10.1039/C8TC01659C
    [69] WANG Y F, YIN Z M, XIE Z, et al. Polysiloxane functionalized carbon dots and their cross-linked flexible silicone rubbers for color conversion and encapsulation of white LEDs[J]. ACS Applied Materials & Interfaces,2016,8(15):9961-9968.
    [70] TALITE M, HUANG H Y, CAI K B, et al. Visible-transparent luminescent solar concentrators based on carbon nano-dots in the siloxane matrix with ultrahigh quantum yields and optical transparency at high-loading contents[J]. Journal of Physical Chemistry Letters,2020,11(2):567-573. doi: 10.1021/acs.jpclett.9b03539
    [71] LIU J C, XIE Z, SHANG Y Y, et al. Lyophilic but nonwettableorganosilane-polymerized carbon dots inverse opals with closed-cell structure[J]. ACS Applied Materials & Interfaces,2018,10(7):6701-6710.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1267
  • HTML全文浏览量:  579
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 修回日期:  2021-07-23
  • 录用日期:  2021-07-31
  • 网络出版日期:  2021-08-17
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回