Preparation of magnetic hydrotalcite composite and its Eosin Y adsorption performance
-
摘要: 为了解决水滑石型(LDH)吸附剂在污水处理中难回收的问题,采用双滴沉淀法将磁性Fe3O4颗粒与具有吸附性能的Ni-Mg-Al-LDH水滑石相结合,合成了Fe3O4@Ni-Mg-Al-LDH磁性水滑石复合吸附材料,利用SEM、XRD、FT-IR和氮气吸附脱附等表征对Fe3O4@Ni-Mg-Al-LDH材料的形貌和结构进行测试,并将其用于曙红Y染料废水处理。结果表明,Fe3O4@Ni-Mg-Al-LDH对曙红Y染料的吸附在20 min内较为迅速,120 min后吸附趋于平衡,且随着曙红Y初始浓度的升高,Fe3O4@Ni-Mg-Al-LDH对曙红Y染料的吸附量也逐渐增加,最大吸附量达到108.6 mg·g−1。同时,Fe3O4@Ni-Mg-Al-LDH对曙红Y的吸附过程符合Langmuir等温吸附模型和伪二级动力学方程,表明该吸附过程以单分子层化学吸附为主,且表面扩散和颗粒内扩散共同控制吸附速率。经五次循环后,吸附剂对曙红Y染料的去除率仍能保持80%以上,且吸附后易于磁分离,说明所制备的Fe3O4@Ni-Mg-Al-LDH磁性水滑石材料是一种良好的染料废水吸附剂。Abstract: In order to solve the problem of difficult recovery of hydrotalcite (LDH) adsorbent in sewage treatment, Fe3O4@Ni-Mg-Al-LDH magnetic hydrotalcite composite adsorption material was synthesized by combining magnetic Fe3O4 particles with Ni-Mg-Al-LDH hydrotalcite via double-drop precipitation method. The morphology and structure of the as-prepared Fe3O4@Ni-Mg-Al-LDH samples were characterized by SEM, XRD, FT-IR and N2 adsorption-desorption technologies. And it was used as adsorbent to simulate the wastewater treatment performance of Eosin Y dye. The results show that the adsorption of Eosin Y dye on Fe3O4@Ni-Mg-Al-LDH is very quickly within 20 min, while the adsorption tends to balance after 120 min. In addition, with the increase of the initial concentration of Eosin Y dye, the adsorption capacity of Fe3O4@Ni-Mg-Al-LDH sample for Eosin Y dye increases gradually and the maximum adsorption capacity is 108.6 mg·g−1. Meanwhile, the adsorption process of Eosin Y dye on Fe3O4@Ni-Mg-Al-LDH conforms to the Langmuir isothermal model and pseudo second-order kinetic equation, indicating that the adsorption process is dominated by the chemisorption of molecular layer, and the adsorption rate is controlled by surface diffusion and intra particle diffusion. After five cycles, the removal rate of Eosin Y dye still keeps above 80%, and the adsorbent is easy to be separated by magnetic field, implying that Fe3O4@Ni-Mg-Al-LDH magnetic hydrotalcite composite is a good adsorbent for dye wastewater.
-
Keywords:
- adsorption /
- hydrotalcite /
- magnetism /
- removal rate /
- Eosin Y /
- wastewater
-
随着我国桥梁建设的快速发展,交通量的增加,桥梁结构遭遇火灾情况也时有发生[1-4],2007年10月广东广深高速虎门大桥,油罐车爆炸引发大火,拉索和桥墩都被大火湮灭;2014年,湖南郴州在建赤石特大桥在主跨合拢前6号桥墩左幅塔顶突发大火,事故导致6号桥墩左幅9根斜拉索断裂,这些火灾事故对缆索的受力性能构成了极大的考验。文献[5-8]对钢丝缆索的高温力学性能进行研究,在火灾高温下钢丝力学性能会明显下降,导致缆索的承载能力急剧下降。
采用轻质、高强、耐腐蚀、抗疲劳的碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)用于桥梁缆索,可提高桥梁跨径,从根本上解决钢质拉索的腐蚀及疲劳问题。但CFRP索内的CFRP筋遇到火灾后环氧树脂会燃烧分解,影响其极限承载性能,对桥梁结构的安全造成影响。文献[9-12]通过试验研究发现,高温下CFRP筋的力学性能下降十分明显。付成龙等[11]研究了温度对CFRP筋弯曲强度和压缩强度的影响,研究显示温度对试样弯曲强度和压缩强度的影响较大,CFRP筋的强度保留率随温度升高而降低。方志等[12]对较高玻璃化转变温度Tg(Tg >200℃)的CFRP筋高温后力学性能进行研究,处理温度为100℃时,筋材静力性能与常温试件相比未发生明显变化,筋材经历200℃和300℃温升作用后,其抗拉强度、弹性模量和极限拉应变均有所下降。
文献[13-15]对桥梁缆索的阻燃防火措施做了一些研究。李艳等[13]在索体外表面设置一种导热系数很低的耐高温防火涂层,从而降低火源热辐射传给索体的温度。张凯等[14]研究了带砂浆包覆层CFRP筋的高温力学性能,在砂浆包覆层保持完好未爆裂的情况下,包覆层为CFRP筋提供了较好的隔氧环境,CFRP筋在长时间高温作用后具有较高的残余强度。徐玉林等[15]对外包陶瓷纤维防火层的CFRP索的耐火性进行了火灾试验研究,对CFRP 缆索外包陶瓷纤维防火层可大幅提高缆索的临界安全耐火时长。
综上所述,目前已有一些缆索的阻燃防火措施,如外包砂浆或陶瓷纤维防火层,但这些措施会大幅度增大索体直径,严重影响索体外表面的空气动力学特性。本文针对桥梁缆索用CFRP筋在高温下的力学性能及CFRP索的阻燃防火措施进行系统研究,研制开发具有阻燃防火特性的CFRP索,避免火灾带来的风险,保障应用安全,有助于CFRP索的推广应用。
1. CFRP筋高温力学性能
CFRP筋采用拉挤成型工艺制备,为了便于锚固,筋材表面带有螺旋肋,筋材底径7 mm,纤维体积分数为72vol%,密度为1.52 g/cm3,玻璃化转变温度Tg为120℃。
图1为CFRP筋高温拉伸试验。可见,筋材两端采用粘结型锚固方式,筋材锚固后穿过试验台架,在筋材中间自由段部位外套金属铝筒,金属铝筒外缠绕加热带对筒内空气进行加热,采用热电偶监测空气温度,采用温度继电器控制温度,使金属铝筒内温度保持设定温度,采用千斤顶加载,加载速度不超过300 MPa/min。筋材拉伸强度为筋材破断时压力传感器载荷读数除以筋材承载面积。
1.1 CFRP筋不同加热温度下力学性能
对筋材中间自由段部位进行加热,加热至指定温度,保温2 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。
图2为不同温度下保温 2 h后的CFRP筋材抗拉强度。可以看出,随着试验温度的升高,筋材拉伸强度呈线性下降趋势,270℃加热2 h,筋材强度降为2000 MPa左右,210℃加热2 h,筋材强度最低为2245.8 MPa,比初始强度下降26.13%。图3为保温2 h后筋材高温拉伸破断照片。可以看出,筋材发生了散丝状断裂。
1.2 CFRP筋不同加热时间下力学性能
对筋材中间自由段部位进行加热,加热至210℃,分别保温1、2、3 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。图4为210℃不同保温时间下的CFRP筋材抗拉强度。
可以看出,筋材高温拉伸强度仅与试验温度有关,当筋材芯部温度达到保温温度时,筋材的高温拉伸强度与保温时间无关,210℃的高温3 h内,筋材剩余拉伸强度均能达到2245.8 MPa以上。
1.3 CFRP筋加热冷却后力学性能
对筋材中间自由段部位进行加热,加热至指定温度,保温2 h,待筋材充分冷却至室温后进行破断拉伸试验,获得筋材经历高温冷却后的拉伸强度,如图5所示。可以看出,筋材高温加热冷却后继续进行拉伸试验,拉伸强度会存在一定的可逆性恢复,且恢复后的剩余强度均能达到2800 MPa以上,但最终剩余拉伸强度较原始强度呈略微下降趋势,且加热温度越高,剩余拉伸强度越低,最大下降幅度为6.13%。
2. CFRP索阻燃防火措施
分别采用石棉布、陶瓷纤维布及阻燃防火涂层材料来研究对CFRP筋/索的阻燃防火效果。
2.1 石棉布、陶瓷纤维布阻燃防火效果
对在持荷状态下的7 mm直径CFRP筋试验件中间部位用火焰温度1000℃的高温火焰枪进行灼烧,如图6所示,其中图6(a)中筋材无保护,图6(b)中筋材包裹陶瓷纤维布,观测不同时间筋材的受力状态及筋材表面的温度变化,灼烧2 h后,进行破断拉伸试验,获得剩余强度。
表1为不同防护措施下筋材温度及持荷性能。可以看出,在无任何防护条件下,对拉伸应力水平1170 MPa条件下的CFRP筋用火焰温度1000℃的高温火焰枪进行灼烧,25 min后,筋材灼烧部位树脂热解,筋材断裂;采用45 mm厚度陶瓷纤维布与石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高分别为562℃与635℃,筋材高温部位树脂发生热解,没有发生断裂(图7),剩余强度分别为1646 MPa与1249 MPa,图8为其破断试样;采用60 mm厚度石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高为170℃,筋材完好,没有发生断裂,剩余强度为3121 MPa,筋材基本没有发生损伤。
表 1 不同防护类型下CFRP筋材温度及持荷性能Table 1. Temperature and load carrying capacity of CFRP tendons under different protection typesProtection
typeProtection thickness/mm Burning time/min CFRP tendons temperature/℃ Stress level/MPa Test result Resident strength/MPa — — 25 1000 1170 Resin pyrolysis,
tendon tensile fracture— Ceramic fiber cloth 45 120 562 1170 Resin pyrolysis,
tendon is not fracture1646 Asbestos 45 120 635 1170 Resin pyrolysis,
tendon is not fracture1249 Asbestos 60 120 170 1170 The tendon is not damaged 3121 以上试验研究可以看出,包裹60 mm厚的石棉可以起到很好的阻燃防火效果,但是过厚的石棉必然影响索体直径,给CFRP索的盘卷带来困难,同时会改变索体表面原有的空气动力学特性,不方便应用。
2.2 阻燃防火涂层
选用一种阻燃防火涂层,刷在CFRP索股索体双层聚乙烯(PE)护套外表面,其中索股直径61 mm,PE护套厚度6 mm,阻燃防火涂层厚度2 mm,如图9所示。所用阻燃防火涂料层由基料丙烯酸乳液、膨胀催化剂聚磷酸铵、碳化剂季戊四醇、膨胀发泡剂三聚氰胺与氯化石蜡、颜料钛白粉、成膜助剂醇酯等组成。
在PE表面刷有2 mm阻燃防火涂层,并在索体PE内表面预埋测温线,用火焰温度1000℃的高温火焰枪对索股局部进行长达2 h的高温灼烧试验(图10),阻燃防火涂料层发生膨胀并形成均匀而致密蜂窝状碳化层,保护双层PE护套不发生燃烧,使得缆索具有阻燃防火特性,PE护套仅发生软化。无阻燃防火涂层保护的索体5 min内PE护套燃烧殆尽,漏出索体(图11)。图12为2 mm阻燃防火涂层温度-时间曲线。可以看出,2 h灼烧索股PE内表面最高温度为206℃。
2.3 CFRP索股表层不同位置处温度测定
为探究发生火灾时CFRP索股内部PE内筋材温度,将测温线置于不同位置处测量灼烧试验时各位置的温度(图13),分别为索股PE内表面、距离PE内表面7 mm、距离PE内表面14 mm。图14为灼烧2 h索股内部不同位置处温度-时间曲线。可以看出,紧贴PE内表面的温度最高,为206℃,其次是测温线与PE内表层间隔7 mm处的温度(次外层筋材),为156℃,温度最低的是与PE内表层距离14 mm处的温度(第三层筋材),为100℃。
3. 阻燃防火涂层耐火时间
针对阻燃防火涂层的不同厚度,试验研究在1000℃火焰灼烧下阻燃防火效果的持续性,索股规格同2.2节。图15为不同厚度阻燃防火涂层温度-时间曲线。可知无阻燃防火涂层防护,索股PE层5 min燃烧殆尽;0.3 mm厚度阻燃防火涂层可保护索股PE层20 min;1.4 mm厚度阻燃防火涂层可保护索股PE层160 min;刷有2 mm厚度阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层厚度为2 mm。
图16为2 mm厚度阻燃防火涂层的索股燃烧360 min试验过程的发泡过程。可以看出,随着火焰灼烧时间的增长,发泡层高度逐渐增大,发泡尺寸也逐渐增大,6 h熄火后形成一个6 cm×8 cm、高4 cm的发泡层,长达6 h的灼烧试验,PE内表面最高温度为245℃,熄火后,拨开厚厚的发泡层,PE护套仅发生软化。结合图15与图16,可以看出,燃烧前20 min为快速发泡升温阶段,发泡层快速增大,PE内表面温度从室温上升到196℃;20~140 min为稳定阶段,发泡层缓慢增大,PE内表面温度维持在203~209℃之间;140~360 min为动态平衡阶段,继续燃烧温度缓慢升高,燃烧至180 min,PE内表面温度达到216℃,阻燃防火涂层内层达到发泡温度开始发泡,发泡层高度增加,PE内表面温度下降,燃烧至240 min,PE内表面温度降至200℃,燃烧至280 min左右,发泡层表层开始发生热解,PE内表面温度升高至230℃左右,阻燃防火涂层内层达到发泡温度进一步发泡,发泡层高度持续增加,PE内表面温度下降,但随着发泡层表层热解,PE内表面温度又缓慢上升。
4. 结 论
(1) 碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋材高温剩余强度随温度升高呈线性下降趋势,210℃加热3 h,剩余强度最低为2245.8 MPa,比初始强度下降26.13%。
(2) CFRP筋材高温加热冷却后强度存在一定程度的可逆性恢复,剩余强度均能达到2800 MPa以上,但较原始强度略微下降,且经历温度越高剩余强度越低,最大下降幅度为6.13%。
(3) 对比3种阻燃防火措施,阻燃防火涂层具有较好的阻燃防火效果,2 h灼烧索股聚乙烯(PE)内表面最高温度为206℃,次外层筋材最高温度为156℃,第三层筋材最高温度为100℃,火灾2 h内,索股仍可承载,剩余强度≥2245 MPa。
(4) 阻燃防火涂层越厚防护时间越长,2 mm厚阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层的厚度为2 mm。
-
图 11 Fe3O4@Ni-Mg-Al-LDH吸附曙红Y的Langmuir (a)、Freundlich (b)、Temkin (c) 吸附等温线模型和Langmuir的RL参数变化曲线 (d)
Figure 11. Langmuir (a), Freundlich (b), Temkin (c) adsorption isotherm models and Langmuir parameter (RL) curve (d) of Eosin Y on Fe3O4@Ni-Mg-Al-LDH
Qe—Equilibrium adsorption capacity; ce—Equilibrium concentration; RL—Separation factor; c0—Initial concentration; R12, R22, R32—Correlation coefficient of Langmuir, Freundlich and Temkin models
图 12 Fe3O4@Ni-Mg-Al-LDH吸附曙红Y的伪一级动力学 (a)、伪二级动力学 (b) 和颗粒内扩散 (c) 模型
Figure 12. Pseudo-first-order (a), pseudo-second-order (b) and intra-particle diffusion kinetics model (c) for the adsorption of Eosin Y on Fe3O4@Ni-Mg-Al-LDH
R3i2, R3j2, R3k2—Correlation coefficient of the first, second and third stage of intra-particle diffusion model
表 1 Fe3O4@Ni-Mg-Al-LDH对曙红Y的吸附等温线参数
Table 1 Adsorption isotherm parameters of Eosin Y on Fe3O4@Ni-Mg-Al-LDH
Isotherm models Parameters Fe3O4@Ni-Mg-Al-LDH Langmuir R12 0.9741 Qmax/(mg·g−1) 116.01 KL/(L·mg−1) 0.0606 Freundlich R22 0.8741 KF/(mg·g−1) 21.28 n 3.184 Temkin R32 0.8909 B/(J·mol−1) 17.07 KT/(L·mg−1) 2.291 Notes: R12, R22 and R32—Correlation coefficient of Langmuir, Freundlich and Temkin models; Qmax—Maximum adsorption capacity; KL, KF and KT—Adsorption equilibrium constant of Langmuir, Freundlich and Temkin models; n—Constant related to adsorption strength; B—Constant related to heat of adsorption. 表 2 Fe3O4@Ni-Mg-Al-LDH吸附曙红Y的动力学参数
Table 2 Kinetics parameters for the adsorption of Eosin Y on Fe3O4@Ni-Mg-Al-LDH
Kinetic models Parameters Fe3O4@Ni-Mg-Al-LDH Pseudo-first-order
dynamic modelR12 0.9428 K1/(min−1) 0.0293 Q1/(mg·g−1) 5.590 Pseudo-second-order
dynamic modelR22 0.9987 K2/(g·mg−1·min−1) 0.0169 Q2/(mg·g−1) 9.785 Intra-particle diffusion
modelR3i2 0.9741 K3i/(mg·g−1·min−0.5) 1.802 bi/(mg·g−1) −0.0321 R3j2 0.9978 K3j/(mg·g−1·min−0.5) 0.5015 bj/(mg·g−1) 4.671 R3k2 0.7288 K3k/(mg·g−1·min−0.5) 0.0168 bk/(mg·g−1) 9.266 Notes: R12, R22 —Correlation coefficient of pseudo-first-order and pseudo-second-order dynamic models; R3i2, R3j2 and R3k2—Correlation coefficient of the first, second and third stage of intra-particle diffusion model; K1, K2—Rate constant of pseudo-first-order and pseudo-second-order dynamic models; K3i, K3j and K3k—Rate constant of the first, second and third stage of intra-particle diffusion model; Q1, Q2—Adsorption capacity of pseudo-first-order and pseudo-second-order dynamic models; bi, bj and bk—Constant related to the thickness of the boundary layer of the first, second and third stage of intra-particle diffusion model. 表 3 Fe3O4@Ni-Mg-Al-LDH吸附剂使用后金属离子浸出量
Table 3 Metal ion leaching amount after the use of Fe3O4@Ni-Mg-Al-LDH adsorbent
Cycle
numberMetal ion leaching amount/(mg·L−1) Fe Ni Mg Al 1 0.21 0.11 0.06 0.07 2 0.17 0.09 0.04 0.03 3 0.12 0.05 0.02 0.02 4 0.09 0.02 0.01 0.02 5 0.07 0.01 − − -
[1] LIU Q. Pollution and treatment of dye waste-water[J]. IOP Conference Series: Earth and Environmental Science,2020,514(5):052001.
[2] 席尚东, 高磊, 刘文宗, 等. 利用生活污水提升厌氧-生物电化学耦合系统处理染料废水的效能及关键功能微生物研究[J]. 环境科学学报, 2019, 39(2):15-25. XI Shangdong, GAO Lei, LIU Wenzong, et al. Domestic sewage enhancing azo dye wastewater treatment in anaerobic digestion-bioelectrochemical system and functional microbial community analysis[J]. Acta Scientiae Circumstantiae,2019,39(2):15-25(in Chinese).
[3] AL-GUBURY H Y, SAAD S T, ALRAZZAK N A, et al. Photocatalytic removal of eosin dye from aqueous solution over titanium dioxide[J]. IOP Conference Series: Materials Science and Engineering, 2020, 871: 012031.
[4] SIVAKUMAR D. Removal of color from textile industry wastewater using microorganism[J]. International Jour-nal of PharmTech Research,2015,8(5):836-842.
[5] 刘颖琪, 翁文斌, 岑檠, 等. FeVO4/Cu3(BTC)2(H2O)3异质结制备及光催化性能[J]. 复合材料学报, 2020, 37(12):3128-3136. LIU Yingqi, WENG Wenbin, CEN Qin, et al. Preparation and photocatalytic properties of FeVO4/Cu3(BTC)2(H2O)3 heterojunction[J]. Acta Materiae Compositae Sinica,2020,37(12):3128-3136(in Chinese).
[6] CHENG N, WANG B, WU P, et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review[J]. Environmental Pollution,2021,273:116448-116458. DOI: 10.1016/j.envpol.2021.116448
[7] HUANG Z, LI Y, CHEN W, et al. Modified bentonite adsorption of organic pollutants of dye wastewater[J]. Materials Chemistry and Physics,2017,202:266-276. DOI: 10.1016/j.matchemphys.2017.09.028
[8] 狄婧, 刘海霞, 姜永强, 等. 聚吡咯/壳聚糖复合膜的制备及其对Cu(Ⅱ)和Cr(Ⅵ)吸附机制[J]. 复合材料学报, 2021, 38(1):221-231. DI Jing, LIU Haixia, JIANG Yongqiang, et al. Preparation of polypyrrole/chitosan composite membrane and its adsorption mechanism for Cu(Ⅱ) and Cr(Ⅵ)[J]. Acta Materiae Compositae Sinica,2021,38(1):221-231(in Chinese).
[9] WONG S, YAC’COB N A N, NGADI N, et al. From pollutant to solution of wastewater pollution: Synthesis of activated carbon from textile sludge for dye adsorption[J]. Chinese Journal of Chemical Engineering,2018,26(4):870-878. DOI: 10.1016/j.cjche.2017.07.015
[10] NGULUBE T, GUMBO J R, MASINDI V, et al. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review[J]. Journal of Environmental Management,2017,191:35-57.
[11] ZHENG L, DANG Z, YI X, et al. Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk[J]. Journal of Hazardous Materials,2010,176:650-656. DOI: 10.1016/j.jhazmat.2009.11.081
[12] 徐然, 左华江, 唐春怡, 等. 壳聚糖类吸附材料的制备及应用研究进展[J]. 现代化工, 2020, 40(9):25-29. XU Ran, ZUO Huajiang, TANG Chunyi, et al. Advances in preparation and application of chitosan-based adsorption materials[J]. Modern Chemical Industry,2020,40(9):25-29(in Chinese).
[13] LEI C, PI M, KUANG P, et al. Organic dye removal from aqueous solutions by hierarchical calcined Ni-Fe layered double hydroxide: Isotherm, kinetic and mechanism studies[J]. Journal of Colloid and Interface Science,2017,496:158-166. DOI: 10.1016/j.jcis.2017.02.025
[14] BHARALI D, DEKA R C. Preferential adsorption of various anionic and cationic dyes from aqueous solution over ternary CuMgAl layered double hydroxide[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,525:64-76.
[15] ZUBIR N A, YACOU C, MOTUZAS J, et al. Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction[J]. Scientific Reports,2018,4:4594-4602.
[16] 龚新怀, 李明春, 杨坤, 等. 纳米Fe3O4@茶渣/海藻酸钙磁性复合材料制备及其对亚甲基蓝的吸附性能与吸附机制[J]. 复合材料学报, 2021, 38(2):424-438. GONG Xinhuai, LI Mingchun, YANG Kun, et al. Preparation of nanosized Fe3O4@tea dregs/calcium alginate magnetic composite and its adsorption properties and adsorption mechanism for methylene blue[J]. Acta Materiae Compositae Sinica,2021,38(2):424-438(in Chinese).
[17] 邢敏, 雷西萍, 韩丁, 等. Fe3O4/高岭土磁性复合材料对Cu2+的吸附性能[J]. 复合材料学报, 2019, 36(9):2204-2211. XING Min, LEI Xiping, HAN Ding, et al. Adsorption of Cu2+ by Fe3O4/kaolin magnetic composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2204-2211(in Chinese).
[18] MASOUDI M M, KASHANIAN F, AKBARI A, et al. Antibody-conjugated nontoxic arginine-doped Fe3O4 nanoparticles for magnetic circulating tumor cells separation[J]. International Journal of Medical and Health Sciences,2017,11(5):241-244.
[19] PEI L, XUAN S, WU J, et al. Experiments and simulations on the magnetorheology of magnetic fluid based on Fe3O4 hollow chains[J]. Langmuir,2019,35(37):12158-12167. DOI: 10.1021/acs.langmuir.9b01957
[20] WU Q, CHEN M, CHEN K, et al. Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors[J]. Journal of Materials Science,2016,51(3):1572-1580. DOI: 10.1007/s10853-015-9480-4
[21] ENIOLA J O, KUMAR R, MOHAMED O A, et al. Synthesis and characterization of CuFe2O4/NiMgAl-LDH composite for the efficient removal of oxytetracycline antibiotic[J]. Journal of Saudi Chemical Society,2019,24(1):139-150.
[22] BAO H, YANG J, HUANG Y, et al. Synthesis of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure (LDH@mSiO2) and its application in drug delivery[J]. Nanoscale,2011,3(10):4069-4073. DOI: 10.1039/c1nr10718f
[23] LEI C, ZHU X, ZHU B, et al. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions[J]. Journal of Hazardous Materials,2017,321:801-811. DOI: 10.1016/j.jhazmat.2016.09.070
[24] GUO X Y, MAO F, WANG W, et al. Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: Synthesis and toxicity assessment in vitro[J]. ACS Applied Materials Interfaces,2015,7(27):14983-14991. DOI: 10.1021/acsami.5b03873
[25] 魏刚, 顾峥烨, 龚水水, 等. 红外光谱法氧化石墨烯表面氧化度的测定[J]. 光谱学与光谱分析, 2020, 40(6):68-73. WEI Gang, GU Zhengye, GONG Shuishui, et al. Determination of the oxidiz ability on the surface of the graphene oxide layer by infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(6):68-73(in Chinese).
[26] AI L, ZHANG C, MENG L. Adsorption of methyl orange from aqueous solution on hydrothermal synthesized Mg-Al layered double hydroxide[J]. Journal of Chemical and Engineering Data,2011,56(11):4217-4225. DOI: 10.1021/je200743u
[27] YANG K, YAN L G, YANG Y M, et al. Adsorptive removal of phosphate by Mg-Al and Zn-Al layered double hydroxides: Kinetics, isotherms and mechanisms[J]. Separation and Purification Technology,2014,124:36-42. DOI: 10.1016/j.seppur.2013.12.042
[28] YAN L G, YANG K, SHAN R R, et al. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe3O4@LDHs composites with easy magnetic separation assistance[J]. Journal of Colloid and Interface Science,2015,448:508-516. DOI: 10.1016/j.jcis.2015.02.048
[29] 王洪杰, 兰依博, 李晓东. KMnO4改性稻壳、稻杆水热炭吸附染料的研究[J]. 应用化工, 2019, 6:1344-1350. DOI: 10.3969/j.issn.1671-3206.2019.06.022 WANG Hongjie, LAN Yibo, LI Xiaodong. Hydrothermal synthesis of KMnO4 modified rice husk andrice straw and its adsorption properties[J]. Applied Chemical Industry,2019,6:1344-1350(in Chinese). DOI: 10.3969/j.issn.1671-3206.2019.06.022
[30] SARUCHI, KUMAR V. Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pbions from aqueous solutions by a hybrid ion-exchanger[J]. Arabian Journal of Chemistry,2019,3(12):316-329.
[31] ZHANG J, LIU M, YANG T, et al. Synthesis and characterization of a novel magnetic biochar from sewage sludge and its effectiveness in the removal of methyl orange from aqueous solution[J]. Water Science & Technology ,2017,75(7):1539-1547.
[32] SANTHOSH C, DANESHVAR E, TRIPATHI K M, et al. Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and acid orange 7 dye from aqueous solution[J]. Environmental Science and Pollution Research,2020,27(2):1-14.
-
期刊类型引用(2)
1. 李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 . 百度学术
2. 马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 . 百度学术
其他类型引用(1)
-