留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性水滑石复合材料的制备及其对曙红Y的吸附性能

陈杰 李明明 王超 姜海峰 刘治刚 金华

陈杰, 李明明, 王超, 等. 磁性水滑石复合材料的制备及其对曙红Y的吸附性能[J]. 复合材料学报, 2022, 39(5): 2288-2298. doi: 10.13801/j.cnki.fhclxb.20210813.001
引用本文: 陈杰, 李明明, 王超, 等. 磁性水滑石复合材料的制备及其对曙红Y的吸附性能[J]. 复合材料学报, 2022, 39(5): 2288-2298. doi: 10.13801/j.cnki.fhclxb.20210813.001
CHEN Jie, LI Mingming, WANG Chao, et al. Preparation of magnetic hydrotalcite composite and its Eosin Y adsorption performance[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2288-2298. doi: 10.13801/j.cnki.fhclxb.20210813.001
Citation: CHEN Jie, LI Mingming, WANG Chao, et al. Preparation of magnetic hydrotalcite composite and its Eosin Y adsorption performance[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2288-2298. doi: 10.13801/j.cnki.fhclxb.20210813.001

磁性水滑石复合材料的制备及其对曙红Y的吸附性能

doi: 10.13801/j.cnki.fhclxb.20210813.001
基金项目: 国家自然科学基金 (51902125);吉林省自然科学基金-联合基金项目(YDZJ202101ZYTS029);吉林市科技创新发展计划项目-杰出青年人才培养专项(20210103092);吉林省发改委项目(2020C036-4);吉林省教育厅科学技术研究项目(JJKH20210236KJ)
详细信息
    通讯作者:

    陈杰,博士,副教授,硕士生导师,研究方向为功能复合材料的制备与应用 E-mail:jiechendr@163.com

  • 中图分类号: X703

Preparation of magnetic hydrotalcite composite and its Eosin Y adsorption performance

  • 摘要: 为了解决水滑石型(LDH)吸附剂在污水处理中难回收的问题,采用双滴沉淀法将磁性Fe3O4颗粒与具有吸附性能的Ni-Mg-Al-LDH水滑石相结合,合成了Fe3O4@Ni-Mg-Al-LDH磁性水滑石复合吸附材料,利用SEM、XRD、FT-IR和氮气吸附脱附等表征对Fe3O4@Ni-Mg-Al-LDH材料的形貌和结构进行测试,并将其用于曙红Y染料废水处理。结果表明,Fe3O4@Ni-Mg-Al-LDH对曙红Y染料的吸附在20 min内较为迅速,120 min后吸附趋于平衡,且随着曙红Y初始浓度的升高,Fe3O4@Ni-Mg-Al-LDH对曙红Y染料的吸附量也逐渐增加,最大吸附量达到108.6 mg·g−1。同时,Fe3O4@Ni-Mg-Al-LDH对曙红Y的吸附过程符合Langmuir等温吸附模型和伪二级动力学方程,表明该吸附过程以单分子层化学吸附为主,且表面扩散和颗粒内扩散共同控制吸附速率。经五次循环后,吸附剂对曙红Y染料的去除率仍能保持80%以上,且吸附后易于磁分离,说明所制备的Fe3O4@Ni-Mg-Al-LDH磁性水滑石材料是一种良好的染料废水吸附剂。

     

  • 图  1  Fe3O4 (a)和 Fe3O4@Ni-Mg-Al-水滑石 (Fe3O4@Ni-Mg-Al-LDH) (b)的SEM图像

    Figure  1.  SEM images of Fe3O4 (a) and Fe3O4@Ni-Mg-Al-hydrotalcite (Fe3O4@Ni-Mg-Al-LDH) (b)

    图  2  Fe3O4@Ni-Mg-Al-LDH样品的EDS图谱

    Figure  2.  EDS spectrum of Fe3O4@Ni-Mg-Al-LDH

    图  3  Fe3O4, Ni-Mg-Al-LDH和Fe3O4@Ni-Mg-Al-LDH样品的XRD图谱

    Figure  3.  XRD patterns of Fe3O4, Ni-Mg-Al-LDH and Fe3O4@Ni-Mg-Al-LDH samples

    图  4  Fe3O4@Ni-Mg-Al-LDH样品的N2吸附-脱附等温曲线及孔径分布图

    Figure  4.  N2 adsorption-desorption isotherm curve and pore diameter distribution of Fe3O4@Ni-Mg-Al-LDH

    图  5  Fe3O4和Fe3O4@Ni-Mg-Al-LDH样品的室温磁滞曲线

    Figure  5.  Room-temperature magnetization curves of Fe3O4 and Fe3O4@Ni-Mg-Al-LDH

    图  6  Fe3O4@Ni-Mg-Al-LDH吸附曙红Y染料前(a)和吸附后(b)的FTIR图谱

    Figure  6.  FTIR spectra of Fe3O4@Ni-Mg-Al-LDH before (a) and after (b) adsorption of Eosin Y

    图  7  不同组成Fe3O4@Ni-Mg-Al-LDH对曙红Y的去除率

    Figure  7.  Removal efficiency of Eosin Y on Fe3O4@Ni-Mg-Al-LDH with different composition

    图  8  溶液pH值对曙红Y吸附效果的影响

    Figure  8.  Effect of solution pH value on the Eosin Y adsorption

    图  9  不同时间下Fe3O4@Ni-Mg-Al-LDH吸附曙红Y曲线

    Figure  9.  Adsorption curve of Eosin Y on Fe3O4@Ni-Mg-Al-LDH under different time

    图  10  不同初始浓度下Fe3O4@Ni-Mg-Al-LDH吸附曙红Y曲线

    Figure  10.  Adsorption curve of Eosin Y on Fe3O4@Ni-Mg-Al-LDH under different Eosin Y initial concentration

    图  11  Fe3O4@Ni-Mg-Al-LDH吸附曙红Y的Langmuir (a)、Freundlich (b)、Temkin (c) 吸附等温线模型和Langmuir的RL参数变化曲线 (d)

    Figure  11.  Langmuir (a), Freundlich (b), Temkin (c) adsorption isotherm models and Langmuir parameter (RL) curve (d) of Eosin Y on Fe3O4@Ni-Mg-Al-LDH

    Qe—Equilibrium adsorption capacity; ce—Equilibrium concentration; RL—Separation factor; c0—Initial concentration; R12, R22, R32—Correlation coefficient of Langmuir, Freundlich and Temkin models

    图  12  Fe3O4@Ni-Mg-Al-LDH吸附曙红Y的伪一级动力学 (a)、伪二级动力学 (b) 和颗粒内扩散 (c) 模型

    Figure  12.  Pseudo-first-order (a), pseudo-second-order (b) and intra-particle diffusion kinetics model (c) for the adsorption of Eosin Y on Fe3O4@Ni-Mg-Al-LDH

    R3i2, R3j2, R3k2—Correlation coefficient of the first, second and third stage of intra-particle diffusion model

    图  13  Fe3O4@Ni-Mg-Al-LDH吸附曙红Y的循环实验

    Figure  13.  Cycle test for the adsorption of Eosin Y on Fe3O4@Ni-Mg-Al-LDH

    表  1  Fe3O4@Ni-Mg-Al-LDH对曙红Y的吸附等温线参数

    Table  1.   Adsorption isotherm parameters of Eosin Y on Fe3O4@Ni-Mg-Al-LDH

    Isotherm modelsParametersFe3O4@Ni-Mg-Al-LDH
    Langmuir R12 0.9741
    Qmax/(mg·g−1) 116.01
    KL/(L·mg−1) 0.0606
    Freundlich R22 0.8741
    KF/(mg·g−1) 21.28
    n 3.184
    Temkin R32 0.8909
    B/(J·mol−1) 17.07
    KT/(L·mg−1) 2.291
    Notes: R12, R22 and R32—Correlation coefficient of Langmuir, Freundlich and Temkin models; Qmax—Maximum adsorption capacity; KL, KF and KT—Adsorption equilibrium constant of Langmuir, Freundlich and Temkin models; n—Constant related to adsorption strength; B—Constant related to heat of adsorption.
    下载: 导出CSV

    表  2  Fe3O4@Ni-Mg-Al-LDH吸附曙红Y的动力学参数

    Table  2.   Kinetics parameters for the adsorption of Eosin Y on Fe3O4@Ni-Mg-Al-LDH

    Kinetic modelsParametersFe3O4@Ni-Mg-Al-LDH
    Pseudo-first-order
    dynamic model
    R12 0.9428
    K1/(min−1) 0.0293
    Q1/(mg·g−1) 5.590
    Pseudo-second-order
    dynamic model
    R22 0.9987
    K2/(g·mg−1·min−1) 0.0169
    Q2/(mg·g−1) 9.785
    Intra-particle diffusion
    model
    R3i2 0.9741
    K3i/(mg·g−1·min−0.5) 1.802
    bi/(mg·g−1) −0.0321
    R3j2 0.9978
    K3j/(mg·g−1·min−0.5) 0.5015
    bj/(mg·g−1) 4.671
    R3k2 0.7288
    K3k/(mg·g−1·min−0.5) 0.0168
    bk/(mg·g−1) 9.266
    Notes: R12, R22 —Correlation coefficient of pseudo-first-order and pseudo-second-order dynamic models; R3i2, R3j2 and R3k2—Correlation coefficient of the first, second and third stage of intra-particle diffusion model; K1, K2—Rate constant of pseudo-first-order and pseudo-second-order dynamic models; K3i, K3j and K3k—Rate constant of the first, second and third stage of intra-particle diffusion model; Q1, Q2—Adsorption capacity of pseudo-first-order and pseudo-second-order dynamic models; bi, bj and bk—Constant related to the thickness of the boundary layer of the first, second and third stage of intra-particle diffusion model.
    下载: 导出CSV

    表  3  Fe3O4@Ni-Mg-Al-LDH吸附剂使用后金属离子浸出量

    Table  3.   Metal ion leaching amount after the use of Fe3O4@Ni-Mg-Al-LDH adsorbent

    Cycle
    number
    Metal ion leaching amount/(mg·L−1)
    FeNiMgAl
    1 0.21 0.11 0.06 0.07
    2 0.17 0.09 0.04 0.03
    3 0.12 0.05 0.02 0.02
    4 0.09 0.02 0.01 0.02
    5 0.07 0.01
    下载: 导出CSV
  • [1] LIU Q. Pollution and treatment of dye waste-water[J]. IOP Conference Series: Earth and Environmental Science,2020,514(5):052001.
    [2] 席尚东, 高磊, 刘文宗, 等. 利用生活污水提升厌氧-生物电化学耦合系统处理染料废水的效能及关键功能微生物研究[J]. 环境科学学报, 2019, 39(2):15-25.

    XI Shangdong, GAO Lei, LIU Wenzong, et al. Domestic sewage enhancing azo dye wastewater treatment in anaerobic digestion-bioelectrochemical system and functional microbial community analysis[J]. Acta Scientiae Circumstantiae,2019,39(2):15-25(in Chinese).
    [3] AL-GUBURY H Y, SAAD S T, ALRAZZAK N A, et al. Photocatalytic removal of eosin dye from aqueous solution over titanium dioxide[J]. IOP Conference Series: Materials Science and Engineering, 2020, 871: 012031.
    [4] SIVAKUMAR D. Removal of color from textile industry wastewater using microorganism[J]. International Jour-nal of PharmTech Research,2015,8(5):836-842.
    [5] 刘颖琪, 翁文斌, 岑檠, 等. FeVO4/Cu3(BTC)2(H2O)3异质结制备及光催化性能[J]. 复合材料学报, 2020, 37(12):3128-3136.

    LIU Yingqi, WENG Wenbin, CEN Qin, et al. Preparation and photocatalytic properties of FeVO4/Cu3(BTC)2(H2O)3 heterojunction[J]. Acta Materiae Compositae Sinica,2020,37(12):3128-3136(in Chinese).
    [6] CHENG N, WANG B, WU P, et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review[J]. Environmental Pollution,2021,273:116448-116458. doi: 10.1016/j.envpol.2021.116448
    [7] HUANG Z, LI Y, CHEN W, et al. Modified bentonite adsorption of organic pollutants of dye wastewater[J]. Materials Chemistry and Physics,2017,202:266-276. doi: 10.1016/j.matchemphys.2017.09.028
    [8] 狄婧, 刘海霞, 姜永强, 等. 聚吡咯/壳聚糖复合膜的制备及其对Cu(Ⅱ)和Cr(Ⅵ)吸附机制[J]. 复合材料学报, 2021, 38(1):221-231.

    DI Jing, LIU Haixia, JIANG Yongqiang, et al. Preparation of polypyrrole/chitosan composite membrane and its adsorption mechanism for Cu(Ⅱ) and Cr(Ⅵ)[J]. Acta Materiae Compositae Sinica,2021,38(1):221-231(in Chinese).
    [9] WONG S, YAC’COB N A N, NGADI N, et al. From pollutant to solution of wastewater pollution: Synthesis of activated carbon from textile sludge for dye adsorption[J]. Chinese Journal of Chemical Engineering,2018,26(4):870-878. doi: 10.1016/j.cjche.2017.07.015
    [10] NGULUBE T, GUMBO J R, MASINDI V, et al. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review[J]. Journal of Environmental Management,2017,191:35-57.
    [11] ZHENG L, DANG Z, YI X, et al. Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk[J]. Journal of Hazardous Materials,2010,176:650-656. doi: 10.1016/j.jhazmat.2009.11.081
    [12] 徐然, 左华江, 唐春怡, 等. 壳聚糖类吸附材料的制备及应用研究进展[J]. 现代化工, 2020, 40(9):25-29.

    XU Ran, ZUO Huajiang, TANG Chunyi, et al. Advances in preparation and application of chitosan-based adsorption materials[J]. Modern Chemical Industry,2020,40(9):25-29(in Chinese).
    [13] LEI C, PI M, KUANG P, et al. Organic dye removal from aqueous solutions by hierarchical calcined Ni-Fe layered double hydroxide: Isotherm, kinetic and mechanism studies[J]. Journal of Colloid and Interface Science,2017,496:158-166. doi: 10.1016/j.jcis.2017.02.025
    [14] BHARALI D, DEKA R C. Preferential adsorption of various anionic and cationic dyes from aqueous solution over ternary CuMgAl layered double hydroxide[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,525:64-76.
    [15] ZUBIR N A, YACOU C, MOTUZAS J, et al. Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction[J]. Scientific Reports,2018,4:4594-4602.
    [16] 龚新怀, 李明春, 杨坤, 等. 纳米Fe3O4@茶渣/海藻酸钙磁性复合材料制备及其对亚甲基蓝的吸附性能与吸附机制[J]. 复合材料学报, 2021, 38(2):424-438.

    GONG Xinhuai, LI Mingchun, YANG Kun, et al. Preparation of nanosized Fe3O4@tea dregs/calcium alginate magnetic composite and its adsorption properties and adsorption mechanism for methylene blue[J]. Acta Materiae Compositae Sinica,2021,38(2):424-438(in Chinese).
    [17] 邢敏, 雷西萍, 韩丁, 等. Fe3O4/高岭土磁性复合材料对Cu2+的吸附性能[J]. 复合材料学报, 2019, 36(9):2204-2211.

    XING Min, LEI Xiping, HAN Ding, et al. Adsorption of Cu2+ by Fe3O4/kaolin magnetic composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2204-2211(in Chinese).
    [18] MASOUDI M M, KASHANIAN F, AKBARI A, et al. Antibody-conjugated nontoxic arginine-doped Fe3O4 nanoparticles for magnetic circulating tumor cells separation[J]. International Journal of Medical and Health Sciences,2017,11(5):241-244.
    [19] PEI L, XUAN S, WU J, et al. Experiments and simulations on the magnetorheology of magnetic fluid based on Fe3O4 hollow chains[J]. Langmuir,2019,35(37):12158-12167. doi: 10.1021/acs.langmuir.9b01957
    [20] WU Q, CHEN M, CHEN K, et al. Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors[J]. Journal of Materials Science,2016,51(3):1572-1580. doi: 10.1007/s10853-015-9480-4
    [21] ENIOLA J O, KUMAR R, MOHAMED O A, et al. Synthesis and characterization of CuFe2O4/NiMgAl-LDH composite for the efficient removal of oxytetracycline antibiotic[J]. Journal of Saudi Chemical Society,2019,24(1):139-150.
    [22] BAO H, YANG J, HUANG Y, et al. Synthesis of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure (LDH@mSiO2) and its application in drug delivery[J]. Nanoscale,2011,3(10):4069-4073. doi: 10.1039/c1nr10718f
    [23] LEI C, ZHU X, ZHU B, et al. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions[J]. Journal of Hazardous Materials,2017,321:801-811. doi: 10.1016/j.jhazmat.2016.09.070
    [24] GUO X Y, MAO F, WANG W, et al. Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: Synthesis and toxicity assessment in vitro[J]. ACS Applied Materials Interfaces,2015,7(27):14983-14991. doi: 10.1021/acsami.5b03873
    [25] 魏刚, 顾峥烨, 龚水水, 等. 红外光谱法氧化石墨烯表面氧化度的测定[J]. 光谱学与光谱分析, 2020, 40(6):68-73.

    WEI Gang, GU Zhengye, GONG Shuishui, et al. Determination of the oxidiz ability on the surface of the graphene oxide layer by infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(6):68-73(in Chinese).
    [26] AI L, ZHANG C, MENG L. Adsorption of methyl orange from aqueous solution on hydrothermal synthesized Mg-Al layered double hydroxide[J]. Journal of Chemical and Engineering Data,2011,56(11):4217-4225. doi: 10.1021/je200743u
    [27] YANG K, YAN L G, YANG Y M, et al. Adsorptive removal of phosphate by Mg-Al and Zn-Al layered double hydroxides: Kinetics, isotherms and mechanisms[J]. Separation and Purification Technology,2014,124:36-42. doi: 10.1016/j.seppur.2013.12.042
    [28] YAN L G, YANG K, SHAN R R, et al. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe3O4@LDHs composites with easy magnetic separation assistance[J]. Journal of Colloid and Interface Science,2015,448:508-516. doi: 10.1016/j.jcis.2015.02.048
    [29] 王洪杰, 兰依博, 李晓东. KMnO4改性稻壳、稻杆水热炭吸附染料的研究[J]. 应用化工, 2019, 6:1344-1350. doi: 10.3969/j.issn.1671-3206.2019.06.022

    WANG Hongjie, LAN Yibo, LI Xiaodong. Hydrothermal synthesis of KMnO4 modified rice husk andrice straw and its adsorption properties[J]. Applied Chemical Industry,2019,6:1344-1350(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.06.022
    [30] SARUCHI, KUMAR V. Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pbions from aqueous solutions by a hybrid ion-exchanger[J]. Arabian Journal of Chemistry,2019,3(12):316-329.
    [31] ZHANG J, LIU M, YANG T, et al. Synthesis and characterization of a novel magnetic biochar from sewage sludge and its effectiveness in the removal of methyl orange from aqueous solution[J]. Water Science & Technology ,2017,75(7):1539-1547.
    [32] SANTHOSH C, DANESHVAR E, TRIPATHI K M, et al. Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and acid orange 7 dye from aqueous solution[J]. Environmental Science and Pollution Research,2020,27(2):1-14.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1365
  • HTML全文浏览量:  465
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-07-26
  • 录用日期:  2021-07-31
  • 网络出版日期:  2021-08-13
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回