Fatigue behaviors of steel bars-GFRP bars reinforced concrete beams
-
摘要: 钢筋-玻璃纤维增强树脂复合材料 (GFRP)筋增强混凝土 (RC) 梁设计结合了钢筋和GFRP筋的优点,可以提高构件承载力,同时改善纯纤维增强复合材料 (FRP) 筋构件使用性能存在的问题,但是关于其疲劳性能的研究十分有限。因此,本论文进行了7根钢筋-GFRP筋增强RC梁的疲劳试验,研究参数包括疲劳荷载幅、有效配筋率、配筋面积比。结果表明,钢筋-GFRP筋增强RC梁疲劳破坏始于钢筋的疲劳断裂,钢筋疲劳断口光滑平整,显著区别于静力拉伸破坏断口。疲劳加载过程中,截面平截面假定仍然满足。疲劳荷载幅对疲劳寿命有显著影响,随着疲劳荷载幅的增大,梁中钢筋、GFRP筋和混凝土应力和应力幅均随之增大,疲劳寿命减小。增大有效配筋率,跨中挠度和最大裂缝宽度均减小,正常使用性能改善。配筋面积比(Af/As)的增加不利于构件抵抗疲劳荷载,Af/As由0.25增大到2.0,疲劳寿命从36.6万次降低到8.3万次。对比了各种疲劳挠度计算公式,CEB-FIP 2010规范的预测结果较好,误差范围在7%以内,推荐作为钢筋-GFRP筋增强RC梁疲劳挠度的计算公式。Abstract: Steel bars-glass fiber-reinforced polymer (GFRP) bars reinforced concrete (RC) beams combined the advantages of steel bars and GFRP bars. Flexural capacity was increased compared with RC beams and serviceability performance was improved compared with the pure fiber-reinforced polymer (FRP) reinforced concrete beams, however, the investigation of fatigue behaviors was limited. In this study, seven beams were fabricated for fatigue tests, and the test parameters were load amplitude, effective reinforcement ratio and area ratio of FRP to steel bars (Af/As). The test results show that fatigue failure of the steel bars-GFRP bars RC beams start with fatigue fracture of steel bars and the fracture surface is significantly different from that of static tensile failure modes. Plane section assumption is verified under fatigue. The fatigue load amplitude has significant effects on the fatigue life. With the increase of fatigue load amplitude, strains in steel bars, GFRP bars and concrete increases, and the fatigue life decrease. The increase of effective reinforcement ratio contribute to decreasing mid-span deflection and crack width, and improve the serviceability. The increase of area ratio of FRP to steel bars (Af/As) has negative effects on the fatigue behaviors of steel bars-GFRP bars RC beams. The fatigue life decrease from 366 thousand cycles to 83 thousand cycles with Af/As increasing from 0.25 to 2.0. Different theoretical models for the mid-span deflection of beams under fatigue load are compared and the CEB-FIP 2010 presented satisfactory prediction, and thus is recommended.
-
Key words:
- FRP bars /
- hybrid reinforcement /
- concrete beam /
- fatigue performance /
- fatigue deflection
-
表 1 钢筋和GFRP筋力学性能
Table 1. Properties of steel bars and GFRP bars
First batch Second batch Type Yield strength/MPa Tensile strength/MPa Elastic modulus/GPa Type Yield strength/MPa Tensile strength/MPa Elastic modulus/GPa S8 464 580 192 S8 456 592 190 S10 541 643 191 S10 450 588 194 S16 450 611 188 S12 511 675 197 S20 510 627 194 S14 476 634 194 G8 — 1210 46 S16 435 606 200 G10 — 1163 44 S20 473 626 202 G6 — 1235 48 G8 — 1205 48 G10 — 1184 44 G20 — 695 42 Note: Glass fiber volume fractions are 75% and 78% for the first batch and the second batch, respectively. 表 2 疲劳加载信息及试验结果
Table 2. Fatigue loading information and fatigue life
Specimen ${\rho _{{\rm{eff}}}}$ Af/As Minimum load/Maximum load/kN Frequency/Hz Fatigue life/106 Cycles S16
G8-11.13% 0.25 13.3/66.3
(0.1Pu/0.5Pu)4(a),
6(b)135.4 S16
G8-21.13% 0.25 13.3/79.6
(0.1Pu/0.6Pu)6 46.1 S20
G10-11.76% 0.25 19.6/108.0
(0.1Pu/0.55Pu) 6 167.8 S20
G10-21.76% 0.25 20.2/131.3
(0.1Pu/0.65Pu)6 31.9 S16
G8-31.13% 0.25 13.8/89.7
(0.1Pu/0.65Pu)6 36.6 S12
G60.63% 0.25 10.2/66.3
(0.1Pu/0.65Pu)6 16.6 S14
G201.13% 2.00 19.4/126.1
(0.1Pu/0.65Pu)6 8.3 Notes: (a)—Before 1 million cycles;(b)—After 1 million cycles;Pu—Ultimate flexural capacity; ρeff—Effective reinforcement ratio; Af /As—Area ratio of GFRP bars to steel bars. 表 3 疲劳上下限荷载作用下钢筋-GFRP筋增强混凝土梁钢筋、GFRP筋应力(第一次疲劳后)
Table 3. Stress in steel bars and GFRP bars for steel bars-GFRP bars reinforced concrete beams under the upper and lower limit of fatigue load after the first cycle
Specimen ${\sigma _{\max ,{\rm{s}}}}$/MPa ${\sigma _{\min ,{\rm{s}}}}$/MPa $\Delta {\sigma _{\rm{s}}}$/MPa ${\sigma _{\max ,{\rm{f}}}}$/MPa ${\sigma _{\min ,{\rm{f}}}}$/MPa $\Delta {\sigma _{\rm{f}}}$/MPa S20G10-2 342 85 257 70 15 55 S16G8-3 354 99 255 81 21 60 S12G6 428 133 295 95 26 69 S14G20 512 154 358 139 39 100 Notes: ${\sigma _{\max ,{\rm{s}}}}$, ${\sigma _{\min ,{\rm{s}}}}$—Steel stress under upper and lower limit of fatigue load, respectively; ${\sigma _{\max ,{\rm{f}}}}$, ${\sigma _{\min ,{\rm{f}}}}$—GFRP stress under upper and lower limit of fatigue load, respectively; $\Delta {\sigma _{\rm{s}}}$, $\Delta {\sigma _{\rm{f}}}$—Steel stress range and GFRP stress range, respectively. 表 4 钢筋-GFRP筋增强混凝土梁跨中挠度计算值和试验值统计结果
Table 4. Comparisons between predicted mid-span deflection and tested results for steel bars-GFRP bars reinforced concrete beams
Specimen Balaguru[21] Lovegrove and EI Din[23] CEB-FIP 2010[24] Ave. COV/% Ave. COV/% Ave. COV/% S16G8-1 1.04 15.95 0.95 7.30 0.97 5.85 S16G8-2 1.02 23.45 0.92 7.85 0.99 1.45 S20G10-1 1.03 16.05 0.95 6.38 0.96 2.07 S20G10-2 1.17 23.28 0.92 7.90 1.00 1.24 S16G8-3 1.09 22.55 0.91 8.97 0.97 2.35 S12G6 1.13 19.13 0.87 12.89 0.99 2.41 S14G20 1.04 16.88 0.73 9.63 0.90 6.64 Notes: Ave.—Abbreviation of average; COV—Abbreviation of coefficient of variation. -
[1] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004 [2] 祁德庆, 钱文军, 薛伟辰. 土木工程用FRP筋的耐久性研究进展[J]. 玻璃钢/复合材料, 2006(2):47-50.QI Deqing, QIAN Wenjun, XUE Weichen. Progress of stu-dies on durability of FRP rods used in civil engineering[J]. Composites Science and Engineering,2006(2):47-50(in Chinese). [3] 屈文俊, 张誉. 混凝土桥梁的耐久性维护方法[J]. 铁道学报, 2001(1):98-102. doi: 10.3321/j.issn:1001-8360.2001.01.021QU Wenjun, ZHANG Yu. Method for durability main-tenance of concrete bridge[J]. Journal of the China Railway Society,2001(1):98-102(in Chinese). doi: 10.3321/j.issn:1001-8360.2001.01.021 [4] CHEN L, QU W J, ZHU P. Life cycle analysis for concrete beams designed with cross sections of equal durability[J]. Structural Concrete,2016,17(2):274-286. doi: 10.1002/suco.201400117 [5] QU W J, ZHANG X L, HUANG H Q. Flexural behavior of concrete beams reinforced with hybrid (GFRP and steel) bars[J]. Journal of Composites for Construction,2009,13(5):350-359. doi: 10.1061/(ASCE)CC.1943-5614.0000035 [6] GU X Y, DAI Y Q, JIANG J W. Flexural behavior investigation of steel-GFRP hybrid-reinforced concrete beams based on experimental and numerical methods[J]. Engi-neering Structures,2020,206:110117. doi: 10.1016/j.engstruct.2019.110117 [7] QIN R Y, ZHOU A, LAU D. Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams[J]. Composites Part B,2017,108:200-209. doi: 10.1016/j.compositesb.2016.09.054 [8] GE W J, ZHANG J W, CAO D F, et al. Flexural behaviors of hybrid concrete beams reinforced with BFRP and steel bars[J]. Construction and Building Materials,2015,87:28-37. doi: 10.1016/j.conbuildmat.2015.03.113 [9] RUAN X J, LU C H, XU K, et al. Flexural behavior and serviceability of concrete beams hybrid-reinforced with GFRP bars and steel bars[J]. Composite Structures,2020,235:111772. doi: 10.1016/j.compstruct.2019.111772 [10] 徐可, 陆春华, 宣广宇, 等. 混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算[J]. 复合材料学报, 2020, 37(9):2348-2357.XU Ke, LU Chunhua, XUAN Guangyu, et al. Experimenatl and theoretical calculation on the flexural capacity of steel fiber reinforced concrete beams with hybrid reinforcing bars[J]. Acta Materiae Compositae Sinica,2020,37(9):2348-2357(in Chinese). [11] Comite Euro-International Du Beton. Fatigue of concrete structures: State of the art report[R]. Dubrovnik: CEB, 1988. [12] 朱鹏, 许家婧, 屈文俊. 混合配筋混凝土梁抗弯疲劳试验[J]. 建筑科学与工程学报, 2019, 36(4):55-62. doi: 10.3969/j.issn.1673-2049.2019.04.007ZHU Peng, XU Jiajing, QU Wenjun. Experiment on fatigue flexural behaviors of hybrid reinforced concrete beams[J]. Journal of Architecture and Civil Engineering,2019,36(4):55-62(in Chinese). doi: 10.3969/j.issn.1673-2049.2019.04.007 [13] YOUNES T, AL-MAYAH A, TOPPER T. Fatigue perfor-mance of prestressed concrete beams using BFRP bars[J]. Construction and Building Materials,2017,157:313-321. doi: 10.1016/j.conbuildmat.2017.09.086 [14] LI L J, HOU B, LU Z Y, et al. Fatigue behaviour of sea sand concrete beams reinforced with basalt fibre-reinforced polymer bars[J]. Construction and Building Materials,2018,179:160-171. doi: 10.1016/j.conbuildmat.2018.05.218 [15] ATUTIS E, VALIVONIS J, ATUTIS M. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers under cyclic load[J]. Composite Structures,2018,183:389-396. doi: 10.1016/j.compstruct.2017.03.106 [16] 中国国家标准化管理委员会. 金属材料拉伸试验 第1部分—室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.Standardization Administration of the People's Republic of China. Metallic materials tensile testing-Part 1-Method of test at room temperature: GB/T 228.1—2010[S]. Beijing: China Standards Press, 2010(in Chinese). [17] 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国建筑工业出版社, 2013.Standardization Administration of the People's Republic of China. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022—2013[S]. Beijing: China Architecture & Building Press, 2013(in Chinese). [18] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.Ministry of Construction of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2002(in Chinese). [19] ACI Committee 215. Considerations for design of concrete structures subjected to fatigue loading ACI 215R-74[R]. Detroit: ACI Committee, 1974. [20] 庞蕾, 屈文俊, 李昂. 混合配筋混凝土梁抗弯计算理论[J]. 中国公路学报, 2016, 29(7):81-88. doi: 10.3969/j.issn.1001-7372.2016.07.010PANG Lei, QU Wenjun, LI Ang. Calculation of flexural strength for concrete beams reinforced with hybrid (FRP and steel) bars[J]. China Journal of Highway and Transport,2016,29(7):81-88(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.07.010 [21] BALAGURU P N, SHAH S P, NAAMAN A E. Fatigue beha-vior and design of ferrocement beams[J]. Journal of the Structural Division,1979,105(7):1333-1346. doi: 10.1061/JSDEAG.0005194 [22] SHAH S P. Predictions of comulative damage for concrete and reinforced concrete[J]. Matériaux et Construction,1984,17(1):65-68. [23] LOVEGROVE J, EL DIN A S, DAOUD O. Fatigue crack growth in the tension steel of reinforced concrete[J]. Fatigue & Fracture of Engineering Materials & Structures,1979,1(2):173-183. [24] International Federation for Structural Concrete (fib). Model code for concrete structures 2010: CEB-FIP 2010[S]. Lausanne, Switzerland: Thomas Telford Ltd., 2010.