留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene与纤维基材料复合应用研究进展

杨开勋 张吉振 谭娅 方剑

杨开勋, 张吉振, 谭娅, 等. MXene与纤维基材料复合应用研究进展[J]. 复合材料学报, 2022, 39(2): 460-466. doi: 10.13801/j.cnki.fhclxb.20210805.005
引用本文: 杨开勋, 张吉振, 谭娅, 等. MXene与纤维基材料复合应用研究进展[J]. 复合材料学报, 2022, 39(2): 460-466. doi: 10.13801/j.cnki.fhclxb.20210805.005
YANG Kaixun, ZHANG Jizhen, TAN Ya, et al. Research progress of MXene/fibrous material composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 460-466. doi: 10.13801/j.cnki.fhclxb.20210805.005
Citation: YANG Kaixun, ZHANG Jizhen, TAN Ya, et al. Research progress of MXene/fibrous material composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 460-466. doi: 10.13801/j.cnki.fhclxb.20210805.005

MXene与纤维基材料复合应用研究进展

doi: 10.13801/j.cnki.fhclxb.20210805.005
详细信息
    通讯作者:

    方剑,教授,博士生导师,研究方向为电活性纤维材料和柔性智能可穿戴纺织品 E-mail:jian.fang@suda.edu.cn

  • 中图分类号: TS102.6

Research progress of MXene/fibrous material composites

  • 摘要: 层状过渡金属碳/氮化物(MXene)是一种新兴的二维纳米材料。由于其独特的纳米结构和优异的电学性能,MXene在电学相关领域的潜在应用受到越来越多的关注。近年来,有众多研究将MXene与各类纤维与纺织材料进行复合,在纤维基柔性电子材料应用中体现出优异的性能。本文首先介绍了MXene纳米片的制备方法及性能,系统分析了MXene材料与不同维度纤维材料进行复合的最新研究,并总结了MXene/纤维复合材料的各种应用性能。最后,对今后MXene与纤维材料复合应用的前沿及所面临的挑战进行了探讨。

     

  • 图  1  MAX相剥离过程和MXene形成示意图[14]

    Figure  1.  Schematic for the exfoliation process of MAX phases and formation of MXene[14]

    图  2  BMX纱制作工艺示意图[29]

    Figure  2.  Schematic diagram of BMX yarn manufacturing process[29]

    图  3  MXene/聚氨酯(PU)纤维纺丝过程示意图[30]

    Figure  3.  MXene/polyurethane (PU) fiber spinning process diagram[30]

    图  4  交替真空过滤的方法制备纤维素纳米纤维(CNF)@Mxene薄膜原理图(a)、折叠后放在植物叶子上的不同形状的数字图像(b)[28]

    Figure  4.  Schematic diagram of cellulose nanofiber (CNF)@Mxene thin film prepared by alternating vacuum filtration (a), digital images with different shapes after folding and standing on a plant leaf (b)[28]

    图  5  碳纤维(CF)-MXene/环氧复合材料的制备工艺[37]

    Figure  5.  Preparation process of carbon fiber (CF)-MXene/epoxy composites[37]

    表  1  MXene与纤维材料结合的应用

    Table  1.   Application of MXene in combination with fibrous materials

    ApplicationStructure
    (Dimension)
    MethodPerformanceRef.
    Supercapacitor 1D Dipcoating Conductivity: (440.3±0.9) S·cm−1 (MXene content 77wt%) [24]
    1D Coated twisting Capacitance: 1083 F·cm−3 (3188 mF·cm−2) [29]
    1D Electrospinning Capacitance: 205 mF·cm−2 (50 mV·s−1) [26]
    Strain sensing fiber 1D Wet spinning Strain: 152%, GF: 12900, GF: 238 (50% of the strain) [30]
    1D Dipcoating GF: 872.79 (200% of the strain) at 6 V, the temperature reached 80℃ [31]
    2D Spray drying coating At 6 V, the temperature reached 150℃, 2wt%, 4wt% GF: 1.16;>6wt% GF: 0.76. In the bending range of 0.86%-2.09%, the GF of the above sensors is increased to 3.18, 2.08 and 1.76, respectively. [25]
    Conductive fiber 1D Wet spinning Conductivity: 750 S·cm−1 [27]
    Electromagnetic shielding 2D Dipcoating Conductivity: 1000 S·m−1 [32]
    2D Layer by layer self-assembly EMI: 54 dB (120 μm thickness, X-band) surface resistance: 0.8 Ω·sq−1 [33]
    1D Dipcoating Electrical conductivity: 670.3 S·m−1, EMI:31.04 dB(X-band) at 6 V, the temperature reached 64.3℃ [34]
    2D Vacuum filtration EMI: 55.5 dB, tensile strength: 112.5 MPa, tenacity: 2.7 MJ·m−3, EMI: 40 dB (X-band, 0.035 mm), EMI: 7029 dB (K-band, 0.035 mm) [28]
    Wearable heater 2D Dipcoating EMI: 42.1 dB(X-band) at 2.5 V, the temperature reached
    110℃ (20 s) at 3.5 V, the temperature reached 174℃ (20 s)
    [35]
    Textile conductive electrode 2D Dipcoating MXene coated textile electrode ratio capacitance: 182.70 F·g−1: coated textile electrode ratio: 343.20 F·g−1 [36]
    Heat dissipation material 3D Freeze drying Thermal conductivity (TC): 9.68 W/(m·K) [37]
    Notes: EMI—Electro magnetic interference; GF—Guage factor.
    下载: 导出CSV
  • [1] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191. doi: 10.1038/nmat1849
    [2] ZHAO J J, LIU H S, YU Z M, et al. Rise of silicene: A competitive 2D material[J]. Progress in Materials Science,2016,83:24-151. doi: 10.1016/j.pmatsci.2016.04.001
    [3] THURAKKAL S, ZHANG X Y. Recent advances in chemical functionalization of 2D black phosphorous nanosheets[J]. Advanced Science,2020,7(2):1902359.
    [4] WENG Q H, WANG X B, WANG X, et al. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications[J]. Chemical Society Reviews,2016,45(14):3989-4012. doi: 10.1039/C5CS00869G
    [5] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials,2017,2(8):17033.
    [6] WANG B, IOCOZZIA J, ZHANG M, et al. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells[J]. Chemical Society Reviews,2019,48(18):4854-4891. doi: 10.1039/C9CS00254E
    [7] 姚送送, 李诺, 叶红齐, 等. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7):932-946.

    YAO Songsong, LI Nuo, YE Hongqi, et al. Synthesis of two-dimensional mxene and their applications in electrochemical energy storage[J]. Progress in Chemistry,2018,30(7):932-946(in Chinese).
    [8] BARSOUM M W. The M(N+1)AX(N) phases: A new class of solids; Thermodynamically stable nanolaminates[J]. Progress in Solid State Chemistry,2000,28(1-4):201-281. doi: 10.1016/S0079-6786(00)00006-6
    [9] HERNANDEZ S, MISKA P, GRUN M, et al. Tailoring the surface density of silicon nanocrystals embedded in SiOx single layers[J]. Journal of Applied Physics,2013,114(23):233101.
    [10] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [11] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACSNano,2015,9(10):9507-9516.
    [12] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [13] SEYEDIN S, YANZA E R S, RAZAL J M. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets[J]. Journal of Materials Chemistry A,2017,5(46):24076-24082. doi: 10.1039/C7TA08355F
    [14] XIN M, LI J A, MA Z, et al. MXenes and Their applications in wearable sensors[J]. Frontiers in Chemistry,2020,8:297.
    [15] MA Z L, KANG S L, MA J Z, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(7):8368-8382. doi: 10.1021/acsnano.0c02401
    [16] ZHAO X, WANG L Y, TANG C Y, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications[J]. ACS Nano,2020,14(7):8793-8805.
    [17] KUANG P Y, LOW J X, CHENG B, et al. MXene-based photocatalysts[J]. Journal of Materials Science & Technology,2020,56:18-44.
    [18] TANG Q, ZHOU Z, SHEN P W. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer[J]. Journal of the American Chemical Society,2012,134(40):16909-16916. doi: 10.1021/ja308463r
    [19] 王剑, 周榆力. 二维纳米材料MXenes的性质及应用研究进展[J]. 西华大学学报(自然科学版), 2020, 39(3):76-89.

    WANG Jian, ZHOU Yuli. Research progress of characteristics and applications of two-dimensional nanomaterial MXenes[J]. Journal of Xihua University (Natural Science Edition),2020,39(3):76-89(in Chinese).
    [20] GHIDIU M, BARSOUM M W. The {110} reflection in X-ray diffraction of MXene films: Misinterpretation and measurement via non-standard orientation[J]. Journal of the American Ceramic Society,2017,100(12):5395-5399. doi: 10.1111/jace.15124
    [21] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials,2014,26(7):2374-2381. doi: 10.1021/cm500641a
    [22] KARLSSON L H, BIRCH J, HALIM J, et al. Atomically resolved structural and chemical investigation of single MXene sheets[J]. Nano Letters,2015,15(8):4955-4960. doi: 10.1021/acs.nanolett.5b00737
    [23] HUSMANN S, BUDAK O, SHIM H, et al. Ionic liquid-based synthesis of MXene[J]. Chemical Communications,2020,56(75):11082-11085. doi: 10.1039/D0CC03189E
    [24] UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials,2019,29(45):1905015.
    [25] ZHANG X S, WANG X F, LEI Z W, et al. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances[J]. ACS Applied Materials & Interfaces,2020,12(12):14459-14467.
    [26] LEVITT A S, ALHABEB M, HATTER C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J]. Journal of Materials Chemistry A,2019,7(1):269-277. doi: 10.1039/C8TA09810G
    [27] ZHANG J Z, UZUN S, SEYEDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science,2020,6(2):254-265. doi: 10.1021/acscentsci.9b01217
    [28] ZHOU B, ZHANG Z, LI Y L, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials& Interfaces,2020,12(4):4895-4905.
    [29] WANG Z Y, QIN S, SEYEDIN S, et al. High-performance biscrolled MXene/Carbon nanotube yarn supercapacitors[J]. Small,2018,14(37):128-137.
    [30] SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials,2020,30(12):1910504.
    [31] LI H, DU Z Q. Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications[J]. ACS Applied Materials & Interfaces,2019,11(49):45930-45938.
    [32] WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials,2019,29(7):1806819.
    [33] LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials,2019,29(44):1905197.
    [34] CHENG W H, ZHANG Y, TIAN W X, et al. Highly efficient MXene-coated flame retardant cotton fabric for electromagnetic interference shielding[J]. Industrial & Engineering Chemistry Research,2020,59(31):14025-14036.
    [35] LIU X Y, JIN X X, LI L, et al. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance[J]. Journal of Materials Chemistry A,2020,8(25):12526-12537. doi: 10.1039/D0TA03048A
    [36] YAN J F, MA Y A, ZHANG C K, et al. Polypyrrole-MXene coated textile-based flexible energy storage device[J]. RSC Advances,2018,8(69):39742-39748. doi: 10.1039/C8RA08403C
    [37] GUO L C, ZHANG Z Y, LI M H, et al. Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze-drying[J]. Composites Communications,2020,19:134-141. doi: 10.1016/j.coco.2020.03.009
    [38] SHI Q, SUN J, HOU C, et al. Advanced functional fiber and smart textile[J]. Advanced Fiber Materials,2019,1(1):3-31. doi: 10.1007/s42765-019-0002-z
    [39] GUAN F Y, HAN Z L, JIN M T, et al. Durable and flexible bio-assembled RGO-BC/BC bilayer electrodes for pressure sensing[J]. Advanced Fiber Materials,2021,3(2):128-137.
    [40] LIU R, LI J M, LI M, et al. MXene-coated air-permeable pressure-sensing fabric for smart wear[J]. ACS Applied Materials & Interfaces,2020,12(41):46446-46454.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1470
  • HTML全文浏览量:  1013
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-06-26
  • 录用日期:  2021-07-16
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回