留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共价功能化碳化硅-磺化聚苯胺/环氧树脂防腐复合涂层的制备及防腐性能

段俊 欧宝立 周龙平 郭艳 支倩

段俊, 欧宝立, 周龙平, 等. 共价功能化碳化硅-磺化聚苯胺/环氧树脂防腐复合涂层的制备及防腐性能[J]. 复合材料学报, 2022, 39(5): 2141-2152. doi: 10.13801/j.cnki.fhclxb.20210805.003
引用本文: 段俊, 欧宝立, 周龙平, 等. 共价功能化碳化硅-磺化聚苯胺/环氧树脂防腐复合涂层的制备及防腐性能[J]. 复合材料学报, 2022, 39(5): 2141-2152. doi: 10.13801/j.cnki.fhclxb.20210805.003
DUAN Jun, OU Baoli, ZHOU Longping, et al. Preparation and anticorrosive performance of covalently functionalized silicon carbide-sulfonated polyaniline/epoxy resin anticorrosive composite coating[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2141-2152. doi: 10.13801/j.cnki.fhclxb.20210805.003
Citation: DUAN Jun, OU Baoli, ZHOU Longping, et al. Preparation and anticorrosive performance of covalently functionalized silicon carbide-sulfonated polyaniline/epoxy resin anticorrosive composite coating[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2141-2152. doi: 10.13801/j.cnki.fhclxb.20210805.003

共价功能化碳化硅-磺化聚苯胺/环氧树脂防腐复合涂层的制备及防腐性能

doi: 10.13801/j.cnki.fhclxb.20210805.003
基金项目: 国家自然科学基金项目(51775183;51905167);湖南省自然科学基金项目(2021JJ30259;2020JJ5197);清华大学摩擦学国家重点实验室开放基金项目(SKLTKF21B17);湖南省普通高等学校教学改革研究项目(湘教通[2019]291号)
详细信息
    通讯作者:

    欧宝立,博士,教授,博士生导师,研究方向为自修复、防腐、超疏水复合材料 E-mail:B.Ou@hnust.edu.cn

  • 中图分类号: TQ174.75

Preparation and anticorrosive performance of covalently functionalized silicon carbide-sulfonated polyaniline/epoxy resin anticorrosive composite coating

  • 摘要: 聚合物/无机物纳米复合材料由于其独特的性能成为目前材料研究的热点之一。为得到疏水性能及防腐性能俱优的碳化硅 (SiC) 防腐复合涂层材料,利用硅烷偶联剂 (KH-550) 对碳化硅 (SiC) 纳米粒子进行氨基化处理,然后以苯胺、氨基苯磺酸和氨基化SiC纳米粒子为原料,通过一步法氧化聚合反应合成共价功能化碳化硅-磺化聚苯胺 (SiC-NH2-SPANI) 复合材料,采用FT-IR、UV-vis、XRD 和SEM对复合材料的微观结构和形貌进行表征分析。最后通过喷涂法将SiC-NH2-SPANI复合涂层材料涂覆于基材上并对其进行性能测试,主要研究涂层的疏水性能和防腐性能;并探讨了不同SiC纳米粒子和过硫酸铵(APS)的反应量以及复合材料加入量对共价功能化碳化硅-磺化聚苯胺/环氧树脂 (SiC-NH2-SPANI/EP) 防腐复合涂层的影响。研究结果表明,加入质量分数为3wt%SiC-NH2-SPANI的复合涂层具备较优的疏水性能,接触角(CA)值达到99.87°。SiC纳米粒子和过硫酸铵反应量对涂层防腐性能研究结果表明,当SiC-NH2用量为15wt%时,采用过硫酸铵与含氨基单体(苯胺和氨基苯磺酸)摩尔比为1∶1时所制备的SiC-NH2-SPANI/EP涂层的防腐性能最好。掺杂不同材料的复合涂层 (SiC/EP、SiC-NH2/EP和SiC-NH2-SPANI/EP) 中,SiC-NH2/EP涂层的接触角最大,疏水性能最好,防腐性能表现最好。由此也说明涂层疏水性能与防腐性能存在关系,疏水性能越好,防腐性能越好。随浸泡时间增加,质量分数为3wt%SiC-NH2-SPANI/EP复合涂层展现出更优异的长期稳定性和防腐性能。

     

  • 图  1  共价功能化碳化硅-磺化聚苯胺/环氧树脂 (SiC-NH2-SPANI/EP) 防腐复合涂层制备过程示意图

    Figure  1.  Schematic illustrating process for the preparation of covalently functionalized silicon carbide-sulfonated polyaniline/epoxy resin (SiC-NH2-SPANI/EP) anticorrosive composite coating

    APS—Ammonium persulfate; KH550—3-Aminopropyltriethoxysilane

    图  2  SiC-NH2-SPANI的FT-IR图谱(a)、紫外光谱图 (b) 和X射线衍射图 (c)

    Figure  2.  FT-IR (a), UV-vis spectra (b) and XRD patterns (c) of SiC-NH2-SPANI

    图  3  SiC-NH2-SPANI的SEM图像

    Figure  3.  SEM images of SiC-NH2-SPANI

    图  4  原始SiC (a)、 SiC-NH2 (b)、1wt%SiC-NH2-SPANI (c)、3wt%SiC-NH2-SPANI(d)和5wt%SiC-NH2-SPANI(e) 复合涂层的水接触角(CA)对比

    Figure  4.  Comparison of water contact angles (CA) of pristine SiC (a), SiC-NH2 (b), 1wt%SiC-NH2-SPANI (c), 3wt%SiC-NH2-SPANI (d) and 5wt%SiC-NH2-SPANI (e) composite coating

    图  5  SiC用量(a)和APS用量(b)对SiC-NH2-SPANI/EP复合材料涂层的Nyquist图影响

    Figure  5.  Influence of SiC dosage (a) and APS dosage (b) on the Nyquist plot of SiC-NH2-SPANI/EP composite coating

    图  6  SiC用量(a)和APS用量(b)对SiC-NH2-SPANI/EP复合材料涂层的Bode图影响

    Figure  6.  Influence of SiC dosage (a) and APS dosage (b) on the Bode plot of SiC-NH2-SPANI/EP composite coating

    图  8  不同材料复合涂层的Nyquist图 (a)、Bode图 (b) 和塔菲尔曲线图 (c)

    Figure  8.  Nyquist plot (a), Bode plot (b) and Tafel curve plot (c) of different composite coating

    图  7  SiC用量(a)和APS用量(b)对SiC-NH2-SPANI/EP涂层的塔菲尔曲线的影响

    Figure  7.  Influence of SiC dosage (a) and APS dosage (b) on the Tafel curve of SiC-NH2-SPANI/EP composite coating

    图  9  不同含量SiC-NH2-SPANI复合涂层的Nyquist图(a)、Bode图(b)和塔菲尔曲线图(c)

    Figure  9.  Nyquist plot (a), Bode plot (b) and Tafel curve plot (c) of SiC-NH2-SPANI composite coatings with different contents

    图  10  不同浸泡时间下不同含量SiC-NH2-SPANI/EP的Nyquist图 ((a), (c), (e)) 和Bode图 ((b), (d), (f))

    Figure  10.  Nyquist plot ((a), (c), (e)) and Bode plot ((b), (d), (f)) of different contents for SiC-NH2-SPANI/EP with different soak time

    图  11  不同浸泡时间下3wt%SiC-NH2-SPANI/EP的Nyquist图 (a) 和Bode图 (b)

    Figure  11.  Nyquist plot (a) and Bode plot (b) of 3wt%SiC-NH2-SPANI/EP with different soak time

    图  12  腐蚀过程下第一阶段(a)和第二阶段(b)的等效电路

    Figure  12.  Equivalent circuit of the first stage (a) and the second stage (b) under the corrosion process

    Rs—Solution resistance; Rc—Coating resistance; Cc—Coated capacitance; Rct—Diffusion layer resistance; Cdl—Diffusion layer capacitance

    表  1  Q235钢涂覆涂层电极在3.5wt%NaCl溶液中的电化学参数

    Table  1.   Electrochemical parameters of Q235 steel coated electrode in 3.5wt% NaCl solution

    Coatingβc/(mV·dec−1)βa/(mV·dec−1)lgiclgiaicorr/AEcorr/VlgicorrRp
    5wt%SiC 6.505 4.575 −7.386 −7.450 5.023×10−8 −0.869 −7.415 781163
    10wt%SiC 4.058 6.501 −7.326 −7.337 6.136×10−5 −0.575 −7.335 671055
    15wt%SiC 5.993 4.544 −7.509 −7.548 3.976×10−8 −0.800 −7.531 103779
    n(APS) : n(SPANI)=0.8 : 1 6.554 4.432 −7.151 −7.228 9.340×10−8 −0.856 −7.193 423726
    n(APS) : n(SPANI)=1 : 1 5.994 8.231 −7.557 −7.700 3.027×10−8 −0.708 −7.598 100981
    n(APS) : n(SPANI)=1.2 : 1 9.244 2.803 −7.225 −7.193 7.668×10−8 −0.932 −7.208 470681
    Notes: Ecorr—Corrosion potential; icorr—Corrosion current density; βa—Anode slope; βc—Cathode slope; Rp—Polarization resistance; ic , ia—Current density;n : n—Mole ratio.
    下载: 导出CSV

    表  2  三种复合涂层电极在3.5wt%NaCl溶液中的电化学参数

    Table  2.   Electrochemical parameters of three epoxy-coated electrodes in 3.5wt%NaCl solution

    Coatingβc/(mV·dec−1)βa/(mV·dec−1)lgiclgiaicorr/AEcorr/VlgiRp
    SiC 6.777 5.852 −7.272 −7.251 6.956×10−8 −0.792 −7.262 494930
    SiC-NH2-SPANI 4.058 6.501 −7.326 −7.337 6.136×10−8 −0.575 −7.335 671055
    SiC-NH2 5.963 6.663 −7.098 −7.025 1.087×10−7 −0.716 −7.047 319574
    下载: 导出CSV

    表  3  不同含量SiC-NH2-SPANI复合涂层电极在3.5wt%NaCl溶液中的电化学参数

    Table  3.   Electrochemical parameters of SiC-NH2-SPANI epoxy coated electrodes with different contents in 3.5wt%NaCl solution

    Coatingβc/(mV·dec−1)βa/(mV·dec−1)lgiclgiaicorr/AEcorr/VlgiRp
    1wt%SiC-NH2-SPANI 3.170 9.283 −6.656 −6.664 2.780×10−7 −0.634 −6.661 125590
    3wt%SiC-NH2-SPANI 5.994 8.231 −7.557 −7.700 3.027×10−8 −0.708 −7.598 100981
    5wt%SiC-NH2-SPANI 4.058 6.501 −7.326 −7.337 6.136×10−8 −0.575 −7.335 671055
    下载: 导出CSV
  • [1] KHODABAKHSHI J, MAHDAVI H. Silica-poly(2-ethyl-2-oxazoline) hairy nanoparticle with high organic content as a material for anticorrosion nanocomposite coatings[J]. Journal of Applied Polymer Science,2021,138(8):49873-49887. doi: 10.1002/app.49873
    [2] WANG H, DUAN Y, MA X, et al. Polyisocyanate bridged environmental graphene/epoxy nanocomposite coatings with excellent anticorrosion performance[J]. Progress in Organic Coatings,2021,153:106167. doi: 10.1016/j.porgcoat.2021.106167
    [3] JING L V, YUE Q X, DING R, et al. Intelli-gent anti-corrosion and corrosion detection coatings based on layered supramolecules intercalated by fluo-rescent off-on probes[J]. Journal of the Taiwan Institute of Chemical Engineers,2021,118:309-324. doi: 10.1016/j.jtice.2020.12.032
    [4] HEJJAJ C, AGHZZAF A, BOUALI I, et al. Layered aluminum tri-polyphosphate as intercalation host for 6-aminohexanoic acid-Synthesis, characterization and application as corrosion protection inhibitor for low carbon steel[J]. Corrosion Science,2021,181:109239. doi: 10.1016/j.corsci.2021.109239
    [5] MIN M, WONG J, HONG N. Improvement of anticorrosion coating properties in bio-based polymer epoxy acrylate incorporated with nano zinc oxide particles[J]. Industrial and Engineering Chemistry Research,2020,59(5):1753-1763. doi: 10.1021/acs.iecr.9b05639
    [6] YAN G, WANG M, SUN T, et al. Anti-corrosion property of glass flake reinforced chemically bonded phosphate ceramic coatings[J]. Materials,2019,12(13):2082-2095. doi: 10.3390/ma12132082
    [7] FAYOMI O, POPOOLA A, KANYANE L R, et al. Development of reinforced in-situ anti-corrosion and wear Zn-TiO2/ZnTiB2 coatings on mild steel[J]. Results in Physics,2017,7:644-650. doi: 10.1016/j.rinp.2017.01.021
    [8] GOLABADI M, ALIOFKHAZRAEI M, TOORANI M, et al. Corrosion and cathodic disbondment resistance of epoxy coating on zinc phosphate conversion coating containing Ni2+ and Co2+[J]. Journal of Industrial and Engineering Chemistry,2017,47:154-168. doi: 10.1016/j.jiec.2016.11.027
    [9] LI J, GE S, WANG J, et al. Water-based rust converter and its polymer composites for surface anticorrosion[J]. Colloids and Surfaces, A Physicochemical and Engi-neering Aspects,2017,537(20):334-342.
    [10] LI P, HE X, HUANG T C, et al. Highly effective anti-corrosion epoxy spray coatings containing self-assembled clay in smectic order[J]. Journal of Materials Chemistry A,2015,3:2669-2676. doi: 10.1039/C4TA06221C
    [11] HAI H, YI H, ZHI H L, et al. Synergistic effect of functional carbon nanotubes and graphene oxide on the anti-corrosion performance of epoxy coating[J]. Polymers for Advanced Technologies,2017,28(6):754-762. doi: 10.1002/pat.3977
    [12] LONG C, HUI L, ZHAN Q L, et al. Thermal conductivity and anti-corrosion of epoxy resin based composite coatings doped with graphene and graphene oxide[J]. Composites Part C: Open Access,2021,5:100124. doi: 10.1016/j.jcomc.2021.100124
    [13] MOUSTAFA E B, TAHA M A. Evaluation of the micro-structure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying[J]. International Journal of Minerals, Metallurgy and Materials,2021,28(3):475-486. doi: 10.1007/s12613-020-2176-z
    [14] KUKUSHKIN S A, OSIPOV A V. The optical properties, energy band structure, and interfacial conductance of a 3C-SiC(111)/Si(111) heterostructure grown by the method of atomic substitution[J]. Technical Physics Letters,2020,46(11):1103-1106. doi: 10.1134/S1063785020110243
    [15] ZHANG Y, ZHOU J, XIE Y, et al. Dual-mode hybrid quasi-SAW/BAW resonators with high effective coupling coefficient[J]. Instituteof Electrical and Electronics Engineers,2020,67(9):1916-1921.
    [16] JING L, OUCHUAN L, CHENG C, et al. Fabrication of a Ni/SiC composite coating on steel surface with excellent corrosion inhibition performance[J]. Journal of Materials Processing Technology,2020,290:116987.
    [17] QIN C H, HE J L, XUE M Y, et al. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites[J]. Journal of Materials Science and Technology,2021,71(30):55-66.
    [18] FAZLI-SHOKOUHI S, NASIRPOURI F, KHATAMIAN M. Epoxy-matrix polyaniline/p-phenylenediamine-functionalised graphene oxide coatings with dual anti-corrosion and anti-fouling performance[J]. RSC Advances,2021,11(19):11627-11641. doi: 10.1039/D0RA10665H
    [19] SWATI G, HARIOM G, PRAFULLA K J, et al. Enhanced electrochemical performance of stable SPES/SPANI composite polymer electrolyte membranes by enriched ionic nanochannels[J]. ACS Omega,2017,2(9):5831-5839. doi: 10.1021/acsomega.7b00687
    [20] WANG H H , PAN Z, GUI Q F, et al. Design and properties of environmental anticorrosion coating based on m-aminobenzenesulfonic acid/aniline/p-phenylenediamine terpolymer[J]. Progress in Organic Coatings,2019,137(3):105274-105274.
    [21] NIU F X, WANG Y X, ZHANG Y T, et al. A hierarchical architecture of PANI/APTES/SiC nano-composites with tunable dielectric for lightweight and strong microwave absorption[J]. Journal of Materials Science,2019,54(3):2181-2193. doi: 10.1007/s10853-018-2957-1
    [22] SHARIQUE A, ADIL S, FAIZ M. Rapid response and excellent recovery of a polyaniline/silicon carbide nanocompo-site for cigarette smoke sensing with enhanced thermally stable DC electrical conductivity[J]. RSC Advances,2016,6:59728-59736. doi: 10.1039/C6RA12655C
    [23] 段俊, 欧宝立, 郭艳. 共价功能化POSS/PDMS防腐复合涂层的研究[J]. 功能材料, 2021, 52(3):3115-3121. doi: 10.3969/j.issn.1001-9731.2021.03.017

    DUAN Jun, OU Baoli, GUO Yan. Research on covalent functionalized POSS/PDMS anticorrosive composite coating[J]. Journal of Functional Materials,2021,52(3):3115-3121(in Chinese). doi: 10.3969/j.issn.1001-9731.2021.03.017
    [24] 汪雨微, 欧宝立, 鲁忆, 等.功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能[J]. 复合材料学报, 2021, 38(12): 3971-3985.

    WANG Yuwei, OU Baoli, LU Yi, et al. Preparation and pro-perties of functionalized nano-TiO2/epoxy resin super hydrophobic anticorrosive composite coating[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 3971-3985(in Chinese).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1223
  • HTML全文浏览量:  607
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 修回日期:  2021-06-23
  • 录用日期:  2021-07-09
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回