留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散损伤模型的复合材料双悬臂梁分层疲劳扩展分析

李顶河 李梁轶 郭巧荣 钱若力

李顶河, 李梁轶, 郭巧荣, 等. 基于离散损伤模型的复合材料双悬臂梁分层疲劳扩展分析[J]. 复合材料学报, 2022, 39(7): 3603-3615. doi: 10.13801/j.cnki.fhclxb.20210805.001
引用本文: 李顶河, 李梁轶, 郭巧荣, 等. 基于离散损伤模型的复合材料双悬臂梁分层疲劳扩展分析[J]. 复合材料学报, 2022, 39(7): 3603-3615. doi: 10.13801/j.cnki.fhclxb.20210805.001
LI Dinghe, LI Liangyi, GUO Qiaorong, et al. Fatigue delamination analysis of composite double cantilever beams based on discrete damage zone model[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3603-3615. doi: 10.13801/j.cnki.fhclxb.20210805.001
Citation: LI Dinghe, LI Liangyi, GUO Qiaorong, et al. Fatigue delamination analysis of composite double cantilever beams based on discrete damage zone model[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3603-3615. doi: 10.13801/j.cnki.fhclxb.20210805.001

基于离散损伤模型的复合材料双悬臂梁分层疲劳扩展分析

doi: 10.13801/j.cnki.fhclxb.20210805.001
基金项目: 国家自然科学基金 (12072364)
详细信息
    通讯作者:

    李顶河,博士,教授,硕士生导师,研究方向为先进复合材料结构损伤分析理论与数值方法  E-mail:lidinghe@163.com

  • 中图分类号: TB332

Fatigue delamination analysis of composite double cantilever beams based on discrete damage zone model

  • 摘要: 基于扩展逐层理论(Extended layerwise method,XLWM)、离散损伤模型(Discrete damage zone model,DDZM)和Peerlings损伤定律,建立了可以分析复合材料结构分层损伤疲劳扩展的疲劳渐进扩展逐层方法(Fatigue progressive extended layerwise method,FPXLWM)。首先对HTC/6736A碳纤维双悬臂梁进行分析,施加恒定弯矩,验证该方法的正确性;然后通过计算多组Paris曲线,确定模型的疲劳参数,对HTC/6736A碳纤维双悬臂梁分层疲劳扩展机制进行深入探讨。

     

  • 图  1  含离散损伤模型的求解区域Ω0

    Figure  1.  A solve domain Ω0 with discrete damage zone model

    $\bar t $—Load; $\bar u $—Displacement ; $\varGamma_{\rm{t}} $—Load boundary ; $\varGamma_{\rm{tf}} $—Surface force region; $ \varGamma_{\rm{c}}$—Damage region; $\varGamma_{\rm{coh}} $—Cohesion region; $\varGamma_{\rm{u}} $—Displacement boundary

    图  2  离散损伤模型的损伤演化关系

    Figure  2.  Pure mode damage evolution law for discrete damage zone model

    (${\delta ^{{\rm{cr}}}},\;F^{{\rm{cr}}} $)—Critical point; $K_0 $—Initial stiffness; $(1-D_{{\rm{n}}})K_0 $—Damage stiffness; $K_{\rm{p}} $—Penalty stiffness

    图  3  疲劳加载的载荷大小变化

    Figure  3.  Variation of the applied moment with increment during fatigue loading

    图  4  离散损伤模型的疲劳本构关系

    Figure  4.  Fatigue damage evolution law for discrete damage zone model

    1—Began to damage; 2—Damage; 2’—Failure; $F_0 $—Spring load; $\delta_0 $—Critical displacement; $\delta_{\rm{c}} $—Maximum displacement

    图  5  疲劳渐进扩展逐层方法的位移场

    Figure  5.  Displacement field for fatigue progressive extended layerwise method

    hk—Thickness of layer k; zk—Coordinate in thickness direction of layering interfaces of layers k and (k−1); The numbers on the left represent the mathematical layer interpolation nodes of the displacement field along the thickness direction, and the numbers on the right represent the interfaces between the layers

    图  6  HTC/6736A碳纤维双悬臂梁(DCB)模型和加载方式

    Figure  6.  HTC/6736A carbon fiber double cantilever beam (DCB) model and load model

    L—Length; B—Width; 2h—Thickness; a0—Initial delamination length; M—Moment

    图  7  HTC/6736A双悬臂梁分层长度-载荷循环次数曲线

    Figure  7.  HTC/6736A double cantilever beam model delamination length versus loading cycles

    图  8  疲劳渐进扩展逐层方法(FPXLWM)模拟得到HTC/6736A碳纤维双悬臂梁的Paris曲线

    Figure  8.  Paris plot of HTC/6736A carbon fiber double cantilever beam calculated by fatigue progressive extended layerwise method (FPXLWM)

    图  9  不同C值计算得到HTC/6736A双悬臂梁的Paris曲线(β=2.0、λ=0.5)

    Figure  9.  Multiple groups of paris plots of HTC/6736A double cantilever beams with different values of C (β=2.0, λ=0.5)

    图  10  不同β值计算得到HTC/6736A碳纤维双悬臂梁的Paris曲线(C=1.0、λ=0.5)

    Figure  10.  Multiple groups of paris plots of HTC/6736A carbon fiber double cantilever beams with different values of β (C=1.0, λ=0.5)

    图  11  不同λ值计算得到HTC/6736A碳纤维双悬臂梁的Paris曲线(C=1.0、β=2.0)

    Figure  11.  Multiple groups of paris plots of HTC/6736A carbon fiber double cantilever beams with different values of λ (C=1.0, β=2.0)

    图  12  实验数据匹配得到HTC/6736A碳纤维双悬臂梁的Paris曲线

    Figure  12.  Paris plots of HTC/6736A carbon fiber carbon fiber double cantilever beam with experimental and FPXLWM

    图  13  不同加速倍数ΔN计算得到HTC/6736A碳纤维双悬臂梁的a-N曲线(循环载荷30 N、网格尺寸ls=0.25 mm)

    Figure  13.  Delamination growths of HTC/6736A carbon fiber double cantilever beams with loading cycles for different computing speed ΔN (Applied load is 30 N, mesh scale ls=0.25 mm)

    图  14  HTC/6736A碳纤维双悬臂梁不同网格尺寸ls对应疲劳参数C的值(循环载荷30 N、加速倍数ΔN=200)

    Figure  14.  Variation of fatigue parameter C with different values of mesh scale ls of HTC/6736A carbon fiber double cantilever beam (Applied load is 30 N, computing speed ΔN=200)

    图  15  不同网格尺寸计算得到HTC/6736A碳纤维双悬臂梁的a-N曲线

    Figure  15.  Delamination growths of HTC/6736A carbon fiber double cantilever beams with loading cycles for different mesh scale ls

    图  16  铺层顺序为[0]4的HTC/6736A碳纤维双悬臂梁宽度方向三个位置的a-N曲线(循环载荷20 N、网格尺寸ls=0.25)

    Figure  16.  Delamination length of HTC/6736A carbon fiber double cantilever beam at three positions in width direction for stacking sequence [0]4 (Applied load is 20 N, mesh scale ls=0.25)

    图  17  不同铺层顺序HTC/6736A碳纤维双悬臂梁宽度方向上两个位置的a-N曲线(循环载荷20 N)

    Figure  17.  Delamination length of HTC/6736A carbon fiber double cantilever beam with loading cycles at two positions in width direction with different stacking sequences (Applied load is 20 N)

    图  18  不同铺层顺序HTC/6736A碳纤维双悬臂梁载荷-寿命曲线

    Figure  18.  S-N curves of HTC/6736A carbon fiber double cantilever beam specimens with different stacking sequences

  • [1] JOSHI S P, SUN C T. Impact induced fracture in a laminated composite[J]. Journal of Composite Materials,1985,19(1):51-66. doi: 10.1177/002199838501900104
    [2] LAWS N, DVORAK G J. Progressive transverse cracking in composite laminates[J]. Journal of Composite Materials,1988,22(10):900-916. doi: 10.1177/002199838802201001
    [3] ABOUDI J. Stiffness reduction of cracked solids[J]. Engineering Fracture Mechanics,1987,26(5):637-650. doi: 10.1016/0013-7944(87)90129-9
    [4] GUDMUNDSON P, ZANG W L. An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracks[J]. International Journal of Solids & Structures,1993,30(23):3211-3231.
    [5] CHOI H Y, CHANG F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials,1992,26(14):2134-2169. doi: 10.1177/002199839202601408
    [6] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids,1960,8(2):100-104. doi: 10.1016/0022-5096(60)90013-2
    [7] BARENBLATT G I. The mechanical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics,1962,7:55-129.
    [8] NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics,1987,54(3):525. doi: 10.1115/1.3173064
    [9] NEEDLEMAN A. An analysis of decohesion along an imperfect interface[J]. International Journal of Fracture,1990,42(1):21-40. doi: 10.1007/BF00018611
    [10] HUTCHINSON J W, EVANS A G. Mechanics of materials: Top-down approaches to fracture[J]. Acta Materialia,2000,48(1):125-135. doi: 10.1016/S1359-6454(99)00291-8
    [11] ELICES M, GUINEA G, GÓMEZ SÁNCHEZ F J, et al. The cohesive zone model: Advantages, limitations and challenges[J]. Engineering Fracture Mechanics,2002,69(2):137-163. doi: 10.1016/S0013-7944(01)00083-2
    [12] 李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法研究现状[J]. 复合材料学报, 2021, 38(4):1076-1086.

    LI Xining, WANG Yueshun, ZHOU Xinfang. Research status of numerical simulation methods for delamination of composite laminates[J]. Acta Materiae Compositae Sinica,2021,38(4):1076-1086(in Chinese).
    [13] SHAHVERDI M, VASSILOPOULOS A P, KELLER T. Experimental investigation of R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints under CA loading[J]. Composites Part A: Applied Science and Manufacturing,2012,43(10):1689-1697. doi: 10.1016/j.compositesa.2011.10.018
    [14] MURRI G B. Effect of data reduction and fiber-bridging on mode I delamination characterization of unidirectional composites[J]. Journal of Composite Materials,2014,48(19):2413-2424. doi: 10.1177/0021998313498791
    [15] ANDERSONS J, MOJO M, OCHIAI S. Empirical model for stress ratio effect on fatigue delamination growth rate in composite laminates[J]. International Journal of Fatigue,2004,26(6):597-604.
    [16] BEGHINI M, BERTINI L, FORTE P. Experimental investigation on the influence of crack front to fiber orientation on fatigue delamination growth rate under mode II[J]. Composites Science & Technology,2006,66(2):240-247.
    [17] PASCOE J A, ALDERLIESTEN R C, BENEDICTUS R. Methods for the prediction of fatigue delamination growth in composites and adhesive bonds-A critical review[J]. Engineering Fracture Mechanics,2013,112-113:72-96.
    [18] TAO C, MUKHOPADHYAY S, ZHANG B, et al. An improved delamination fatigue cohesive interface model for complex three-dimensional multi-interface cases[J]. Composites Part A: Applied Science and Manufacturing,2018,107:633-646. doi: 10.1016/j.compositesa.2018.02.008
    [19] REMACLE J F, LAMBRECHTS J, SENY B, et al. Blossom-Quad: A non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm[J]. International Journal for Numerical Methods in Engineering,2012,89(9):1102-1119.
    [20] ROBINSON P, GALVANETTO U, TUMINO D, et al. Numerical simulation of fatigue-driven delamination using interface elements[J]. International Journal for Numerical Methods in Engineering,2005,63(13):1824-1848. doi: 10.1002/nme.1338
    [21] MUNOZ J J, GALVANETTO U, ROBINSON P. On the numerical simulation of fatigue driven delamination with interface elements[J]. International Journal of Fatigue,2006(28):1136-1146. doi: 10.1016/j.ijfatigue.2006.02.003
    [22] TUMINO D, CAPPELLO F. Simulation of fatigue delamination growth in composites with different mode mixtures[J]. Journal of Composite Materials,2007,41(20):2415-2441. doi: 10.1177/0021998307075439
    [23] MAY M, HALLETT S R. A combined model for initiation and propagation of damage under fatigue loading for cohesive interface elements[J]. Composites Part A: Applied Science & Manufacturing,2010,41(12):1787-1796.
    [24] EKLIND A, WALANDER T, CARLBERGER T, et al. High cycle fatigue crack growth in Mode I of adhesive layers: modelling, simulation and experiments[J]. International Journal of Fracture,2014,190(1-2):125-146. doi: 10.1007/s10704-014-9979-8
    [25] 邵洪. 层合复合材料低速冲击后疲劳损伤数值模拟[D]. 南京: 南京航空航天大学, 2018.

    SHAO Hong. Numerical simulation of fatigue damage in low-velocity impact laminated composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [26] 廖兴升, 梁智洪, 傅继阳, 等. 基于频率变化预测玻璃纤维增强树脂复合材料层合板的剩余疲劳寿命[J]. 复合材料学报, 2021, 38(10): 3323-3337.

    LIAO Xingsheng, LIANG Zhihong, FU Jiyang, et al. Prediction of remaining fatigue life of glass fiber reinforced polymer laminates based on frequency change[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3323-3337 (in Chinese).
    [27] 姚思远, 陈秀华. 三维机织复合材料在拉压循环载荷下的疲劳性能[J]. 复合材料学报, 2018, 35(10):112-120.

    YAO Siyuan, CHEN Xiuhua. Fatigue behaviors of 3D woven composites under tension-compression cyclic loading[J]. Acta Materiae Compositae Sinica,2018,35(10):112-120(in Chinese).
    [28] 胡殿印, 曾雨琪, 来亮, 等. 复合材料高周弯曲疲劳试验与寿命预测[J]. 复合材料学报, 2018, 35(12):3407-3414.

    HU Dianyin, ZENG Yuqi, LAI Liang, et al. High-cycle bending fatigue and life prediction of composite material[J]. Acta Materiae Compositae Sinica,2018,35(12):3407-3414(in Chinese).
    [29] 任鹏, 夏峰. 复合材料层合板冲击后疲劳寿命试验研究与数值模拟[J]. 工程与试验, 2019, 59(2):7-9, 11.

    REN Peng, XIA Feng. Experimental study and numerical simulation of fatigue life of composite laminates after impact[J]. Engineering and Testing,2019,59(2):7-9, 11(in Chinese).
    [30] 丁京龙. 复合材料孔板结构渐进疲劳损伤分析[J]. 江苏科技信息, 2017, 4(17):35-39. doi: 10.3969/j.issn.1004-7530.2017.17.013

    DING Jinlong. Progressive fatigue damage analysis of composite orifice plate structures[J]. Jiangsu Science and Technology Information,2017,4(17):35-39(in Chinese). doi: 10.3969/j.issn.1004-7530.2017.17.013
    [31] 刘英芝. 复合材料层合板疲劳行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    LIU Yingzhi. Research on fatigue failure of property composites laminates[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
    [32] 张晋华. 基于疲劳主曲线的复合材料层合疲劳寿命研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    ZHANG Jinhua. Fatigue life prediction of composite laminates based on fatigue master curve[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [33] PEERLINGS R H J, BREKELAMNS W A M, BORST R D, et al. Gradient-enhanced damage modelling of high-cycle fatigue[J]. International Journal for Numerical Methods in Engineering,2000,49(12):1547-1569. doi: 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D
    [34] PAAS M H J W, SCHREURS P J G, BREKELAMNS W A M. A continuum approach to brittle and fatigue damage: Theory and numerical procedures[J]. International Journal of Solids and Structures,1993,30(4):579-599. doi: 10.1016/0020-7683(93)90189-E
  • 加载中
图(18)
计量
  • 文章访问数:  716
  • HTML全文浏览量:  255
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-07-19
  • 录用日期:  2021-07-28
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回