Bond-slip constitutive model of bamboo scrimber-concrete interface
-
摘要: 为研究胶粘剂连接的重组竹-混凝土界面粘结性能及构建粘结-滑移本构模型,对44个重组竹-混凝土粘结试件进行单剪试验,并考虑了粘结长度、重组竹粘结宽度与厚度、混凝土强度及胶层厚度等因素对粘结性能的影响。研究结果表明:在不同影响因素下,试件破坏模式基本相同,均为混凝土表面发生剥离破坏,粘结界面间裂缝从加载端产生并向自由端发展,破坏过程分为弹性阶段、软化阶段和脱粘平台阶段;界面峰值剪应力随重组竹厚度、混凝土强度、胶层厚度增加而增大,随粘结宽度增加而减小。根据试验粘结-滑移曲线,建立了重组竹-混凝土界面粘结-滑移本构模型,与实验结果进行对比,该模型能较好地反映重组竹-混凝土界面剪应力与滑移量间的关系。Abstract: In order to study the bonding performance of bamboo scrimber-concrete interface connected by adhesive and construct bond-slip constitutive model, single shear tests were carried out on 44 bamboo scrimber-concrete bonding specimens. Plus, the effects of bond lengths, widths and thicknesses of bamboo scrimber, concrete strengths, and adhesive layer thicknesses on the shear performances of bond interfaces were also taken into consideration. The results of the study show that the failure modes of the specimens are almost the same under different influencing factors. That is, debonding failure occurs on the concrete surfaces, and the cracks between the bond interfaces develop from the loading stage to the free end. The failure process can be divided into elastic stage, softening stage and debonding platform stage. With the thickness of bamboo scrimber, the strength of concrete, and the thickness of glue layer increasing, the peak shear stress of the interface also increases; however, the peak shear stress decreases with the increase of the bonding width. According to the experimental bond-slip curve, a bond-slip constitutive model of bamboo scrimber-concrete interface was established. Compared with the experimental results, this model can better reflect the relationship between the shear stress and slippage of bamboo scrimber-concrete interface.
-
表 1 混凝土配合比
Table 1. Concrete mixture ratio
Grade Cement/kg Water/kg Aggregate/kg Sand/kg fcu/MPa C30 388 225 1120 687 33.3 C40 385 180 1120 685 46.0 C50 537 205 1144 513 51.3 Note: fcu—Cubic compressive strength of concrete. 表 2 重组竹-混凝土单剪试件具体参数
Table 2. Specific parameters of bamboo scrimber-concrete single shear specimens
Specimen fcu/MPa L/mm bp/mm tp/mm ta/mm A30-80-30-5 33.3 80 30 5 0.9 A30-120-30-5 33.3 120 30 5 0.9 A30-160-20-5 33.3 160 20 5 0.9 A30-160-30-3 33.3 160 30 3 0.9 A30-160-30-5 33.3 160 30 5 0.9 A30-160-30-7 33.3 160 30 7 0.9 A30-160-38-5 33.3 160 38 5 0.9 A30-200-20-5 33.3 200 20 5 0.9 A30-200-30-3 33.3 200 30 3 0.9 A30-200-30-5 33.3 200 30 5 0.9 A30-200-30-7 33.3 200 30 7 0.9 A30-200-38-5 33.3 200 38 5 0.9 A40-200-30-5 46.0 200 30 5 0.9 A50-200-30-5 51.3 200 30 5 0.9 B30-200-30-5 33.3 200 30 5 2.2 C30-200-30-5 33.3 200 30 5 3.5 Notes: A, B, C—Thickness of adhesive layer of 0.9 mm, 2.2 mm, 3.5 mm, respectively; ta—Thickness of adhesive layer. -
[1] 谢鹏, 刘问, 胡雨村, 等. 重组竹横向准脆性断裂的断裂参数[J]. 复合材料学报, 2020, 37(6):1466-1475.XIE Peng, LIU Wen, HU Yucun, et al. Fracture parameters of bamboo scrimber's transverse quasi-brittle fracture[J]. Acta Materiae Compositae Sinica,2020,37(6):1466-1475(in Chinese). [2] LIU W, ZHENG Y B, HU X Z, et al. Interfacial bonding enhancement on the epoxy adhesive joint between engi-neered bamboo and steel substrates with resin pre-coating surface treatment[J]. Wood Science and Technology, 2019, 53(1): 785-799. [3] LIU W, XU H, HU X Z, et al. Strengthening and repairing of engineered bamboo-steel epoxy adhesive joints with carbon nanotube on the basis of resin precoating method[J]. European Journal of Wood and Wood Products,2020,78(2):313-320. doi: 10.1007/s00107-020-01512-1 [4] FU Q N, YAN L B, NING T, et al. Interfacial bond behavior between wood chip concrete and engineered timber glued by various adhesives[J]. Construction and Building Materials, 2020, 238: 117743. [5] HORIGUCHI T, SAEKI N. Effect of test methods and qua-lity of concrete on bond strength of CFRP sheet[C]. Sapporo, 1997: 265-270. [6] HARMON T G, KIM Y J, KARDOS J, et al. Bond of surface-mounted fiber-reinforced polymer reinforcement for concrete structures[J]. ACI Structural Journal,2003,100(5):557-564. [7] GEMERT D V. Force transfer in epoxy bonded steel/concrete joints[J]. International Journal of Adhesion & Adhe-sives,1980,1(2):67-72. [8] 陆新征. FRP-混凝土界面行为研究[D]. 北京: 清华大学, 2005.LU Xinzheng. Studies on FRP-concrete interface[D]. Beijing: Tsinghua University, 2005(in Chinese). [9] NAKABA K, TOSHIYUKI K, TOMOKI F, et al. Bond behavior between fiber-reinforced polymer laminates and concrete[J]. ACI Structural Journal,2001,98(3):359-367. [10] DAI J G, UEDA T, SATO Y. Local bond stress slip relations for FRP sheets-concrete interfaces[C]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2003: 143-152. [11] UEDA T, DAI J G. New shear bond model for FRP-concrete interface-from modeling to application[M]. London: Taylor & Francis Group, 2005: 69-82. [12] HADIGHEH S A, GRAVINA R J, SETUNGE S. Identification of the interfacial fracture mechanism in the FRP laminated substrates using a modified single lap shear test set-up[J]. Engineering Fracture Mechanics,2015,134:317-329. doi: 10.1016/j.engfracmech.2014.12.001 [13] JULIO C, LOPEZ G, FERNANDEZ J, et al. Effect of adhesive thickness and concrete strength on FRP-concrete bonds[J]. Journal of Composites for Construction,2012,16(6):705-711. doi: 10.1061/(ASCE)CC.1943-5614.0000303 [14] LORENZIS L D, NANNI A. Bond between near-surface mounted fiber-reinforced polymer rods and concrete in structural strengthening[J]. ACI Structural Journal,2002,99(2):123-132. [15] 刘生纬, 张家玮, 赵建昌, 等. 硫酸盐干湿交替对碳纤维增强环氧树脂-混凝土界面粘结性能的影响[J]. 复合材料学报, 2018, 35(1):16-23.LIU Shengwei, ZHANG Jiawei, ZHAO Jianchang, et al. Influence of dry-wet alternation of sulfate on bonding performance of carbon fiber reinforced epoxy-concrete interface[J]. Acta Materiae Compositae Sinica,2018,35(1):16-23(in Chinese). [16] 王吉忠, 杨俊龙, 崔文佳. 盐溶液干湿循环对CFRP-混凝土界面粘结性能的影响[J]. 复合材料学报, 2018, 35(8):2055-2064.WANG Jizhong. YANG Junlong, CUI Wenjia. Effect on interfacial bonding property of CFRP-concrete under wet and dry cycles in salt solution[J]. Acta Materiae Compositae Sinica,2018,35(8):2055-2064(in Chinese). [17] NEUBAUER U, ROSTASY F S. Bond failure of concrete fiber reinforced polymer plates at inclined cracks-experiments and fracture mechanics model[C]. Farmington Hills: ACI, 1999: 369-382. [18] MONTI G, RENZELLI M, LUCIANI P. FRP adhesion in uncracked and cracked concrete zones[C]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2003: 183-192. [19] SAVIOA M, FARRACUTI B, MAZZOTTI C. Non-linear bond-slip law for FRP-concrete interface[C]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2003: 163-172. [20] ZHANG F W, WAN B L, XU Q F, et al. Experimental study of bond behavior of laminated bamboo plate to concrete interfaces[J]. Materials and Structures, 2021, 54(1): 25. [21] 中国国家标准化管理委员会. 木材顺纹抗拉强度试验方法: GB/T 1938—2009[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People’s Republic of China. Method of testing in tensile strength parallel to grain of wood: GB/T 1938—2009[S]. Beijing: China Standards Press, 2005(in Chinese). [22] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.Ministry of Construction of the People's Republic of China. Standard test method for mechanical properties of ordi-nary concrete: GB/T 50081—2002[S]. Beijing: China Building Industry Press, 2003(in Chinese). [23] CHING A, ORAL B. Debonding of FRP plated concrete: A tri-layer fracture treatment[J]. Engineering Fracture Mechanics,2006,73(3):348-365. doi: 10.1016/j.engfracmech.2005.07.007 [24] YUAN H, TENG J G, SERACINO R, et al. Full-range behavior of FRP-to-concrete bonded joints[J]. Engi-neering Structures,2004,26(5):553-565. doi: 10.1016/j.engstruct.2003.11.006 [25] 郭樟根, 孙伟民, 曹双寅. FRP与混凝土界面黏结-滑移本构关系的试验研究[J]. 土木工程学报, 2007(3):1-5. doi: 10.3321/j.issn:1000-131X.2007.03.001GUO Zhanggen, SUN Weimin, CAO Shuangyin. Experimental study on bond-slip behavior between FRP and concrete[J]. China Civil Engineering Journal,2007(3):1-5(in Chinese). doi: 10.3321/j.issn:1000-131X.2007.03.001 [26] FERRACUTI B, SAVOIA M, MAZZOTTI C. Interface law for FRP-concrete delamination[J]. Composite Structures,2007,80(4):523-531. doi: 10.1016/j.compstruct.2006.07.001 [27] CHEN J, TENG J. Anchorage strength models for FRP and steel plates attached to concrete[J]. Journal of Structural Engineering, 2001, 127(7): 784-791. [28] 周英武. FRP高强混凝土梁强度与延性的理论与试验研究[D]. 大连: 大连理工大学, 2009.ZHOU Yingwu. Analytical and experimental study on the strength and ductility of FRP-reinforced high strength concrete beam[D]. Dalian: Dalian University of Technology, 2009(in Chinese).