留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重组竹-混凝土界面粘结-滑移本构模型

刘明西 刘承阳 刘问 徐锋 李智

刘明西, 刘承阳, 刘问, 等. 重组竹-混凝土界面粘结-滑移本构模型[J]. 复合材料学报, 2022, 39(5): 2299-2307. doi: 10.13801/j.cnki.fhclxb.20210804.002
引用本文: 刘明西, 刘承阳, 刘问, 等. 重组竹-混凝土界面粘结-滑移本构模型[J]. 复合材料学报, 2022, 39(5): 2299-2307. doi: 10.13801/j.cnki.fhclxb.20210804.002
LIU Mingxi, LIU Chengyang, LIU Wen, et al. Bond-slip constitutive model of bamboo scrimber-concrete interface[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2299-2307. doi: 10.13801/j.cnki.fhclxb.20210804.002
Citation: LIU Mingxi, LIU Chengyang, LIU Wen, et al. Bond-slip constitutive model of bamboo scrimber-concrete interface[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2299-2307. doi: 10.13801/j.cnki.fhclxb.20210804.002

重组竹-混凝土界面粘结-滑移本构模型

doi: 10.13801/j.cnki.fhclxb.20210804.002
基金项目: 国家重点研发计划(2019YFD1101002)
详细信息
    通讯作者:

    刘问,博士,副教授,硕士生导师,研究方向为断裂力学、竹木结构 E-mail:liuwen@bjfu.edu.cn

  • 中图分类号: TB332

Bond-slip constitutive model of bamboo scrimber-concrete interface

  • 摘要: 为研究胶粘剂连接的重组竹-混凝土界面粘结性能及构建粘结-滑移本构模型,对44个重组竹-混凝土粘结试件进行单剪试验,并考虑了粘结长度、重组竹粘结宽度与厚度、混凝土强度及胶层厚度等因素对粘结性能的影响。研究结果表明:在不同影响因素下,试件破坏模式基本相同,均为混凝土表面发生剥离破坏,粘结界面间裂缝从加载端产生并向自由端发展,破坏过程分为弹性阶段、软化阶段和脱粘平台阶段;界面峰值剪应力随重组竹厚度、混凝土强度、胶层厚度增加而增大,随粘结宽度增加而减小。根据试验粘结-滑移曲线,建立了重组竹-混凝土界面粘结-滑移本构模型,与实验结果进行对比,该模型能较好地反映重组竹-混凝土界面剪应力与滑移量间的关系。

     

  • 图  1  重组竹-混凝土单剪试件示意图(单位:mm)

    Figure  1.  Schematic diagram of bamboo scrimber-concrete single shear sample (Unit: mm)

    bc, tc—Width and thickness of concrete; bp, tp—Width and thickness of bamboo scrimber; L—Bonding length; l—Unbonded length; l’—Length of the clamping end; P—Applied load

    图  2  控制胶层厚度

    Figure  2.  Control the thickness of adhesive layer

    图  3  单剪试验装置

    Figure  3.  Single shear test device

    图  4  重组竹-混凝土单剪试件破坏示意图

    Figure  4.  Failure diagram of bamboo scrimber-concrete single shear specimen

    图  5  不同重组竹-混凝土界面破坏形态

    Figure  5.  Failure modes of different bamboo scrimber-concrete interface

    图  6  不同重组竹-混凝土荷载-滑移曲线

    Figure  6.  Load-slip curves of different bamboo scrimber-concrete

    图  7  试件A30-80-30-5应变 (a) 和剪应力 (b) 分布规律

    Figure  7.  Strain (a) and shear stress (b) distribution of specimen A30-80-30-5

    图  8  试件A30-200-30-5应变 (a) 和剪应力 (b) 分布规律

    Figure  8.  Strain (a) and shear stress (b) distribution of specimen A30-200-30-5

    图  9  不同影响因素下重组竹-混凝土的粘结-滑移曲线

    Figure  9.  Bond-slip curves of bamboo scrimber-concrete under different influencing factors

    图  10  重组竹-混凝土峰值剪应力预测值与试验值对比

    Figure  10.  Comparison between predicted and experimental values of peak shear stress of bamboo scrimber-concrete

    图  11  重组竹-混凝土本构模型验证

    Figure  11.  Constitutive model verification of bamboo scrimber-concrete

    表  1  混凝土配合比

    Table  1.   Concrete mixture ratio

    GradeCement/kgWater/kgAggregate/kgSand/kgfcu/MPa
    C30 388 225 1120 687 33.3
    C40 385 180 1120 685 46.0
    C50 537 205 1144 513 51.3
    Note: fcu—Cubic compressive strength of concrete.
    下载: 导出CSV

    表  2  重组竹-混凝土单剪试件具体参数

    Table  2.   Specific parameters of bamboo scrimber-concrete single shear specimens

    Specimenfcu/MPaL/mmbp/mmtp/mmta/mm
    A30-80-30-5 33.3 80 30 5 0.9
    A30-120-30-5 33.3 120 30 5 0.9
    A30-160-20-5 33.3 160 20 5 0.9
    A30-160-30-3 33.3 160 30 3 0.9
    A30-160-30-5 33.3 160 30 5 0.9
    A30-160-30-7 33.3 160 30 7 0.9
    A30-160-38-5 33.3 160 38 5 0.9
    A30-200-20-5 33.3 200 20 5 0.9
    A30-200-30-3 33.3 200 30 3 0.9
    A30-200-30-5 33.3 200 30 5 0.9
    A30-200-30-7 33.3 200 30 7 0.9
    A30-200-38-5 33.3 200 38 5 0.9
    A40-200-30-5 46.0 200 30 5 0.9
    A50-200-30-5 51.3 200 30 5 0.9
    B30-200-30-5 33.3 200 30 5 2.2
    C30-200-30-5 33.3 200 30 5 3.5
    Notes: A, B, C—Thickness of adhesive layer of 0.9 mm, 2.2 mm, 3.5 mm, respectively; ta—Thickness of adhesive layer.
    下载: 导出CSV
  • [1] 谢鹏, 刘问, 胡雨村, 等. 重组竹横向准脆性断裂的断裂参数[J]. 复合材料学报, 2020, 37(6):1466-1475.

    XIE Peng, LIU Wen, HU Yucun, et al. Fracture parameters of bamboo scrimber's transverse quasi-brittle fracture[J]. Acta Materiae Compositae Sinica,2020,37(6):1466-1475(in Chinese).
    [2] LIU W, ZHENG Y B, HU X Z, et al. Interfacial bonding enhancement on the epoxy adhesive joint between engi-neered bamboo and steel substrates with resin pre-coating surface treatment[J]. Wood Science and Technology, 2019, 53(1): 785-799.
    [3] LIU W, XU H, HU X Z, et al. Strengthening and repairing of engineered bamboo-steel epoxy adhesive joints with carbon nanotube on the basis of resin precoating method[J]. European Journal of Wood and Wood Products,2020,78(2):313-320. doi: 10.1007/s00107-020-01512-1
    [4] FU Q N, YAN L B, NING T, et al. Interfacial bond behavior between wood chip concrete and engineered timber glued by various adhesives[J]. Construction and Building Materials, 2020, 238: 117743.
    [5] HORIGUCHI T, SAEKI N. Effect of test methods and qua-lity of concrete on bond strength of CFRP sheet[C]. Sapporo, 1997: 265-270.
    [6] HARMON T G, KIM Y J, KARDOS J, et al. Bond of surface-mounted fiber-reinforced polymer reinforcement for concrete structures[J]. ACI Structural Journal,2003,100(5):557-564.
    [7] GEMERT D V. Force transfer in epoxy bonded steel/concrete joints[J]. International Journal of Adhesion & Adhe-sives,1980,1(2):67-72.
    [8] 陆新征. FRP-混凝土界面行为研究[D]. 北京: 清华大学, 2005.

    LU Xinzheng. Studies on FRP-concrete interface[D]. Beijing: Tsinghua University, 2005(in Chinese).
    [9] NAKABA K, TOSHIYUKI K, TOMOKI F, et al. Bond behavior between fiber-reinforced polymer laminates and concrete[J]. ACI Structural Journal,2001,98(3):359-367.
    [10] DAI J G, UEDA T, SATO Y. Local bond stress slip relations for FRP sheets-concrete interfaces[C]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2003: 143-152.
    [11] UEDA T, DAI J G. New shear bond model for FRP-concrete interface-from modeling to application[M]. London: Taylor & Francis Group, 2005: 69-82.
    [12] HADIGHEH S A, GRAVINA R J, SETUNGE S. Identification of the interfacial fracture mechanism in the FRP laminated substrates using a modified single lap shear test set-up[J]. Engineering Fracture Mechanics,2015,134:317-329. doi: 10.1016/j.engfracmech.2014.12.001
    [13] JULIO C, LOPEZ G, FERNANDEZ J, et al. Effect of adhesive thickness and concrete strength on FRP-concrete bonds[J]. Journal of Composites for Construction,2012,16(6):705-711. doi: 10.1061/(ASCE)CC.1943-5614.0000303
    [14] LORENZIS L D, NANNI A. Bond between near-surface mounted fiber-reinforced polymer rods and concrete in structural strengthening[J]. ACI Structural Journal,2002,99(2):123-132.
    [15] 刘生纬, 张家玮, 赵建昌, 等. 硫酸盐干湿交替对碳纤维增强环氧树脂-混凝土界面粘结性能的影响[J]. 复合材料学报, 2018, 35(1):16-23.

    LIU Shengwei, ZHANG Jiawei, ZHAO Jianchang, et al. Influence of dry-wet alternation of sulfate on bonding performance of carbon fiber reinforced epoxy-concrete interface[J]. Acta Materiae Compositae Sinica,2018,35(1):16-23(in Chinese).
    [16] 王吉忠, 杨俊龙, 崔文佳. 盐溶液干湿循环对CFRP-混凝土界面粘结性能的影响[J]. 复合材料学报, 2018, 35(8):2055-2064.

    WANG Jizhong. YANG Junlong, CUI Wenjia. Effect on interfacial bonding property of CFRP-concrete under wet and dry cycles in salt solution[J]. Acta Materiae Compositae Sinica,2018,35(8):2055-2064(in Chinese).
    [17] NEUBAUER U, ROSTASY F S. Bond failure of concrete fiber reinforced polymer plates at inclined cracks-experiments and fracture mechanics model[C]. Farmington Hills: ACI, 1999: 369-382.
    [18] MONTI G, RENZELLI M, LUCIANI P. FRP adhesion in uncracked and cracked concrete zones[C]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2003: 183-192.
    [19] SAVIOA M, FARRACUTI B, MAZZOTTI C. Non-linear bond-slip law for FRP-concrete interface[C]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2003: 163-172.
    [20] ZHANG F W, WAN B L, XU Q F, et al. Experimental study of bond behavior of laminated bamboo plate to concrete interfaces[J]. Materials and Structures, 2021, 54(1): 25.
    [21] 中国国家标准化管理委员会. 木材顺纹抗拉强度试验方法: GB/T 1938—2009[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Method of testing in tensile strength parallel to grain of wood: GB/T 1938—2009[S]. Beijing: China Standards Press, 2005(in Chinese).
    [22] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Construction of the People's Republic of China. Standard test method for mechanical properties of ordi-nary concrete: GB/T 50081—2002[S]. Beijing: China Building Industry Press, 2003(in Chinese).
    [23] CHING A, ORAL B. Debonding of FRP plated concrete: A tri-layer fracture treatment[J]. Engineering Fracture Mechanics,2006,73(3):348-365. doi: 10.1016/j.engfracmech.2005.07.007
    [24] YUAN H, TENG J G, SERACINO R, et al. Full-range behavior of FRP-to-concrete bonded joints[J]. Engi-neering Structures,2004,26(5):553-565. doi: 10.1016/j.engstruct.2003.11.006
    [25] 郭樟根, 孙伟民, 曹双寅. FRP与混凝土界面黏结-滑移本构关系的试验研究[J]. 土木工程学报, 2007(3):1-5. doi: 10.3321/j.issn:1000-131X.2007.03.001

    GUO Zhanggen, SUN Weimin, CAO Shuangyin. Experimental study on bond-slip behavior between FRP and concrete[J]. China Civil Engineering Journal,2007(3):1-5(in Chinese). doi: 10.3321/j.issn:1000-131X.2007.03.001
    [26] FERRACUTI B, SAVOIA M, MAZZOTTI C. Interface law for FRP-concrete delamination[J]. Composite Structures,2007,80(4):523-531. doi: 10.1016/j.compstruct.2006.07.001
    [27] CHEN J, TENG J. Anchorage strength models for FRP and steel plates attached to concrete[J]. Journal of Structural Engineering, 2001, 127(7): 784-791.
    [28] 周英武. FRP高强混凝土梁强度与延性的理论与试验研究[D]. 大连: 大连理工大学, 2009.

    ZHOU Yingwu. Analytical and experimental study on the strength and ductility of FRP-reinforced high strength concrete beam[D]. Dalian: Dalian University of Technology, 2009(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  505
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-09
  • 修回日期:  2021-07-25
  • 录用日期:  2021-07-28
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回