Preparation and performance of hollow ceramic microsphere composites with high-temperature resistance, low thermal conductivity and toughness
-
摘要: 在高速飞行的过程中飞行器温度急速上升,飞行器舱段间的密封材料不仅要具有优异的耐高温性能,同时要具有较低的导热系数辅助参与阻隔舱段间的热量传递,并且要具有优异的力学性能使其不被破坏。以中空陶瓷微球为骨料,加入酚醛树脂及磷酸盐固化体系制备有机/无机杂化耐高温韧性复合材料,并对复合材料进行高温处理,研究复合材料在高温处理前后的变化。通过力学性能测试、SEM观察以及XRD和FT-IR测试对复合材料高温处理前后的抗压强度、压缩形变能力、微观结构以及组分变化进行表征,并通过火焰燃烧对复合材料耐高温性能进行测试。结果表明,所制备的复合材料具有较高的抗压强度以及优异的韧性,1000℃高温处理600 s复合材料的宏观形貌未受到影响,具有较高的热稳定性。导热系数测试结果表明,中空陶瓷微珠含量的增加、酚醛树脂的添加以及高温处理均会导致复合材料导热系数降低,最低的导热系数低至0.16 W/(m·K)。Abstract: In the process of high-speed flight, the temperature of the aircraft rises rapidly. The sealing material between the aircraft cabin should not only have excellent high-temperature resistance, but also have a low thermal conductivity to assist in blocking the heat transfer between the cabin, and have excellent mechanical properties to prevent it from being damaged. Used hollow ceramic microspheres as aggregates, added phenolic resin and phosphate curing system to prepare organic/inorganic hybrid high-temperature resistant and tough composites. The composites were subjected to high-temperature treatment to study the changes of the composites before and after the high-temperature treatment. The compressive strength, compression deformation ability, microstructure and composition changes of the composites before and after the high-temperature treatment were characterized by mechanical performance test, SEM observation, XRD and FT-IR. In addition, the high-temperature resistance performance of the composites was tested by flame combustion. The overall results show that the prepared composites have high compressive strength and excellent toughness. The macro morphology of the composites is not affected by the high-temperature treatment at 1000℃ for 600 s, which indicates that the composites have high thermal stability. And the thermal conductivity test results show that the increase in the content of hollow ceramic microbeads, the addition of phenolic resin and the high-temperature treatment all cause the thermal conductivity to decrease, and the lowest thermal conductivity is as low as 0.16 W/(m·K).
-
Key words:
- hollow ceramic beads /
- composites /
- high temperature resistance /
- toughness /
- phenolic resin /
- thermal conductivity
-
图 6 不同组分制备的FA复合材料不同时间的火焰燃烧测试:((a1)~(a3)) FA∶P=300∶100; ((b1)~(b3)) FA∶P∶PF=300∶100∶50;((c1)~(c3)) FA∶P∶PF=300∶100∶100
Figure 6. Flame combustion test of FA composites prepared by different components in different periods:((a1)-(a3)) FA∶P=300∶100; ((b1)-(b3)) FA∶P∶PF=300∶100∶50; ((c1)-(c3)) FA∶P∶PF=300∶100∶100
图 7 火焰燃烧前 ((a1)~(c1)) 和火焰燃烧后((a2)~(c2)) 测试FA复合材料的宏观形貌:((a1), (a2)) FA∶P=300∶100; ((b1), (b2)) FA∶P∶PF=300∶100∶50; ((c1), (c2)) FA∶P∶PF=300∶100∶100)
Figure 7. Macromorphology of the FA composites before ((a1)-(c1)) and after ((a2)-(c2)) flame combustion test:((a1), (a2)) FA∶P=300∶100; ((b1), (b2)) FA∶P∶PF=300∶100∶50; ((c1), (c2)) FA∶P∶PF=300∶100∶100)
-
[1] LEI Z, YANG Q, SHANG W, et al. Reinforcement of polyurethane/epoxy interpenetrating network nanocompo-sites with an organically modified palygorskite[J]. Journal of Applied Polymer,2010,111(6):3150-3162. [2] DU X S, XIAO M, MENG Y Z, et al. Synthesis of poly(arylene disulfide)-vermiculite nanocomposites via in situ ring-opening reaction of cyclic oligomers[J]. European Polymer Journal,2003,39(8):1735-1739. doi: 10.1016/S0014-3057(03)00061-2 [3] KUMAR G N, AL-AIFAN B, PARAMESHWARAN R, et al. Facile synthesis of microencapsulated 1-dodecanol/melamine-formaldehyde phase change material using in-situ polymerization for thermal energy storage[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2020,610(2):125-148. [4] HAI Y, WANG C, JIANG S, et al. Layer-by-layer assembly of aerogel and alginate toward self-extinguishing flexible polyurethane foam[J]. Industrial & Engineering Che-mistry Research,2020,59(1):475-483. [5] 李博琦, 谢贤, 吕晋芳, 等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用, 2020, 40(5):153-160.LI Boqi, XIE Xian, LV Jinfang, et al. Research progress and prospect of comprehensive utilization of coal ash resources[J]. Protection and Utilization of Mineral Resources,2020,40(5):153-160(in Chinese). [6] BICER A. Effect of production temperature on thermal and mechanical properties of polystyrene-fly ash composites[J]. Advanced Composites Letters,2020,29(1):66-98. [7] AHMAD M R, CHEN B, HAQUE M A, et al. Utilization of industrial and hazardous waste materials to formulate energy-efficient hygrothermal bio-composites[J]. Journal of Cleaner Production,2020,250(20):119469. [8] LIANG J Z. Estimation of thermal conductivity for polypropylene/hollow glass bead composites[J]. Composites Part B Engineering,2014,56(1):431-434. [9] 胡凯强, 赖声发, 钱艳峰, 等. 破乳法合成N掺杂TiO2/粉煤灰及其可见光催化性能研究[J]. 硅酸盐通报, 2021, 40(1):304-311.HU Kaiqiang, LAI Shengfa, QIAN Yanfeng, et al. Synthesis of N-doped TiO2/fly ash by demulsification and its visible light catalytic performance[J]. Chinese Bulletin of Cera-mics,2021,40(1):304-311(in Chinese). [10] 贾子龙, 刘志红. 磷石膏/粉煤灰/CaO复合材料对氧化石蜡皂的光催化吸附[J]. 功能材料, 2020, 51(1):1075-1081. doi: 10.3969/j.issn.1001-9731.2020.01.012JIA Zilong, LIU Zhihong. Photocatalytic adsorption of oxi-dized paraffin soap by phosphogypsum/fly ash/CaO composite[J]. Functional Materials,2020,51(1):1075-1081(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.01.012 [11] FENG X, SZA B, ZHUANG M, et al. Improved interfacial strength and ablation resistance of carbon fabric reinforced phenolic composites modified with functionalized ZrSiO4 sol[J]. Materials & Design,2020,12(1):64-86. [12] YANG G, WANG W, PENG S, et al. The research on oxidation resistance ability and mechanical properties of carbon fiber reinforced phenolic resin composites[J]. Materials Research Express,2020,7(6):45-67. [13] CHIOU C W, LIN Y C, WANG L, et al. Hydrogen bond interactions mediate hierarchical self-assembly of poss-containing block copolymers blended with phenolic resin[J]. Macromolecules,2014,47(24):8709-8721. doi: 10.1021/ma502180c [14] 徐博, 丁杰, 王兵, 等. AlB2对高硅氧纤维/可瓷化酚醛树脂复合材料及其裂解产物力学性能的影响[J]. 复合材料学报, 2021, 38(1):129-136.XU Bo, DING Jie, WANG Bing, et al. Effect of AlB2 on mecha-nical properties of high silicon oxygen fiber/ceramizable phenolic resin composites and their cracking products[J]. Acta Materialia Sinica,2021,38(1):129-136(in Chinese). [15] 陈孝飞, 李树杰, 闫联生, 等. 硼改性酚醛树脂的固化及裂解[J]. 复合材料学报, 2011, 28(5):89-95.CHEN Xiaofei, LI Shujie, YAN Liansheng, et al. Cure and cracking of boron-modified phenolic resin[J]. Acta Compositae Sinica,2011,28(5):89-95(in Chinese). [16] MA C, MA Z, GAO L, et al. Ablation behavior of boron-modified phenolic resin irradiated by high-energy continuous-wave laser and its evolution of carbon structure[J]. Materials & design,2019,180(2):107-124. [17] HSIUE G H, SHIAO S J, WEI H F, et al. Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications[J]. Journal of Applied Polymer Science,2001,79(2):342-349. doi: 10.1002/1097-4628(20010110)79:2<342::AID-APP180>3.0.CO;2-8 [18] BO C, SHI Z, HU L, et al. Cardanol derived P, Si and N based precursors to develop flame retardant phenolic foam[J]. Scientific Reports,2020,10(1):1-12. doi: 10.1038/s41598-019-56847-4 [19] 王超, 刘文彬, 刘济江, 等. 磷酸盐基耐高温胶黏剂的研制[J]. 化学与黏合, 2007(2):90-91.WANG Chao, LIU Wenbin, LIU Jijiang, et al. Preparation of phosphate based high temperature resistant adhesive[J]. Chemistry and Adhesion,2007(2):90-91(in Chinese). [20] 于长清, 余悠然, 赵英民, 等. 耐高温高强度醇溶性磷酸盐/酚醛杂化胶黏剂的制备及性能表征[J]. 硅酸盐通报, 2020, 39(5):1681-1688.YU Changqing, YU Youran, ZHAO Yingmin, et al. Preparation and characterization of high temperature and high strength alcohol-soluble phosphate/phenolic hybrid adhesive[J]. Bulletin of Ceramics,2020,39(5):1681-1688(in Chinese). [21] 全国塑料标准化技术委员会. 塑料压缩性能测试: GB/T 1041—2008[S]. 北京: 中国标准出版社, 2008.National Plastics Standardization Technical Committee. Plastics-Detemination of compressive properties: GB/T 1041—2008[S]. Beijing: China Standard Press, 2008.