留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耐高温、低导热、韧性中空陶瓷微珠复合材料的制备及其性能

刘海龙 黄玉东 金苗苗 唐思哲 贺金梅 王超

刘海龙, 黄玉东, 金苗苗, 等. 耐高温、低导热、韧性中空陶瓷微珠复合材料的制备及其性能[J]. 复合材料学报, 2022, 39(5): 2378-2386. doi: 10.13801/j.cnki.fhclxb.20210730.002
引用本文: 刘海龙, 黄玉东, 金苗苗, 等. 耐高温、低导热、韧性中空陶瓷微珠复合材料的制备及其性能[J]. 复合材料学报, 2022, 39(5): 2378-2386. doi: 10.13801/j.cnki.fhclxb.20210730.002
LIU Hailong, HUANG Yudong, JIN Miaomiao, et al. Preparation and performance of hollow ceramic microsphere composites with high-temperature resistance, low thermal conductivity and toughness[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2378-2386. doi: 10.13801/j.cnki.fhclxb.20210730.002
Citation: LIU Hailong, HUANG Yudong, JIN Miaomiao, et al. Preparation and performance of hollow ceramic microsphere composites with high-temperature resistance, low thermal conductivity and toughness[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2378-2386. doi: 10.13801/j.cnki.fhclxb.20210730.002

耐高温、低导热、韧性中空陶瓷微珠复合材料的制备及其性能

doi: 10.13801/j.cnki.fhclxb.20210730.002
基金项目: 国家自然科学基金 (51873048)
详细信息
    通讯作者:

    贺金梅,博士,研究员,博士生导师,研究方向为聚合物基复合材料界面、碳纤维/尼龙复合材料、碳纳米管改性 E-mail:hejinmei@hit.edu.cn

    王超,博士,研究员,硕士生导师,研究方向为有机特种胶黏剂、无机超高温胶粘剂 E-mail:13945092540@163.com

  • 中图分类号: TB332

Preparation and performance of hollow ceramic microsphere composites with high-temperature resistance, low thermal conductivity and toughness

  • 摘要: 在高速飞行的过程中飞行器温度急速上升,飞行器舱段间的密封材料不仅要具有优异的耐高温性能,同时要具有较低的导热系数辅助参与阻隔舱段间的热量传递,并且要具有优异的力学性能使其不被破坏。以中空陶瓷微球为骨料,加入酚醛树脂及磷酸盐固化体系制备有机/无机杂化耐高温韧性复合材料,并对复合材料进行高温处理,研究复合材料在高温处理前后的变化。通过力学性能测试、SEM观察以及XRD和FT-IR测试对复合材料高温处理前后的抗压强度、压缩形变能力、微观结构以及组分变化进行表征,并通过火焰燃烧对复合材料耐高温性能进行测试。结果表明,所制备的复合材料具有较高的抗压强度以及优异的韧性,1000℃高温处理600 s复合材料的宏观形貌未受到影响,具有较高的热稳定性。导热系数测试结果表明,中空陶瓷微珠含量的增加、酚醛树脂的添加以及高温处理均会导致复合材料导热系数降低,最低的导热系数低至0.16 W/(m·K)。

     

  • 图  1  FA复合材料高温处理前 (a) 和高温处理后 (b) 的XRD图谱

    Figure  1.  XRD patterns of FA composites before (a) and after (b) high temperature treatment

    PF—Phenol-formaldehyde resin; FA—Fly ash; P—Phosphate; 50, 100—Mass fraction of PF

    图  2  FA复合材料高温处理前 (a) 和高温处理后 (b) 的FT-IR图谱

    Figure  2.  FT-IR spectra of FA composites before (a) and after (b) the high-temperature treatment

    图  3  FA复合材料高温处理前 (a) 和高温处理后 (b) 的抗压强度

    Figure  3.  Compressive strength of FA composites before (a) and after (b) the high-temperature treatment

    图  4  不同组分FA复合材料高温处理前后最大抗压强度对比

    Figure  4.  Comparison of maximum compressive strength of FA composites with different components before and after high temperature treatment

    图  5  FA复合材料高温处理前 (a) 和高温处理后 (b) 的压缩形变

    Figure  5.  Compressive deformation of FA composites before (a) and after (b) high temperature treatment

    图  6  不同组分制备的FA复合材料不同时间的火焰燃烧测试:((a1)~(a3)) FA∶P=300∶100; ((b1)~(b3)) FA∶P∶PF=300∶100∶50;((c1)~(c3)) FA∶P∶PF=300∶100∶100

    Figure  6.  Flame combustion test of FA composites prepared by different components in different periods:((a1)-(a3)) FA∶P=300∶100; ((b1)-(b3)) FA∶P∶PF=300∶100∶50; ((c1)-(c3)) FA∶P∶PF=300∶100∶100

    图  7  火焰燃烧前 ((a1)~(c1)) 和火焰燃烧后((a2)~(c2)) 测试FA复合材料的宏观形貌:((a1), (a2)) FA∶P=300∶100; ((b1), (b2)) FA∶P∶PF=300∶100∶50; ((c1), (c2)) FA∶P∶PF=300∶100∶100)

    Figure  7.  Macromorphology of the FA composites before ((a1)-(c1)) and after ((a2)-(c2)) flame combustion test:((a1), (a2)) FA∶P=300∶100; ((b1), (b2)) FA∶P∶PF=300∶100∶50; ((c1), (c2)) FA∶P∶PF=300∶100∶100)

    图  8  1000℃处理600 s后FA复合材料的宏观形貌

    Figure  8.  Macromorphology of the FA composites after 1000℃ treatment for 600 s

    图  9  高温处理前FA复合材料SEM图像

    ((a), (b)) FA∶P=100∶100; ((c), (d)) FA∶P∶PF=100∶100∶50; ((e), (f)) FA∶P∶PF=100∶100∶100

    Figure  9.  SEM images of FA composites before the high-temperature treatment

    图  10  1000℃高温处理后FA复合材料的SEM图像

    ((a), (b)) FA∶P=100∶100; ((c), (d)) FA∶P∶PF=100∶100∶50; ((e), (f)) FA∶P∶PF=100∶100∶100

    Figure  10.  SEM images of FA composites after the high-temperature treatment

    图  11  FA复合材料高温处理前 (a) 和高温处理后 (b) 的孔隙率变化

    Figure  11.  Porosity of the FA composites before (a) and after (b) high-temperature treatment

    图  12  高温处理前后FA复合材料的导热系数

    Figure  12.  Thermal conductivity of FA composites before and after the high-temperature treatment

  • [1] LEI Z, YANG Q, SHANG W, et al. Reinforcement of polyurethane/epoxy interpenetrating network nanocompo-sites with an organically modified palygorskite[J]. Journal of Applied Polymer,2010,111(6):3150-3162.
    [2] DU X S, XIAO M, MENG Y Z, et al. Synthesis of poly(arylene disulfide)-vermiculite nanocomposites via in situ ring-opening reaction of cyclic oligomers[J]. European Polymer Journal,2003,39(8):1735-1739. doi: 10.1016/S0014-3057(03)00061-2
    [3] KUMAR G N, AL-AIFAN B, PARAMESHWARAN R, et al. Facile synthesis of microencapsulated 1-dodecanol/melamine-formaldehyde phase change material using in-situ polymerization for thermal energy storage[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2020,610(2):125-148.
    [4] HAI Y, WANG C, JIANG S, et al. Layer-by-layer assembly of aerogel and alginate toward self-extinguishing flexible polyurethane foam[J]. Industrial & Engineering Che-mistry Research,2020,59(1):475-483.
    [5] 李博琦, 谢贤, 吕晋芳, 等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用, 2020, 40(5):153-160.

    LI Boqi, XIE Xian, LV Jinfang, et al. Research progress and prospect of comprehensive utilization of coal ash resources[J]. Protection and Utilization of Mineral Resources,2020,40(5):153-160(in Chinese).
    [6] BICER A. Effect of production temperature on thermal and mechanical properties of polystyrene-fly ash composites[J]. Advanced Composites Letters,2020,29(1):66-98.
    [7] AHMAD M R, CHEN B, HAQUE M A, et al. Utilization of industrial and hazardous waste materials to formulate energy-efficient hygrothermal bio-composites[J]. Journal of Cleaner Production,2020,250(20):119469.
    [8] LIANG J Z. Estimation of thermal conductivity for polypropylene/hollow glass bead composites[J]. Composites Part B Engineering,2014,56(1):431-434.
    [9] 胡凯强, 赖声发, 钱艳峰, 等. 破乳法合成N掺杂TiO2/粉煤灰及其可见光催化性能研究[J]. 硅酸盐通报, 2021, 40(1):304-311.

    HU Kaiqiang, LAI Shengfa, QIAN Yanfeng, et al. Synthesis of N-doped TiO2/fly ash by demulsification and its visible light catalytic performance[J]. Chinese Bulletin of Cera-mics,2021,40(1):304-311(in Chinese).
    [10] 贾子龙, 刘志红. 磷石膏/粉煤灰/CaO复合材料对氧化石蜡皂的光催化吸附[J]. 功能材料, 2020, 51(1):1075-1081. doi: 10.3969/j.issn.1001-9731.2020.01.012

    JIA Zilong, LIU Zhihong. Photocatalytic adsorption of oxi-dized paraffin soap by phosphogypsum/fly ash/CaO composite[J]. Functional Materials,2020,51(1):1075-1081(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.01.012
    [11] FENG X, SZA B, ZHUANG M, et al. Improved interfacial strength and ablation resistance of carbon fabric reinforced phenolic composites modified with functionalized ZrSiO4 sol[J]. Materials & Design,2020,12(1):64-86.
    [12] YANG G, WANG W, PENG S, et al. The research on oxidation resistance ability and mechanical properties of carbon fiber reinforced phenolic resin composites[J]. Materials Research Express,2020,7(6):45-67.
    [13] CHIOU C W, LIN Y C, WANG L, et al. Hydrogen bond interactions mediate hierarchical self-assembly of poss-containing block copolymers blended with phenolic resin[J]. Macromolecules,2014,47(24):8709-8721. doi: 10.1021/ma502180c
    [14] 徐博, 丁杰, 王兵, 等. AlB2对高硅氧纤维/可瓷化酚醛树脂复合材料及其裂解产物力学性能的影响[J]. 复合材料学报, 2021, 38(1):129-136.

    XU Bo, DING Jie, WANG Bing, et al. Effect of AlB2 on mecha-nical properties of high silicon oxygen fiber/ceramizable phenolic resin composites and their cracking products[J]. Acta Materialia Sinica,2021,38(1):129-136(in Chinese).
    [15] 陈孝飞, 李树杰, 闫联生, 等. 硼改性酚醛树脂的固化及裂解[J]. 复合材料学报, 2011, 28(5):89-95.

    CHEN Xiaofei, LI Shujie, YAN Liansheng, et al. Cure and cracking of boron-modified phenolic resin[J]. Acta Compositae Sinica,2011,28(5):89-95(in Chinese).
    [16] MA C, MA Z, GAO L, et al. Ablation behavior of boron-modified phenolic resin irradiated by high-energy continuous-wave laser and its evolution of carbon structure[J]. Materials & design,2019,180(2):107-124.
    [17] HSIUE G H, SHIAO S J, WEI H F, et al. Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications[J]. Journal of Applied Polymer Science,2001,79(2):342-349. doi: 10.1002/1097-4628(20010110)79:2<342::AID-APP180>3.0.CO;2-8
    [18] BO C, SHI Z, HU L, et al. Cardanol derived P, Si and N based precursors to develop flame retardant phenolic foam[J]. Scientific Reports,2020,10(1):1-12. doi: 10.1038/s41598-019-56847-4
    [19] 王超, 刘文彬, 刘济江, 等. 磷酸盐基耐高温胶黏剂的研制[J]. 化学与黏合, 2007(2):90-91.

    WANG Chao, LIU Wenbin, LIU Jijiang, et al. Preparation of phosphate based high temperature resistant adhesive[J]. Chemistry and Adhesion,2007(2):90-91(in Chinese).
    [20] 于长清, 余悠然, 赵英民, 等. 耐高温高强度醇溶性磷酸盐/酚醛杂化胶黏剂的制备及性能表征[J]. 硅酸盐通报, 2020, 39(5):1681-1688.

    YU Changqing, YU Youran, ZHAO Yingmin, et al. Preparation and characterization of high temperature and high strength alcohol-soluble phosphate/phenolic hybrid adhesive[J]. Bulletin of Ceramics,2020,39(5):1681-1688(in Chinese).
    [21] 全国塑料标准化技术委员会. 塑料压缩性能测试: GB/T 1041—2008[S]. 北京: 中国标准出版社, 2008.

    National Plastics Standardization Technical Committee. Plastics-Detemination of compressive properties: GB/T 1041—2008[S]. Beijing: China Standard Press, 2008.
  • 加载中
图(12)
计量
  • 文章访问数:  978
  • HTML全文浏览量:  467
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 修回日期:  2021-06-22
  • 录用日期:  2021-07-05
  • 网络出版日期:  2021-07-30
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回