留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3C2TxMXene材料的制备、组装及应用研究进展

罗大军 高进 田鑫 祁沛熙 鲍青倩 张学亮 秦舒浩

罗大军, 高进, 田鑫, 等. Ti3C2TxMXene材料的制备、组装及应用研究进展[J]. 复合材料学报, 2022, 39(2): 467-477. doi: 10.13801/j.cnki.fhclxb.20210729.001
引用本文: 罗大军, 高进, 田鑫, 等. Ti3C2TxMXene材料的制备、组装及应用研究进展[J]. 复合材料学报, 2022, 39(2): 467-477. doi: 10.13801/j.cnki.fhclxb.20210729.001
LUO Dajun, GAO Jin, TIAN Xin, et al. Research and developing in preparation, assembly and applications of Ti3C2TxMXene materials[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 467-477. doi: 10.13801/j.cnki.fhclxb.20210729.001
Citation: LUO Dajun, GAO Jin, TIAN Xin, et al. Research and developing in preparation, assembly and applications of Ti3C2TxMXene materials[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 467-477. doi: 10.13801/j.cnki.fhclxb.20210729.001

Ti3C2TxMXene材料的制备、组装及应用研究进展

doi: 10.13801/j.cnki.fhclxb.20210729.001
基金项目: 贵州省科技计划项目(黔科合基础-ZK[2021]一般246);贵州理工学院学术新苗培养及探索创新项目(GZLGXM-08)
详细信息
    通讯作者:

    秦舒浩,博士,研究员,博士生导师,研究方向为聚合物结构与性能 E-mail:qinshgz@163.com

  • 中图分类号: TB34

Research and developing in preparation, assembly and applications of Ti3C2TxMXene materials

  • 摘要: Ti3C2TxMXene是具有高导电性、较好的力学性能及高比电容等特性的新型二维结构过渡金属碳化物,在储能、传感、催化、膜分离、微波吸收及电磁屏蔽等领域具有巨大的应用前景。但单层二维材料在纳米尺度上的性能不易真正被人们所用,因此必须将其组装成宏观材料,如一维纤维、二维薄膜及三维气凝胶。对于Ti3C2Tx的宏观组装及其应用研究也取得了一定的成果与进展。本文综合评述了目前Ti3C2Tx的制备方法、宏观Ti3C2Tx基材料的组装方法及其相关应用进展,介绍了国内外Ti3C2Tx的研究现状和实际应用中的研究成果,总结了Ti3C2Tx在制备、组装及应用过程中的不足,并展望了未来的发展趋势。

     

  • 图  1  LiF+HCl原位刻蚀制备Ti3C2TxMXene:(a) 制备原理图[15];(b) MAX相的SEM图像;(c) 多层Ti3C2TxSEM图像;(d) 少层Ti3C2TxSEM图像[16]

    Figure  1.  Ti3C2TxMXene prepared by in-situ etching of LiF+HCl: (a) Schematic diagram[15]; (b) SEM image of Max phase; (c) SEM image of multi-layer Ti3C2Tx; (d) SEM image of low-layer Ti3C2Tx crystal[16]

    图  2  路易斯酸熔盐制备MXene的方法示意图((a)~(d))[21]、熔融氟化盐制备MXene示意图(e)[20]

    Figure  2.  Schematic diagram of preparation of MXene from Lewis acid molten salt ((a)-(d))[21], schematic diagram of preparation of MXene from molten fluoride salt (e)[20]

    APS—Ammonium persulphate

    图  3  湿法纺丝制备MXene纤维:(a) 湿纺原理示意图;(b) 5 m长Ti3C2纤维;((c)~(e)) 醋酸凝固浴Ti3C2Tx纤维截面及其凝固机制示意图;((f)~(h)) 壳聚糖浴Ti3C2Tx纤维的截面及其缓凝机制示意图[25];(i) Ti3C2Tx湿纺沿轴向排列的纯Ti3C2Tx光纤用于电能和信号传输应用[26]

    Figure  3.  Preparation of MXene fibers by wet spinning: (a) Schematic diagram of wet spinning principle; (b) 5 m long Ti3C2 fibers; ((c)-(e)) Cross section of the Ti3C2Tx fibers coagulated in an acetic acid bath and the schematic diagram of the rapid solidification; ((f)-(h)) Cross section of Ti3C2Tx fiber prepared in chitosan bath and schematic diagram of retarding mechanism[25]; (i) Ti3C2Tx fibers prepared by wet spinning with Ti3AlC2 and used for electrical energy and signal transmission applications[26]

    图  4  MXene/RGO杂化纤维作为NH3传感器的作用机制(a)[29]、与单独的MXene和石墨烯相比,杂化纤维的NH3传感响应图像((b)~(c))

    Figure  4.  Mechanism of action of MXene/RGO hybrid fiber as NH3 sensor (a)[29], NH3 sensing response images of hybrid fibers compared to MXene and graphene alone ((b)-(c))

    RT—Room temperature; ΔR—Stable resistance in N2; R0—Stable resistance in NH3

    图  5  用于制备超薄(纳米尺度)MXene薄膜的界面自组装方法示意图[34]

    Figure  5.  Schematic diagram of interface self-assembly method used to prepare ultra-thin (nanoscale) MXene films[34]

    图  6  单向铸造法制备Ti3C2Tx气凝胶示意图(a)、Ti3C2Tx气凝胶的表面和横截面((b)~(c))、Ti3C2Tx气凝胶(d)、Ti3C2Tx纳米片的TEM图像(e)[45]、Ti3C2Tx@RGO的SEM图像((f)~(g)) 、通过冰模板法合成Ti3C2Tx@RGO的示意图(h)[46]

    Figure  6.  Schematic diagram of Ti3C2Tx aerogel prepared by one-way casting method (a), SEM images of the top view and cross section of Ti3C2Tx aerogel ((b)-(c)), TEM images of Ti3C2Tx aerogel (d), TEM images of Ti3C2Tx nanosheets (e)[45], SEM images of Ti3C2Tx@RGO ((f)-(g)), schematic diagram of Ti3C2Tx@RGO synthesized by ice template method (h)[46]

  • [1] SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials,2020,30:1910504. doi: 10.1002/adfm.201910504
    [2] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [3] ABDOLHOSSEINZADEH S, JIANG X, ZHANG H, et al. Perspectives on solution processing of two-dimensional MXenes[J]. Materials Today,2021,48:214-240. doi: 10.1016/j.mattod.2021.02.010
    [4] LIN P, XIE J, HE Y, et al. MXene aerogel-based phase change materials toward solar energy conversion[J]. Solar Energy Materials & Solar Cells,2020,206:110229.
    [5] WANG D, FANG Y, YU W, et al. Significant solar energy absorption of MXene Ti3C2Tx nanofluids via localized surface plasmon resonance[J]. Solar Energy Materials and Solar Cells,2021,220:110850. doi: 10.1016/j.solmat.2020.110850
    [6] LI X, BAI Y, SHI X, et al. Applications of MXene (Ti3C2Tx) in photocatalysis: A review[J]. Mateials Advance,2021,2:1570-1594.
    [7] XIONG D, SHI Y, YANG H Y. Rational design of MXene-based films for energy storage: Progress, prospects[J]. Materials Today,2021,46:183-211. doi: 10.1016/j.mattod.2020.12.004
    [8] SHIN H, EOM W, LEE K H, et al. Highly electroconductive and mechanically strong Ti3C2TxMXene fibers using a deformable MXene gel[J]. ACS Nano,2021,15(2):3320-3329. doi: 10.1021/acsnano.0c10255
    [9] TAHIR M, KHAN A A, TASLEEM S, et al. Titanium carbide (Ti3C2) MXene as a promising Co-catalyst for photocatalytic CO2 conversion to energy-efficient fuels: A review[J]. Energy & Fuels,2021,35(13):10374-10404. doi: 10.1021/
    [10] YANG E, JI H, KIM J, et al. Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries[J]. Physical Chemistry Chemical Physics,2015,17(7):5000. doi: 10.1039/C4CP05140H
    [11] WU Y, NIE P, JIANG J, et al. MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries[J]. ChemElectroChem,2017,4(6):1560-1565. doi: 10.1002/celc.201700060
    [12] ZHENG L, HUA Q, LI X, et al. Investigation on the effect of Nb doping on the oxidation mechanism of Ti3SiC2[J]. Corrosion Science,2018,140(1):374-378.
    [13] NAGUIB M, KURTOGLU M, PRESSER V. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23 (37):4248- 4253. doi: 10.1002/adma.201102306
    [14] NAGUIB M, GOGOTSI Y. Synthesis of two-dimensional materials by selective extraction[J]. Accounts of Chemical Research,2015,48 (1):128-135. doi: 10.1021/ar500346b
    [15] ZHANG J, KONG N, UZUN S, et al. Scalable manufacturing of free-standing, strong Ti3C2TxMXene films with outstanding conductivity[J]. Advanced Materials,2020,32(23):2001093. doi: 10.1002/adma.202001093
    [16] WENG C, XING T, JIN H, et al. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105927. doi: 10.1016/j.compositesa.2020.105927
    [17] FENG A, YU Y, WANG Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2[J]. Titanium Compounds,2017,114:161-166.
    [18] LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment[J]. Angewandte Chemie,2018,57 (21):6115-6119. doi: 10.1002/anie.201800887
    [19] ZHANG Z, CAI Z, ZHANG Y, et al. The recent progress of MXene-based microwave absorption materials[J]. Carbon,2020,174:482-499.
    [20] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale,2016,8 (22):11385-11391. doi: 10.1039/C6NR02253G
    [21] LI Y, SHAOH, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials,2020,19:894-899. doi: 10.1038/s41563-020-0657-0
    [22] HORAK P, BAKARDJIEVA S, VACIK J, et al. Preparation of Ti2C MXene phase by ion beam sputtering and ion irradiation[J]. Nuclear Instruments and Methods in Physics Research,2020,469:49-51. doi: 10.1016/j.nimb.2020.02.010
    [23] PARK H, LEE K H, KIM Y B, et al. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport[J]. Science Advance,2018,4(11):eaau2104.
    [24] EOM W, PARK H, NOH S H, et al. Strengthening and stiffening graphene oxide fiber with trivalent metal ion binders[J]. Particle and Particle Systems Characterization,2017,34(9):1600401. doi: 10.1002/ppsc.201600401
    [25] ZHANG J, UZUN S, SEYEDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science,2020,6:254. doi: 10.1021/acscentsci.9b01217
    [26] WONSIK E, HWANSOO S, ROHAN B. et al. Large-scale wet-spinning of highly electroconductive MXene fibers[J]. Nature Communication,2020,11:2825. doi: 10.1038/s41467-020-16671-1
    [27] SRIVASTAVA P, MISHRA A, MIZUSEKI H, et al. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2MXene[J]. ACS Applied Materials & Interfaces,2016,8(36):24256-24264.
    [28] KANG R G L, HANDOKO A D, NEMANI S K, et al. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion[J]. ACS Nano,2020,14(9):10834-10864. doi: 10.1021/acsnano.0c05482
    [29] LEES H, EOM W, SHIN H S, et al. Room-temperature, highly durable Ti3C2TxMXene/graphene, hybrid fibers for NH3 gas sensing[J]. ACS Applied Materials & Interfaces,2020,12:10434-10442.
    [30] ZHENG X H, NIE W Q, HU Q L, et al. Multifunctional RGO/Ti3C2TxMXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection-Science direct[J]. Materials & Design,2021,200:109442.
    [31] YANG Q, ZHEN X, BO F, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A,2017,5(42):22113-22119. doi: 10.1039/C7TA07999K
    [32] LI H, SHAO F, WEN X, et al. Graphene/MXene fibers-enveloped sulfur cathodes for high-performance Li-S batteries[J]. Electrochimica Acta,2021,371:137838. doi: 10.1016/j.electacta.2021.137838
    [33] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353 (6304):1137. doi: 10.1126/science.aag2421
    [34] KIM S J, CHOI J, MALESKI K, et al. Interfacial assembly of ultrathin, functional MXene films[J]. ACS Applied Materials & Interfaces,2019,11(35):32320-32327.
    [35] TIAN W, VAHIDMOHAMMADI A, WANG Z, et al. Layer-by-layer self-assembly of pillared two-dimensional multilayers[J]. Nature Communications,2019,10(1):2558. doi: 10.1038/s41467-019-10631-0
    [36] ZHANG X F, LI X D, DONG S L, et al. Template-free synthesized 3D macroporous MXene with superior performance for supercapacitors[J]. Applied Materials Today,2019,16:315-321. doi: 10.1016/j.apmt.2019.06.013
    [37] HAN M, YIN X, LI X, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces,2017,9(23):20038-20045.
    [38] DENG B, WANG L, XIANG Z, et al. Rational construction of MXene/Ferrite@C hybrids with improved impedance matching for high-performance electromagnetic absorption applications[J]. Materials Letters,2021,284:129029. doi: 10.1016/j.matlet.2020.129029
    [39] MA C, CAO W T, ZHANG W, et al. Wearable, ultrathin and transparent bacterial celluloses/MXene film with janus structure and excellent mechanical property for electromagnetic interference shielding[J]. Chemical Engineering Journal,2020,403:126438.
    [40] ZHENG S, WANG H, DAS P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems[J]. Advance Materials,2021,33(10):e2005449. doi: 10.1002/adma.202005449
    [41] ZHANG B, GU Q, WANG C, et al. Self-assembled hydrophobic/hydrophilic porphyrin-Ti3C2TxMXene janus membrane for dual-functional enabled photothermal desalination[J]. ACS Applied Materials & Interfaces,2021,13 (3):3762-3770.
    [42] ROLISON D R, LONG J W, LYTLE J C, et al. Multifunctional 3D nanoarchitecturesfor energy storage and conversion[J]. Chemical Socity Reviews,2009,38(1):226-252.
    [43] LIN P, XIE J, HE Y, et al. MXene aerogel-based phase change materials toward solar energy conversion[J]. Solar Energy Materials and Solar Cells,2020,206:110229. doi: 10.1016/j.solmat.2019.110229
    [44] ZHANG L, BI J, ZHAO Z, et al. Sulfur@self-assembly 3D MXene hybrid cathode material for lithium-sulfur batteries[J]. Electrochimica Acta,2021,370:137759. doi: 10.1016/j.electacta.2021.137759
    [45] ORANGI J, TETIK H, PARANDOUSH P, et al. Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors[J]. Materials Today Advances,2021,9(28):100135.
    [46] YUE Y, LIU N, MA Y, et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel[J]. ACS Nano,2018,12(5):4224-4232. doi: 10.1021/acsnano.7b07528
    [47] LI L, ZHANG M, ZHANG X, et al. New Ti3C2 aergoel as promising negative electrode materials for asymmetric supercapacitors[J]. Journal of power Sources,2017,364:234241.
    [48] YU M, WANG Z, LIU J, et al. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities[J]. Nano Energy,2019,63:103880. doi: 10.1016/j.nanoen.2019.103880
    [49] YU M, ZHOU S, WANG Z, et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy,2018,44:181-190. doi: 10.1016/j.nanoen.2017.12.003
    [50] WANG Z, ZHANG N, YU M, et al. Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries[J]. Journal of Energy Chemistry,2019,37:183-191. doi: 10.1016/j.jechem.2019.03.012
    [51] LIU J, ZHANG H, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic interference shielding[J]. Advanced Materials,2017,29 (38):1702367. doi: 10.1002/adma.201702367
    [52] LI Y, MENG F, MEI Y, et al. Electrospun generation of Ti3C2TxMXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption[J]. Chemical Engineering Journal,2020,391:123512. doi: 10.1016/j.cej.2019.123512
    [53] WANG L B, LIU H, LV X L. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogelwith excellent dielectric loss and electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2020,828:154251. doi: 10.1016/j.jallcom.2020.154251
    [54] SHAO L, XU J J, MA J Z, et al. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials[J]. Composites Communications,2020,19:108-113. doi: 10.1016/j.coco.2020.03.006
  • 加载中
图(6)
计量
  • 文章访问数:  1235
  • HTML全文浏览量:  683
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-06-23
  • 录用日期:  2021-07-09
  • 网络出版日期:  2021-07-29
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回