留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物纳米复合材料的合成及其在污水处理中的应用

邹静 王正良 佘跃惠

邹静, 王正良, 佘跃惠. 生物纳米复合材料的合成及其在污水处理中的应用[J]. 复合材料学报, 2022, 39(4): 1534-1546. doi: 10.13801/j.cnki.fhclxb.20210719.001
引用本文: 邹静, 王正良, 佘跃惠. 生物纳米复合材料的合成及其在污水处理中的应用[J]. 复合材料学报, 2022, 39(4): 1534-1546. doi: 10.13801/j.cnki.fhclxb.20210719.001
ZOU Jing, WANG Zhengliang, SHE Yuehui. Synthesis of bio-nanocomposite and its application in wastewater treatment[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1534-1546. doi: 10.13801/j.cnki.fhclxb.20210719.001
Citation: ZOU Jing, WANG Zhengliang, SHE Yuehui. Synthesis of bio-nanocomposite and its application in wastewater treatment[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1534-1546. doi: 10.13801/j.cnki.fhclxb.20210719.001

生物纳米复合材料的合成及其在污水处理中的应用

doi: 10.13801/j.cnki.fhclxb.20210719.001
基金项目: 国家自然基金重点项目(NSFC51634008);国家自然基金(NSFC51574038);国家重大科技专项(2017ZX05009-004)
详细信息
    通讯作者:

    佘跃惠,研究员,教授,博士生导师,研究方向为微生物提高原油采收率,生物纳米提高油气采收率,稠油生物化学催化降粘,含油气污水污泥生化处理,微生物控制SRB产硫化氢,沥青质的沉积与控制,二氧化碳增稠与提高油气采收率等 E-mail:sheyuehui@163.com

  • 中图分类号: X52;TB33

Synthesis of bio-nanocomposite and its application in wastewater treatment

  • 摘要: 物理、化学和生物等传统污水处理的方法在处理效能、人体健康和环境保护等方面仍有诸多不足之处,而利用生物纳米复合材料可有效解决上述传统污水处理方法存在的问题,是在污水处理中具有巨大应用前景的新型材料。本综述阐述了生物纳米复合材料的合成机制,剖析了生物纳米复合材料进行水处理的吸附、光催化、抗菌机制及其在水中重金属、有机染料、药物、无机盐等污染物去除方面的应用,包括通过取代纳米表面的羟基官能团吸附氟离子,通过静电相互作用和离子相互作用吸附铬离子;吸收特定光谱的能量,催化氧化吸附在表面的污染物,最终使其降解或矿化,复合材料的生物部分能减小带隙,增大吸附面积;该材料可直接与微生物细胞相互作用,中断跨膜电子转移、破坏/穿透细胞包络或氧化细胞成分,或产生活性氧物质等二次产物。分析了该材料目前在控制纳米粒子的形态和粒径,快速提高纳米粒子产量和明确某些尺寸的纳米颗粒的毒性方面存在的问题。提出了未来生物纳米复合材料的发展方向,期望为实现高效可控的绿色生物纳米复合材料生产技术,应专注于细胞和生化过程的确切机制,优化反应参数,改善纳米颗粒的稳定性并探究纳米合成的生物材料范围,形成成熟的生物纳米复合材料合成技术方案。

     

  • 图  1  金属纳米材料的生物合成机制[8, 19]

    Figure  1.  Biosynthesis mechanism of metal nanomaterials[8, 19]

    NPs—Metal nanoparticles; Mx+—Metal salts; NADH—Reduced form of nicotinamide-adenine dinucleotid

    图  2  pH=4时Fe3O4 金属纳米粒子(NPs)/壳聚糖(CS)/乙二醛水凝胶纳米复合材料可能的吸附Cr(VI)机制[33](a)和铁铝纳米复合材料吸附氟机制[31](b)

    Figure  2.  Possible Cr (VI) adsorption mechanism of Fe3O4 metal nanoparticles (NPs)/chitosan (CS)/glyoxal hydrogel nanocomposite at pH=4[33] (a) and Fluorine adsorption mechanism of Fe3O4 nanocomposite[31] (b)

    图  3  TiO2包埋菊粉复合材料降解亚甲基蓝的机制[37, 39]

    Figure  3.  Degradation mechanism of methylene blue by TiO2 embedded inulin composite material[37, 39]

    表  1  纳米粒子的细胞内合成[20-22,30]

    Table  1.   Intracellular synthesis of nanoparticles[20-22,30]

    Microorganism usedType of nanoparticlesSize/nmReaction condition
    Rhodoococcus Au 5-15 Alkaline active agents
    Tetragonal algae Au 5-35 Enzyme
    Plectonema boryanum(Cyanobacteria) Ag 1-10

    1-100
    Shewanella Au 10-20 pH=7
    E coli DH5α Au 25-33
    Candida glabrata and Schizosaccharomyces pombe CdS 200
    Verticillium Ag 25±12 Active biomass
    下载: 导出CSV

    表  2  纳米粒子的细胞外合成[23-26,30]

    Table  2.   Extracellular synthesis of nanoparticles[23-26,30]

    Microorganism usedType of nanoparticlesSize/nmReaction condition
    Delftia sp. Bi 20-120 Active biomass
    Acinetobacter Au 8-12 Purified enzyme
    Se 100
    Lactobacillus kimchi Au 13 Biomass extracts
    Scenedesmus sp. Ag 15-20 Cell extracts
    Bacillus sp. Ag 5-15 Extracellular
    Pseudomonas sp. CdSe 10-20 Living cell
    Pseudomonas aeruginosa CdS 20-40 Extracelluar matrix
    Pseudomonas sp. Ag Cell-free supernatant
    Rhodobacter capsulatus Te Active cell suspension
    Geobacter sulfurreducens Au 10-90 Biofilm
    Gordonia amicalis Au 20 Cell-free supernatant
    Hulled Oat Ag 5-85 Active biomass
    Aloe Au 50-350 Biomass extracts
    Cinnamomum camphor lobe Au, Ag 55-80 Sun dried biomass
    下载: 导出CSV

    表  3  用于水中重金属离子去除的生物纳米复合材料[6, 11]

    Table  3.   Bio-nanocomposites for the removal of heavy metal ions in water[6, 11]

    Bio-nanocompositeContaminantBio-material
    Original CNFs, original CNCs Ag(I) Cellulose
    Original CNCs from bioethanol, phosphorylated CNFs and CNCs from sludge Cu(II), Fe(III) Cellulose
    Sodium-substituted succinic anhydride Modified CNCs Pb(II), Cd(II) Cellulose
    Sulfonated CNFs Au(III) Cellulose
    Poly(itaconic acid/methacrylic acid) embedded CNC controller/bentonite nanocomposites Co(II) Cellulose
    Carboxylated CNFs/chitosan magnetic hydrogel beads Pb(II) Cellulose
    BC/NiHCF membrane Cs(I) Cellulose
    Nano zero-valent iron beads coated with carboxymethyl chitosan Cr(VI) Chitosan
    Chitosan/organic rectorite-Fe3O4 composite microspheres Cu(II), Cd(II) Chitosan
    Nano ZnO/chitosan microspheres Mo Chitosan
    Chitosan/cerium oxide/iron oxide nanocomposites Cr(VI), Co(II) Chitosan
    Guar gum and nano-bentonite in the composite hydrogel acrylic network prepared by in-situ incorporation Cr(VI) Guara gum
    Guar gum nano-zinc oxide bio-composites Cr(VI) Guara gum
    Polyvinyl alcohol/alginate/zeolite nanohybrids Ni(II), Co(II) Alginate
    Calcium alginate beads intercepted by glycine functionalized magnetic nanoparticles Cu(II) Calcium alginate
    Activated carbon/nano zero-valent copper/hydroxyapatite-alginate As(III) Alginate
    PVA alginate magnetite and titanium dioxide beads Pb(II) Alginate
    CdS quantum dots immobilized on calcium alginate beads Hg(II) Calcium alginate
    Iron oxide Cr(VI) Jelly fungi
    Salicylaldehyde functionalized chitosan nanoparticles Cu(II), Cd(II) and Pb(II) Chitosan
    Nickel oxide/chitosan nanocomposites Zn(II) Chitosan
    Chitosan/triethanolamine composites Ag(I) Chitosan
    Thiol functionalized chitin nanofibers As Chitin
    Chitin networks U Chitin
    Starch stabilized Fe0 NP Cr(VI) Starch
    Fe3O4-based starch-poly (acrylic acid) nanocomposite hydrogels Cu(II), Pb(II) Starch
    γ-Fe2O3@starch As Starch
    AgNPs-based starch/PEG-polyacrylic acid hydrogel Hg(II) Starch
    Poly(acrylamide-coa crylic acid) grafted gum incorporated into Fe3O4 NPs hydrogel nanocomposites Pb(II), Cr(VI) and Ni(II) Gum
    Xanthan gum-g-polyacrylamide/SiO2 Pb(II) Xanthan
    TiO2/ZnO calcium alginate beads Cu(II) Calcium alginate
    Nano zero-valent iron immobilized alginate beads Cr(VI) Alginate
    Polyacrylic acid-sodium alginate nanofibers hydrogel Cu(II) Algin
    Nano zero-valent iron intercepted by polyvinyl alcohol alginate ester Cu(II), Cr(VI), Zn(II) and As(V) Alginate esters
    Nano hydroxyapatite/alginate composite beads Ni(II) Alginate
    Alginate beads immobilized on carbon nanoparticles Co(II),Ni(II) Alginate
    Calcium alginate beads Removal of Cu(II) from [Cu(II), Cd(II), Ni(II) and Zn(II)] mixtures Calcium alginate
    Notes: CNFs—Carbon nanofibers; CNCs—Cellulose nanocrystals; BC/NiHCF—Nickel hexacyanoferrates loaded bacterial cellulose; PVA—Polyvinyl alcohol; NP—Nanoparticle; PEG—Polyethylene glycol.
    下载: 导出CSV

    表  4  用于水中农药、染料、药物及有机污染物去除的生物纳米复合材料[6, 11]

    Table  4.   Bio-nano composites used for the removal of pesticides, dyes, drugs and organic pollutants in water[6, 11]

    Bio-nanocompositeContaminantBio-material
    β-cyclodextrin modified CNCs@Fe3O4@SiO2
    superparamagnetic nanorods
    Procaine, imipramine Cellulose
    Polyethylene glycol modified CNCs Paracetamol, sulfamethoxazole, N, N-diethyl-m-amino formamide Cellulose
    Original CNCs Chlorpyrifos, MB Cellulose
    Malondialdehyde functionalized CNCs Creatinine Cellulose
    UiO-66/polydopamine/bacterial cellulose Aspirin, tetracycline hydrochloride Cellulose
    CNCs grafted with Maleic Anhydride CV Cellulose
    Amino-functionalized CNCs Acid Red GR Cellulose
    CNCs/HPAM Nanogels(by casting) MB Cellulose
    CNFs of MnO2 coating MB Cellulose
    D-CNCs/PVAm microgels Congo red 4BS, reactive light yellow K-4G, acid red GR Cellulose
    CMC/GOCOOH beads MB Cellulose
    CMC/g-C3N4/ZnO MV Cellulose
    PAETMAC-g-CNC Neutral reactive blue 19(RB19) Cellulose
    MBCNF/GOPA MG Cellulose
    CNF/PEI/Ag NPs aerogel membrane 4-NP,MB Cellulose
    TOCN/CGG hydrogel Thioflavin-T Cellulose
    D-ZSM/CNF,Cu- and Fe-ZSM/CNF Rhodamine 6B, Reactive blue 4 Cellulose
    Chitosan-4-nitroacetophenone/CuO-CeO2-Al2O3 and chitosan-4-nitroacetophenone/CuO-CeO2-Fe2O3 Red 60 Chitosan
    Fe3O4-chitosan microparticles and nanoparticles Bromothymol blue Chitosan
    Nano-titanium oxide/chitosan/nano-bentonite Levofloxacin and ceftriaxone Chitosan
    Chitosan-loaded ZnO and Ce-ZnO nanoflowers Bice green Chitosan
    Pd NPs@Fe3O4/CS-AG Microcapsules 4-NP Chitosan
    Chitosan membrane Mixture of diclofenac and ketoprofen Chitosan
    Fe3O4-based starch-poly(acrylic acid) nanocomposite hydrogels Methylene Purple and Congo Red Starch
    Oxidized starch NPs Urea Starch
    Chitosan beads Tartaric yellow, amide black Chitosan
    Starch and CMC-stabilized nano zero-valent iron Sulfadimidine Starch
    Nano zero-valent iron modified by starch Acid blue-25 Starch
    Sodium montmorillonite NPs/P(acrylic-acrylamide)-g starch Saffron Starch
    Starch modified magnetic Fe0NP Naphthalene Starch
    Starch coated Fe3O4 magnetic nanoparticles Sky blue Starch
    Mung bean starch/PVA/ZnS nanocomposites Bisphenol A Starch
    Cellulose/carbon-tube hybrid adsorbent,
    with Veron glue polysaccharide as anchoring agent
    MB Cellulose, carbowelan gum polysaccharide
    Xanthan gum-stabilized nano-Pd/Fe Polychlorinated biphenyls (PCBs) Xanthan
    Chitosan-Guar gum hybrid silver nanoparticles bio-nanocomposites Reactive blue 21(RB-21), Reactive red 141, Rhodamine 6G and 4-NP Chitosan, guar gum
    Wet spinning nano TiO2/chitosan nanocomposite fiber Free fatty acid Chitosan
    Acrylic acid grafted sodium alginate-based TiO2 hydrogel nanocomposites MV Algin
    Cellulose nanocrystals alginate hydrogel beads MB Alginate
    Nano-iron oxide loaded alginate microspheres Bice green Alginate
    Sodium alginate beads Reactive blue 222 Algin
    MnFe2O4/calcium alginate nanocomposites, GOx and laccase MB, indigo and acid red 14 Calcium alginate
    Nano hydroxyapatite/alginate composite beads Rhodamine B(RhB) Alginate
    Alginate/Fe@Fe3O4 Core/Shell Nanoparticles Norfloxacin Alginate
    Nanoscale montmorillonite (MMT)/calcium alginate Basic red 46 Calcium alginate
    Cu Azo dye Coli bacillus
    Ag Methyl Orange and Congo Red Cryptococcus lactis
    Au,Ag Methylene Blue and Congo Red Pseudomonas lipolytica
    PEI-Pt@BC membrane Acid black att Cellulose
    α-Fe2O3 nanodisk/bacterial cellulose membrane Orange II(OII),MO,RhB,MB,CV Cellulose
    PMPC/BNC nanocomposites MB,MO Cellulose
    hPEI modified cellulose-based biological adsorbent Cationic bright yellow M-7G, anionic active yellow X-RG Cellulose
    CMC-Ni-BC MB,2-NP(nitrophenol) Cellulose
    BC/PDA/TiO2 RhB,MB,MO Cellulose
    ZIF-67/BC/CH aerogels Activated red X-3B Cellulose
    Cellulose acetate-cerium dioxide/zirconia@Cu0 NPs Mixtures of 4-NP-MB, 4-NP-RhB and 4-NP-MB-RhB Cellulose
    Cellulose/Ag3PO4 Industrial fertilizer wastewater and RhB dye mixture Cellulose
    Cu@chitosan-silica nanoparticles 1,1-dimethylhydrazine Chitosan
    Polyvinylidene fluoride/chitosan/dopamine MB and orange G Chitosan
    Double amino functionalized cellulose nanocrystals/chitosan composites Diclofenac sodium Chitosan
    Magnetic graphene/chitosan Acid orange 7 Chitosan
    Fe3O4 NPs coated with carboxymethyl chitosan Direct red 16 Chitosan
    Chitosan zinc oxide nanospheres MB and saffron Chitosan
    Cellulose acetate/chitosan/single-walled carbon nanotubes/Fe3O4/TiO2 MB Chitosan
    Molecularly imprinted polymer (MIP) chitosan-TiO2 nanocomposites Rose Bengal Chitosan
    TiO2(KH-570)-g-(chitosan-glycidyl methacrylate ) Toluene Chitosan
    Chitosan tripolyphosphate/TiO2 nanocomposites Active orange 16 Chitosan
    Nanostructure of chitosan-zirconium phosphate Reactive Blue 21, Reactive Red 141, Rhodamine 6G Chitosan
    crosslinked magnetic EDTA/chitosan/TiO2 Phenol Chitosan
    Chitosan-AgCl/Ag/TiO2 Toluidine, salicylic acid, 4-aminomethylbenzoic acid Chitosan
    Titanium dioxide/Achille gum nanogel MB Chitosan
    Carbon dots-nano zero-valent iron composite based on Achille gum Amoxicillin and ciprofloxacin Tragacanth
    Guar gum stabilized Pt NPs 4-NP Achille gum, carbon
    Co-polymer-grafted gum karaya and silica hybrid organic-inorganic hydrogel nanocomposite MB Guara gum
    Fe3O4 NPs-Adhesive Nanocomposites MB Gum
    Adhesive and Fe3O4 magnetic NPs nanocomposites RhB Gati gum
    CoFe2O4@silica-shell@tragacanth gum-grafted-poly (methacrylic acid) Methyl red Gati gum
    Fe0@guar gum crosslinked soybean lecithin nanogel MV Tragacanth
    Pd NPs/guar gum Mixture of MO, MB and CR Guara gum
    Composite copolymer of nano silver chloride and alginate Brilliant cresyl blue Alginate
    3D silver/polyethyleneimine/alginate gel beads 4-NP Alginate
    GOx(glucose oxidase)/MnFe2O4/calcium alginate nanocomposites MB Alginate
    Bimetallic zero-valent iron silver nanoparticles alginate
    beads immobilized in calcium
    4-chlorophenol Calcium alginate
    Grafted polyacrylic acid modified polyglycidyl methacrylate CNCs Trypsin Alginate
    Poly(methacrylic acid-covinylsulfonic acid) grafted magnetic CNCs Hemoglobin, immunoglobulin G Cellulose
    Palladium nanocatalysts supported on cationic nanocellulose-alginate hydrogel MB Cellulose
    Calcium alginate activated carbon fiber beads Tetrahydrofuran Cellulose,alginate
    Magnetite/silica/pectin NPs Fluoroquinolones (ciprofloxacin and moxifloxacin ) Calcium alginate
    (PPA3)-Cu and (PPA3/Fe3O4)-Cu nanocomposite hydrogels 2-NP Pectin
    CNCs/hydrolyzed polyacrylamidenano-hydrogels (by electrospinning) MB Pectin
    Activated carbon from starch MB Polysaccharide
    Fe3O4/activated carbon/β-cyclodextrin/sodium alginate MB Starch
    Ag Malachite green dye Algin
    Au Aromatic pollutants and azo dyes Aspergillus flavus
    Pd MB Aspergillus
    Notes: MB—Methylene blue; CV—Crystal violet;HPAM—Hydrolyzed polyacrylamide; GOCOOH—Carboxylated graphene oxide; CMC—Carboxymethyl cellulose; MV—Methyl violet; PAETMAC—poly acryloyloxyethyltrimethyl ammonium chloride; MG—Malachite green; MBCNF/GOPA—Magnetic bacterial cellulose nanofiber/graphene oxide polymer aerogel; PEI—Poly(ethylene imine); TOCN/CGG—TEMPO-oxidized cellulose nanofibers/cationic guar gum; D-ZSM—De-aluminated ZSM-5 zeolite; CS—Chitosan; AG—Agar; 4-NP—4-nitrophenol; MO—Methyl orange; BC—Bacterial cellulose; PMPC/BNC—Poly(2-methacryloyloxyethyl phosphorylcholine)/
    bacterial nanocellulose; hPEI—Hyperbranched polyethyleneimine; PDA—Polydopamine; ZIF-67/BC/CH—Zeolitic imidazolate framework-67/bacterial cellulose/chitosan; PPA—Crosslinked pectin-(polyvinyl alcohol-co-acrylamide) hydrogel.
    下载: 导出CSV

    表  5  用于水中盐等无机污染物去除的生物纳米复合材料[6, 11]

    Table  5.   Bio-nanocomposite materials used for the removal of inorganic pollutants such as salt in water[6, 11]

    Bio-nanocompositeContaminantBio-material
    Aminopropyltriethoxysilane modified, hydroxyl-carbonated apatite modified and epoxy modified CNFs H2S Cellulose
    Carboxymethyl cellulose/citric acid aerogel Nitrate, nitrite, phosphate Cellulose
    Zinc ferrite CS, nickel ferrite CS, cobalt ferrite CS Fluoride Chitosan
    Functionalized chitosan clinoptilolite nanocomposites Nitrate Chitosan
    Starch-stabilized nano zero-valent iron Nitrate Starch
    Calcium alginate beads immersed in nanoscale zero-valent iron, magnetite NPs and powdered activated carbon Nitrate Alginate
    Magnetic hematite and titanium dioxide nanoparticles in PVA alginate beads Iodine Alginate
    Fe3O4@nano-hydroxyapatite/alginate Fluoride Alginate
    Te Tellurite Laurella genus Escherichia coli
    下载: 导出CSV
  • [1] 郭书雅, 刘倩, 尹先清. 含聚压裂返排废水的电絮凝处理实验研究[J]. 应用化工, 2020, 49(10):2483-2486, 2492. doi: 10.3969/j.issn.1671-3206.2020.10.018

    GUO Shuya, LIU Qian, YIN Xianqing. Experimental study on electro-flocculation treatment of fracturing flowback wastewater containing polymer[J]. Applied Chemical Industry,2020,49(10):2483-2486, 2492(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.10.018
    [2] 郭同玲, 王章领, 邢健. 生化法实现高氯高温稠油污水COD达标排放[J]. 中国海上油气, 2006(02):134-140. doi: 10.3969/j.issn.1673-1506.2006.02.014

    GUO Tongling, WANG Zhangling, XING Jian. Biochemical method to achieve COD discharge of high-chlorine and high-temperature heavy oil wastewater[J]. China Offshore Oil and Gas,2006(02):134-140(in Chinese). doi: 10.3969/j.issn.1673-1506.2006.02.014
    [3] 张海燕, 王宝辉, 陈颖. 光催化氧化处理含油污水的研究[J]. 化工进展, 2003(1):67-70. doi: 10.3321/j.issn:1000-6613.2003.01.017

    ZHANG Haiyan, WANG Baohui, CHEN Ying. Study on the treatment of oily wastewater by photocatalytic oxidation[J]. Chemical Industry and Engineering Progress,2003(1):67-70(in Chinese). doi: 10.3321/j.issn:1000-6613.2003.01.017
    [4] 蒋学彬. 膜分离技术在石油工业含油污水处理中的应用研究进展[J]. 油气田环境保护, 2015, 25(05):77-80, 94. doi: 10.3969/j.issn.1005-3158.2015.05.023

    JIANG Xuebin. Research progress in the application of membrane separation technology in the treatment of oily wastewater in the petroleum industry[J]. Environmental Protection of Oil & Gas Fields,2015,25(05):77-80, 94(in Chinese). doi: 10.3969/j.issn.1005-3158.2015.05.023
    [5] 张驰, 蔡绪森. 油田污水微生物处理技术研究进展[J]. 石油化工应用, 2014, 33(5):1-3, 12. doi: 10.3969/j.issn.1673-5285.2014.05.001

    ZHANG Chi, CAI Xusen. Research progress of oilfield wastewater microbial treatment technology[J]. Petrochemical Industry Application,2014,33(5):1-3, 12(in Chinese). doi: 10.3969/j.issn.1673-5285.2014.05.001
    [6] SARAVANAN A, KUMAR P S, KARISHMA S, et al. A review on biosynthesis of metal nanoparticles and its environmental applications[J]. Chemosphere,2020,264:128580.
    [7] DAR O A, MALIK M A, TALUKDAR M I A, et al. Bionanocomposites in water treatment[M]//Bionanocomposites. Amsterdam: Elsevier, 2020: 505-518.
    [8] SHUKLA A K, UPADHYAY A K, SINGH L. Algae-mediated biological synthesis of nanoparticles: Applications and prospects[M]//Algae. Berlin: Springer, 2021: 325-338.
    [9] JACINTO M J, SILVA V C, VALLADÃO D M S, et al. Biosynthesis of magnetic iron oxide nanoparticles: A review[J]. Biotechnology Letters,2020,43(1):1-12.
    [10] PARVATHY G, SETHULEKSHMI A S, JAYAN J S, et al. Lignin based nano-composites: Synthesis and applications[J]. Process Safety and Environmental Protection,2020,145:395-410.
    [11] NASROLLAHZADEH M, SAJJADI M, IRAVANI S, et al. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review[J]. Carbohydrate Polymers,2020,251:116986.
    [12] NASROLLAHZADEH M, SAJJADI M, IRAVANI S, et al. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives[J]. Chemosphere,2020,263:128005.
    [13] IHSANULLAH I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects[J]. Chemical Engineering Journal,2020,388:124340. doi: 10.1016/j.cej.2020.124340
    [14] 哈什马特. 生物定向合成纳米复合材料和分子印迹聚合物及其在环境中的应用研究[D]. 北京: 北京化工大学, 2019.

    KHAN H D. Bio-oriented synthesis of nanocomposites and molecularly imprinted polymers and their applications in the environment[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).
    [15] PRAJAPATI C, JOLLY A, RAVULAPALLI S. Bio inspired synthesis of silver nanoparticles and its applications to spin–orbit interactions of light[J]. Nano Express,2020,1(3):030031. doi: 10.1088/2632-959X/abca4c
    [16] KLEM M T, WILLITS D, SOLIS D J, et al. Bio-inspired synthesis of protein-encapsulated CoPt nanoparticles[J]. Advanced Functional Materials,2005,15(9):1489-1494. doi: 10.1002/adfm.200400453
    [17] HUANG J, LIN L, SUN D, et al. Bio-inspired synthesis of metal nanomaterials and applications[J]. Chemical Society Reviews,2015,44(17):6330-6374. doi: 10.1039/C5CS00133A
    [18] SHAABANI A, SHADI M, MOHAMMADIAN R, et al. Multi-component reaction-functionalized chitosan complexed with copper nanoparticles: An efficient catalyst toward A3 coupling and click reactions in water[J]. Applied Organometallic Chemistry,2019,33(9):e5074.
    [19] VELUSAMY P, KUMAR G V, JEYANTHI V, et al. Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application[J]. Toxicological Research,2016,32(2):95-102. doi: 10.5487/TR.2016.32.2.095
    [20] DU L, JIANG H, LIU X, et al. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin[J]. Electrochemistry Communications,2007,9(5):1165-1170. doi: 10.1016/j.elecom.2007.01.007
    [21] DAMERON C T, REESE R N, MEHRA R K, et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites[J]. Nature,1989,338(6216):596-597. doi: 10.1038/338596a0
    [22] SENAPATI S, SYED A, MOEEZ S, et al. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis[J]. Materials Letters,2012,79:116-118. doi: 10.1016/j.matlet.2012.04.009
    [23] AYANO H, MIYAKE M, TERASAWA K, et al. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles[J]. Journal of bioscience and bioengineering,2014,117(5):576-581. doi: 10.1016/j.jbiosc.2013.10.010
    [24] BHATIA P, VERMA S, SINHA M. Size-dependent optical response of magneto-plasmonic core-shell nanoparticles[J]. Advanced Nano Research,2018,1(1):1-13.
    [25] JAYASHREE, JENA, NILOTPALA, et al. Microalga Scenedesmus sp. : A potential low-cost green machine for silver nano-particle synthesis[J]. Journal of Microbiology and Biotechnology,2014,24(4):522-533. doi: 10.4014/jmb.1306.06014
    [26] CHANDRAN S P, CHAUDHARY M, PASRICHA R, et al. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract[J]. Biotechnology Progress,2006,22(2):577-583. doi: 10.1021/bp0501423
    [27] ANSHUP, VENKATARAMAN J S, SUBRAMANIAM C, et al. Growth of gold nanoparticles in human cells[J]. Langmuir,2005,21(25):11562-11567. doi: 10.1021/la0519249
    [28] LARIOS-RODRIGUEZ E, RANGEL-AYON C, CASTILLO S J, et al. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo[J]. Nanotechnology,2011,22(35):355601. doi: 10.1088/0957-4484/22/35/355601
    [29] 董周焱, MANIK P N R, 肖敏, 等. 微生物合成纳米银的一般方法及产物性质鉴定与生产应用[J]. 微生物学杂志, 2019, 39(3):84-94. doi: 10.3969/j.issn.1005-7021.2019.03.012

    DONG Zhouyan, MANIK P N R, XIAO Min, et al. General method of microbial synthesis of nano-silver, identification of product properties and production application[J]. Journal of Microbiology,2019,39(3):84-94(in Chinese). doi: 10.3969/j.issn.1005-7021.2019.03.012
    [30] SARAVANAN A, KUMAR P S, KARISHMA S, et al. A review on biosynthesis of metal nanoparticles and its environmental applications[J]. Chemosphere,2021,264:128580. doi: 10.1016/j.chemosphere.2020.128580
    [31] MONDAL P, PURKAIT M. Preparation and characterization of novel green synthesized iron-aluminum nanocomposite and studying its efficiency in fluoride removal[J]. Chemosphere,2019,235:391-402. doi: 10.1016/j.chemosphere.2019.06.189
    [32] KONG M, CHEN X G, XING K, et al. Antimicrobial properties of chitosan and mode of action: A state of the art review[J]. International Journal of Food Microbiology,2010,144(1):51-63. doi: 10.1016/j.ijfoodmicro.2010.09.012
    [33] MIRABEDINI M, KASSAEE M Z, POORSADEGHI S. Novel magnetic chitosan hydrogel film, cross-linked with glyoxal as an efficient adsorbent for removal of toxic Cr(VI) from water[J]. Arabian Journal for Science & Engineering,2017,42(1):115-124.
    [34] ZHAO Y, GUO L, SHEN W, et al. Function integrated chitosan-based beads with throughout sorption sites and inherent diffusion network for efficient phosphate removal[J]. Carbohydrate Polymers,2020,230:115639. doi: 10.1016/j.carbpol.2019.115639
    [35] FUJISHIMA A, ZHANG X, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports,2008,63(12):515-582. doi: 10.1016/j.surfrep.2008.10.001
    [36] LEE S-Y, PARK S-J. TiO2 photocatalyst for water treatment applications[J]. Journal of Industrial and Engineering Chemistry,2013,19(6):1761-1769. doi: 10.1016/j.jiec.2013.07.012
    [37] JAYANTHI KALAIVANI G, SUJA S K. TiO2 (rutile) embedded inulin—A versatile bio-nanocomposite for photocatalytic degradation of methylene blue[J]. Carbohydrate Polymers,2016,143:51-60. doi: 10.1016/j.carbpol.2016.01.054
    [38] AHMAD N, SULTANA S, KUMAR G, et al. Polyaniline based hybrid bionanocomposites with enhanced visible light photocatalytic activity and antifungal activity[J]. Journal of Environmental Chemical Engineering,2019,7(1):102804. doi: 10.1016/j.jece.2018.11.048
    [39] CALVETE M J F, PICCIRILLO G, VINAGREIRO C S, et al. Hybrid materials for heterogeneous photocatalytic degradation of antibiotics[J]. Coordination Chemistry Reviews,2019,395:63-85. doi: 10.1016/j.ccr.2019.05.004
    [40] LI Q, MAHENDRA S, LYON D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications[J]. Water Research,2008,42(18):4591-4602. doi: 10.1016/j.watres.2008.08.015
    [41] QI L, XU Z, JIANG X, et al. Preparation and antibacterial activity of chitosan nanoparticles[J]. Carbohydrate Research,2004,339(16):2693-2700. doi: 10.1016/j.carres.2004.09.007
    [42] RABEA E I, BADAWY E T, STEVENS C V, et al. Chitosan as antimicrobial agent: Applications and mode of action[J]. Biomacromolecules,2003,4(6):1457-1465. doi: 10.1021/bm034130m
    [43] MANNA S, PRAKASH S, DAS P. Synthesis of graphene oxide nano-materials coated bio-char using carbonaceous industrial waste for phenol separation from water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,581:123818. doi: 10.1016/j.colsurfa.2019.123818
    [44] PARK S J, LEE S Y, JIN F L. Surface modification of carbon nanotubes for high-performance polymer composites[M]. Berlin: Springer, 2015: 13-59.
    [45] OLYA M E, PIRKARAMI A. On the positive role of doping Cu and N2 on TiO2 in improving dye degradation efficiency: Providing reaction mechanisms[J]. Korean Jour-nal of Chemical Engineering,2015,32(8):1586-1597. doi: 10.1007/s11814-014-0380-0
    [46] ESFAHANI I J, RASHIDI J, IFAEI P, et al. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review[J]. Korean Journal of Chemical Engineering,2016,33(2):351-387. doi: 10.1007/s11814-015-0296-3
    [47] LIN P C, HSIEH C T, LIU X, et al. Fabricating efficient flexible organic photovoltaics using an eco-friendly cellulose nanofibers/silver nanowires conductive substrate[J]. Chemical Engineering Journal,2021,405:126996. doi: 10.1016/j.cej.2020.126996
    [48] LIU P, BORRELL P F, BOŽIČ M, et al. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents[J]. Journal of Hazardous Materials,2015,294:177-185. doi: 10.1016/j.jhazmat.2015.04.001
    [49] ZHANG W, WANG X, ZHANG Y, et al. Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes[J]. Separation and Purification Technology,2020,242:116523. doi: 10.1016/j.seppur.2020.116523
    [50] BATMAZ R, MOHAMMED N, ZAMAN M, et al. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes[J]. Cellulose,2014,21(3):1655-1665. doi: 10.1007/s10570-014-0168-8
    [51] CHEN L, BERRY R M, TAM K C. Synthesis of β-Cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods[J]. ACS Sustainable Che-mistry & Engineering,2014,2(4):951-958.
    [52] HOKKANEN S, REPO E, BHATNAGAR A, et al. Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose[J]. Environmental Technology,2014,35(18):2334-2346. doi: 10.1080/09593330.2014.903300
    [53] DARABITABAR F, YAVARI V, HEDAYATI A, et al. Novel cellulose nanofiber aerogel for aquaculture wastewater treatment[J]. Environmental Technology & Innovation,2020,18:100786.
    [54] BHATTACHARYA P, SWARNAKAR S, GHOSH S, et al. Disinfection of drinking water via algae mediated green synthesized copper oxide nanoparticles and its toxicity evaluation[J]. Journal of Environmental Chemical Engineering,2019,7(1):102867. doi: 10.1016/j.jece.2018.102867
    [55] ROSTAMI H, KHOSRAVI F, MOHSENI M, et al. Biosynthesis of Ag nanoparticles using isolated bacteria from contaminated sites and its application as an efficient catalyst for hydrazine electrooxidation[J]. International Journal of Biological Macromolecules,2018,107:343-348. doi: 10.1016/j.ijbiomac.2017.08.179
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  1059
  • HTML全文浏览量:  669
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2021-06-27
  • 录用日期:  2021-07-14
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回