Experimental study on the axial compression capacity of ultra-high performance concrete stub columns confined with stirrups
-
摘要: 通过对10组配置菱形、十字形复合箍筋的超高性能混凝土(UHPC)短柱和1组未配置钢筋的UHPC短柱进行轴压承载力试验,研究了其破坏过程和破坏形态,分析了箍筋间距、纤维掺量和箍筋形式对其轴向应变-轴向荷载曲线和应力-应变曲线的影响。结果表明,箍筋形式的闭合环数和纤维掺量对UHPC短柱的变形能力有一定程度的改善作用。箍筋间距和纤维掺量对试件轴压承载力及相应轴向峰值应变有显著的影响,箍筋间距对轴向峰值应变的影响更大。相同箍筋间距的菱形复合箍筋(DC)较十字形复合箍筋(CC)试件的峰值荷载有所提高。随着箍筋间距的减小,各试件归一化应力-应变曲线上升段斜率增大,但其下降段却表现出更大差异。纤维掺量和箍筋类形对UHPC试件的应力-应变归一化曲线影响较小。考虑箍筋约束效应及纤维约束效应,建立了复合箍筋约束UHPC短柱轴心受压承载力计算公式;计算结果与试验结果比较,吻合较好。Abstract: The failure process and failure modes of ultra-high performance concrete (UHPC) stub columns were investigated through the axial compression capacity test of ten groups of UHPC stub columns with diamond-shaped and cross-shaped composite stirrups and one group of columns without steel bars. The effects of stirrup spacing, fiber content and stirrup form on their axial strain-axial load curve and stress-strain curve were analyzed. Results show that increasing numbers of closed loops in the form of stirrups and fiber content could improve the deformed capacity of UHPC stub columns. The effects of stirrup spacing and fiber content on the axial compression bearing capacity and corresponding axial peak strain of the UHPC are significant. The impact of stirrup spacing on the axial peak strain is greater. The peak load of diamond-shaped composite stirrups (DC) with the same stirrup spacing is higher than that of cross-shaped composite stirrups (CC) specimens. As the spacing of stirrups decreases, the slope of the ascending section of the UHPC normalized stress-strain curve of each specimen increases, at the same time the differences of descending sections are more significant. The effects of fiber content and different types of stirrups on the stress-strain normalized curve of UHPC specimens are small. Considering the restraint effect of stirrups and fiber restraint, the calculation formula of axial compression capacity of UHPC short columns constrained by composite stirrups was proposed. The calculation results are in good agreement with the experimental results.
-
图 6 箍筋及UHPC的应力
Figure 6. Stress of rectangular stirrups and UHPC
wi—Net distance between adjacent longitudinal bars; fyv—Yield strength of stirrups; s'—Net distance between stirrups; bc and dc—Distances between the axis of the stirrup restraining the short and long sides of the UHPC cross section, respectively
图 7 箍筋约束UHPC的 fcc,sf/fcc,f与(1.24−0.03Ωf)Ie的关系
Figure 7. Relationship between fcc,sf/fcc,f ratio and (1.24−0.03Ωf)Ie of UHPC stub column specimen confined with stirrups
fcc,sf/fcc,f—Ratio of the peak stress of the UHPC under the combined stress of stirrups and without stirrups; Ωf—Influence of the fiber constraint coefficient; Ie—Effective constraint indicator
表 1 箍筋约束UHPC试件参数及UHPC材料性能
Table 1. Parameters of specimens and material properties of UHPC stub column specimen confined with stirrups
Code Stirrup Vf/vol% fcu/MPa Ecc,f/GPa λv s/mm ρv/% Type UHPC-1 40 3.07 DC 2 117.5 39.50 0.17 UHPC-2 60 2.05 DC 2 117.5 39.50 0.11 UHPC-3 80 1.54 DC 2 117.5 39.50 0.09 UHPC-4 100 1.23 DC 2 117.5 39.50 0.07 UHPC-5 120 1.02 DC 2 117.5 39.50 0.06 UHPC-6 60 2.05 DC 1.5 114.8 39.04 0.12 UHPC-7 60 2.05 DC 1 110.2 38.72 0.12 UHPC-8 60 2.05 DC 0 92.5 32.52 0.14 UHPC-9 40 2.61 CC 2 117.5 39.50 0.14 UHPC-10 60 1.74 CC 2 117.5 39.50 0.10 UHPC-11 — — — 2 117.5 39.50 — Notes:s—Stirrup spacing; ρv—Volume stirrup ratio; CC and DC—Cross- and diamond-shaped stirrups, respectively; Vf—Volume fraction of steel fibers; fcu—Compressive strength of the fiber UHPC cube; Ecc,f —Elastic modulus of the fiber-constrained UHPC; λv—Stirrup characteristic value. 表 2 钢纤维性能指标
Table 2. Performance indicators of the steel fibers
Length/mm Diameter/mm Aspect ratio Shape pass rate/% Mass density/(g·cm−3) Tensile strength/MPa 13 0.2 65 98 7.8 2850 表 3 钢筋材料性能
Table 3. Material performance indicators of the steel bars
Rebar grade d/mm fy/MPa fu/MPa δ/% HRB400 6 444.5 566.5 19.5 10 425.8 533.6 17.7 Notes:d—Diameter of steel bars; fy—Yield strength of steel bars; fu—Ultimate tensile strength of steel bars; δ—Elongation of steel bars. 表 4 箍筋约束UHPC试验结果
Table 4. Test results of UHPC stub columns confined with stirrups
Code Nu/kN fcc,f/MPa fcc,sf/MPa εcc,f /
10−3εcc,sf /
10−3ε0.85 /
10−3UHPC-1 5155.3 91.4 122.5 2.63 3.79 6.20 UHPC-2 4644.8 91.4 109.8 2.63 3.46 4.83 UHPC-3 4386.7 91.4 103.3 2.63 3.21 4.10 UHPC-4 4239.4 91.4 99.6 2.63 3.05 3.68 UHPC-5 4092.3 91.4 95.9 2.63 2.92 3.39 UHPC-6 4579.9 89.2 108.1 2.55 3.32 4.50 UHPC-7 4410.7 85.3 103.9 2.45 3.14 4.24 UHPC-8 3810.7 71.7 88.9 2.26 2.85 3.52 UHPC-9 4931.0 91.4 116.9 2.63 3.69 5.64 UHPC-10 4530.7 91.4 106.9 2.63 3.39 4.36 UHPC-11 4031.3 91.4 91.4 2.63 2.63 2.89 Notes:Nu—Maximum load; fcc,f and εcc,f—Peak stress and corresponding strain of UHPC without stirrups, respectively; fcc,sf and εcc,sf—Peak stress and corresponding strain of UHPC under the combined stress of stirrups and fibers, respectively; ε0.85—Corresponding strain when the bearing capacity of the specimen is reduced to 85% of the peak stress. 表 5 UHPC短柱箍筋及纤维约束系数及其轴压承载力
Table 5. Stirrup and fiber constraint index and compression capacity of UHPC stub columns
Code σl,e/MPa Ie Ωf Nuc/kN Nue/kN Nue/Nuc UHPC-1 5.54 0.061 1.34 5155.3 5026.8 0.98 UHPC-2 3.48 0.038 1.34 4644.8 4598.7 0.99 UHPC-3 2.46 0.027 1.34 4386.7 4387.0 1.00 UHPC-4 1.85 0.020 1.34 4239.4 4261.7 1.01 UHPC-5 1.46 0.016 1.34 4092.3 4179.6 1.02 UHPC-6 3.48 0.039 1.01 4579.9 4518.1 0.99 UHPC-7 3.48 0.041 0.67 4410.7 4370.7 0.99 UHPC-8 3.48 0.048 0.00 3810.7 3847.3 1.01 UHPC-9 4.69 0.051 1.34 4931.0 4850.6 0.98 UHPC-10 2.91 0.032 1.34 4530.7 4481.3 0.99 Notes: σl,e—Hoop constraint stress; Ie—Effective constraint indicator; Ωf—Influence of the fiber constraint coefficient; Nuc—Test value of axial load; Nue—Calculated value of axial load; Nue/Nuc—Ratio of the calculated value and test value of axial load. -
[1] 胡翱翔, 梁兴文, 于婧, 等. 超高性能混凝土轴心受拉力学性能试验研究[J]. 湖南大学学报(自然科学版), 2018, 45(9):30-37.HU Aoxiang, LIANG Xingwen, YU Jing, et al. Experimental study of uniaxial tensile characteristics of ultra-high performance concrete[J]. Journal of Hunan University(Natural Sciences),2018,45(9):30-37(in Chinese). [2] 胡翱翔, 梁兴文, 李东阳, 等. 超高性能混凝土配合比设计及其受拉性能[J]. 湖南大学学报(自然科学版), 2018, 45(3):39-46.HU Aoxiang, LIANG Xingwen, LI Dongyang, et al. Mix design method and uniaxial tensile characteristics of ultra-high performance concrete[J]. Journal of Hunan University(Natural Sciences),2018,45(3):39-46(in Chinese). [3] 李立仁, 余瑜, 陈永庆. 不同配箍方式的轴压高强混凝土短柱承载力及延性试验研究[J]. 施工技术, 2005(S2):54-57.LI Liren, YU Yu, CHEN Yongqing. Study on bearing capacity of short column and ductility of high-strength concrete constrained with axial load[J]. Construction Technology,2005(S2):54-57(in Chinese). [4] 熊海明, 梁厚燃, 梁莹, 等. 多重螺旋筋复合约束钢筋混凝土圆形截面短柱轴压性能试验研究[J]. 工业建筑, 2020, 50(1):84-90.XIONG Haiming, LIANG Houran, LIANG Ying, et al. Experimental research on the performance of composite confined peinforced concrete circular column with multiple spiral stirrups under axial compression[J]. Industrial Construction,2020,50(1):84-90(in Chinese). [5] MANDER J B, PRIESTLEY M J N, FELLOW R P. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804) [6] 钱稼茹, 程丽荣, 周栋梁. 普通箍筋约束混凝土柱的中心受压性能[J]. 清华大学学报(自然科学版), 2002(10):1369-1373. doi: 10.3321/j.issn:1000-0054.2002.10.026QIAN Jiaru, CHENG Lirong, ZHOU Dongliang. Central compression performance of concrete columns confined by ordinary stirrups[J]. Journal of Tsinghua University(Science and Technology),2002(10):1369-1373(in Chinese). doi: 10.3321/j.issn:1000-0054.2002.10.026 [7] 张燕斌, 姬宝霖. 高强箍筋约束混凝土柱轴压试验研究[J]. 结构工程师, 2016, 32(6):123-128. doi: 10.3969/j.issn.1005-0159.2016.06.018ZHANG Yanbin, JI Baolin. Studies on the behavior of high-strength concrete columns with high-strength reinforcement under concentric compression[J]. Structural Engineers,2016,32(6):123-128(in Chinese). doi: 10.3969/j.issn.1005-0159.2016.06.018 [8] 胡海涛, 叶知满. 复合箍筋约束高强混凝土应力应变性能[J]. 工业建筑, 1997(10):24-29.HU Haitao, YE Zhiman. Stress-strain behavior of high-strength concrete confined by overlapping hoops[J]. Industrial Construction,1997(10):24-29(in Chinese). [9] 胡海涛, 叶知满. 复合方箍约束混凝土轴心受压短柱承载力计算[J]. 建筑结构, 2002(4):12-13.HU Haitao, YE Zhiman. Calculation of bearing capacity of concrete short columns confined by composite square hoop under axial compression[J]. Journal of Building Structures,2002(4):12-13(in Chinese). [10] 王铁成, 王晓伟. 箍筋约束T形截面短柱轴压承载力试验研究[J]. 地震工程与工程振动, 2009, 29(2):103-109.WANG Tiecheng, WANG Xiaowei. Experimental research on bearing capacity of axially loaded T-shaped short columns confined with stirrups[J]. Journal of Earthquake Engineering and Engineering Vibration,2009,29(2):103-109(in Chinese). [11] 寇佳亮, 孙方辉, 梁兴文, 等. 箍筋约束纤维增强混凝土轴心受压性能试验研究[J]. 建筑结构学报, 2015, 36(7):124-131.KOU Jialiang, SUN Fanghui, LIANG Xingwen, et al. Experimental investigation on axial compression performance of fiber reinforced concrete confined with stirrups[J]. Journal of Building Structures,2015,36(7):124-131(in Chinese). [12] 李艳, 刘泽军, 王伟伟, 等. 箍筋约束ECC轴心受压性能试验研究[J]. 建筑结构学报, 2017, 38(7):164-173.LI Yan, LIU Zejun, WANG Weiwei, et al. Experimental study on axial compression performance of ECC confined with stirrups[J]. Journal of Building Structures,2017,38(7):164-173(in Chinese). [13] 邓宗才, 姚军锁. 高强箍筋约束超高性能混凝土柱轴压性能[J]. 复合材料学报, 2020, 37(10):2590-2601.DENG Zongcai, YAO Junsuo. Axial compression behavior of ultra-high performance concrete columns confined by high-strength stirrups[J]. Acta Materiae Compositae Sinica,2020,37(10):2590-2601(in Chinese). [14] WU T, WEI H, ZHANG Y, et al. Axial compressive behavior of lightweight aggregate concrete columns confined with transverse steel reinforcement[J]. Advances in Mechanical Engineering,2018,10(3):1-14. [15] LOKUGE W P, SANJAYAN J G, SETUNGE S. Stress-strain model for laterally confined concrete[J]. Journal of Materials in Civil Engineering,2005,17(6):607-616. doi: 10.1061/(ASCE)0899-1561(2005)17:6(607) [16] SHARMA U K, BHARGAVA P, KAUSHIK S K. Behavior of confined high strength concrete columns under axial compression[J]. Journal of Advanced Concrete Technology,2005,3(2):267-281. doi: 10.3151/jact.3.267 [17] MANDER J B, PRIESTLEY M J N, FELLOW R P. Observed stress-strain behavior of confined concrete[J]. Journal of Structural Engineering,1988,114(8):1827-1849. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1827) [18] SAMANI A K, ATTARD M M. A stress-strain model for uniaxial and confined concrete under compression[J]. Engineering Structures, 2012, 41: 335-349. [19] SHIN H O, YOON Y S, COOK W D, et al. Effect of confinement on the axial load response of ultrahigh-strength concrete columns[J]. Journal of Structural Engineering, 2015, 141(6): 04014151. [20] 郑州大学. 钢纤维混凝土结构设计标准: JGJ 465—2019[S]. 北京: 中国建筑工业出版社, 2019.Zhengzhou University. Steel fiber concrete structure design standard: JGJ 465—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [21] RICHART F E. Reinforced concrete wall and column footings[J]. ACI Journal Proceedings,1948,45(10):97-127.