留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr-Y共掺杂AgSnO2触头材料性能的仿真与实验

许婧婷 王景芹 朱艳彩 张广智 胡德霖 黄光临

许婧婷, 王景芹, 朱艳彩, 等. Cr-Y共掺杂AgSnO2触头材料性能的仿真与实验[J]. 复合材料学报, 2022, 39(7): 3518-3529. doi: 10.13801/j.cnki.fhclxb.20210716.004
引用本文: 许婧婷, 王景芹, 朱艳彩, 等. Cr-Y共掺杂AgSnO2触头材料性能的仿真与实验[J]. 复合材料学报, 2022, 39(7): 3518-3529. doi: 10.13801/j.cnki.fhclxb.20210716.004
XU Jingting, WANG Jingqin, ZHU Yancai, et al. Simulation and experiment on properties of Cr-Y co-doped AgSnO2 contact materials[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3518-3529. doi: 10.13801/j.cnki.fhclxb.20210716.004
Citation: XU Jingting, WANG Jingqin, ZHU Yancai, et al. Simulation and experiment on properties of Cr-Y co-doped AgSnO2 contact materials[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3518-3529. doi: 10.13801/j.cnki.fhclxb.20210716.004

Cr-Y共掺杂AgSnO2触头材料性能的仿真与实验

doi: 10.13801/j.cnki.fhclxb.20210716.004
基金项目: 国家自然科学基金(51777057)
详细信息
    通讯作者:

    王景芹,博士,教授,博士生导师,研究方向为电工装备可靠性理论及应用 E-mail:jqwang@hebut.edu.cn

  • 中图分类号: TM501

Simulation and experiment on properties of Cr-Y co-doped AgSnO2 contact materials

  • 摘要: 采用掺杂改性的方式改善AgSnO2复合触头材料的电性能和加工性能。基于密度泛函理论的第一性原理,对掺杂Cr-Y、Cr-Ce的SnO2超晶胞进行弹性常数的仿真计算,筛选出力学性能较好的稀土元素Y进行电性能的仿真与实验。从能带结构和态密度分析Cr、Y单掺杂和共掺杂对SnO2电子结构的影响,结果表明,掺杂后SnO2能带隙减小,电子跃迁所需能量降低。采用溶胶凝胶法制备掺杂的SnO2粉末,并应用XRD对其进行物相结构分析,验证了掺杂离子进入SnO2晶格,形成固溶体,能实现仿真建立的替代掺杂模型。采用粉末冶金法制备掺杂的AgSnO2复合触头材料,测量其密度、硬度和电导率,掺杂后AgSnO2触头材料电导率提高,其中Cr、Y共掺时物理性能最优,验证了仿真结果。使用JF04D型电接触触头材料测试系统对触头材料进行电接触性能试验,试验结果表明,掺杂Cr、Y可有效降低AgSnO2触头材料的燃弧能量,改善抗电弧侵蚀性,抑制电弧对触头的烧蚀,稳定触头材料的抗电弧侵蚀性能、抗熔焊性能。

     

  • 图  1  SnO2超晶胞模型

    Figure  1.  SnO2 supercell model

    图  2  不同体系SnO2的能带结构

    Figure  2.  Band structures of various SnO2 systems

    Ef—Fermi energy

    图  3  不同体系SnO2的总态密度(TDOS)与分波态密度(PDOS)

    Figure  3.  Total density of states (TDOS) and partial density of states (PDOS) of various SnO2 systems

    图  4  各SnO2粉末的XRD图谱

    Figure  4.  XRD patterns of various SnO2 powders

    图  5  AgSnO2触头材料燃弧时间

    Figure  5.  Arc duration of AgSnO2 contact materials

    图  6  AgSnO2触头材料燃弧能量

    Figure  6.  Arc energy of AgSnO2 contact materials

    图  7  AgSnO2触头材料熔焊力

    Figure  7.  Welding force of AgSnO2 contact materials

    表  1  各SnO2体系晶格常数与焓变

    Table  1.   Lattice constant and enthalpy change of various SnO2 systems

    Modela/nmb/nmc/nmVolume/nm3ΔH/eV
    SnO2 0.474 0.474 0.318 0.0715 −0.012
    SnO2-Cr 0.482 0.482 0.325 0.0762 −2.281
    SnO2-Y 0.502 0.502 0.338 0.0849 −8.163
    SnO2-Cr-Y 0.489 0.490 0.330 0.0791 −9.917
    SnO2-Ce 0.496 0.496 0.334 0.0862 −3.652
    SnO2-Cr-Ce 0.491 0.490 0.330 0.0795 −6.341
    Notes: a, b, c—Lattice parameter; ΔH—Enthalpy change.
    下载: 导出CSV

    表  2  各SnO2体系弹性常数

    Table  2.   Elastic constants of various SnO2 systems

    ModelC11C12C13C22C33C44C55C66
    SnO2 184.09 111.62 100.48 184.09 339.49 81.59 81.59 165.08
    SnO2-Cr 300.27 −17.94 95.69 315.19 334.11 91.03 81.64 38.46
    SnO2-Y 302.31 −9.77 123.38 271.81 305.31 51.92 72.59 30.42
    SnO2-Cr-Y 165.85 105.20 135.37 331.18 194.52 75.95 166.40 76.99
    SnO2-Ce 318.04 −5.65 130.33 303.89 323.59 73.84 78.09 32.46
    SnO2-Cr-Ce 176.86 104.62 110.06 324.61 181.76 72.41 155.69 74.57
    Note: C—Elastic constant.
    下载: 导出CSV

    表  3  各SnO2体系的体积模量B、剪切模量G、杨氏模量E、泊松比ν和硬度HV

    Table  3.   Bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio ν and hardness (HV) of various SnO2 systems

    ModelB/GPaG/GPaE/GPaG/BνHardness (HV)/GPa
    SnO2 144.059 82.102 206.984 0.569 0.261 11.003
    SnO2-Cr 142.587 83.853 210.328 0.588 0.254 11.574
    SnO2-Y 137.639 67.112 173.187 0.487 0.290 7.989
    SnO2-Cr-Y 152.224 70.922 184.166 0.466 0.298 7.888
    SnO2-Ce 151.893 74.861 192.894 0.493 0.288 8.737
    SnO2-Cr-Ce 142.816 75.782 193.177 0.531 0.275 9.585
    下载: 导出CSV

    表  4  制备SnO2粉末所需试剂质量比

    Table  4.   Mass ratio of reagents for preparation of SnO2 powders

    CompositionMass ratio
    SnCl4·5H2O∶CrCl3·6H2O 6.58∶1
    SnCl4·5H2O∶YCl3·6H2O 5.75∶1
    SnCl4·5H2O:CrCl3·6H2O∶YCl3·6H2O 11.56∶0.88∶1
    下载: 导出CSV

    表  5  AgSnO2触头材料的电导率、硬度和密度

    Table  5.   Conductivity, hardness and density of AgSnO2 contact materials

    Contact
    material
    Conductivity/
    (mS·m−1)
    Hardness/
    GPa
    Density/
    (g·cm−3)
    AgSnO2 24.39 121.55 8.58
    Cr-AgSnO2 29.41 119.07 8.74
    Y-AgSnO2 27.04 118.90 8.63
    Cr-Y-AgSnO2 31.09 106.81 9.08
    下载: 导出CSV

    表  6  不同掺杂情况下AgSnO2触头材料熔焊力的平均值与方差

    Table  6.   Average and variance of welding force of AgSnO2 contact materials with different doping

    Contact
    material
    Average value of
    welding force/cN
    Variance of
    welding force
    AgSnO2 69.06 9.85
    Cr-AgSnO2 73.43 2.28
    Y-AgSnO2 71.49 2.61
    Cr-Y-AgSnO2 71.26 2.43
    下载: 导出CSV
  • [1] 赵浩融, 罗韦, 谢永忠, 等. 2015年电触头材料的研究进展[J]. 电工材料, 2016, 142(1):24-28.

    ZHAO Haorong, LUO Wei, XIE Yongzhong, et al. Research progress of electrical contact materials in 2015[J]. Electrical Materials,2016,142(1):24-28(in Chinese).
    [2] TOKUMITSU S, HASEGAWA M. Relationships between break arc behaviors of AgSnO2 contacts and lorentz force to be applied by an external magnetic force in a DC inductive load circuit up to 20 V-17 A[J]. IEICE Transactions on Electronics,2019,102(9):641-645.
    [3] 柏小平, 林万焕, 张明江. 低压电器用电触头材料[J]. 电工材料, 2007(3):12-16. doi: 10.3969/j.issn.1671-8887.2007.03.003

    BAI Xiaoping, LIN Wanhuan, ZHANG Mingjiang. Electrical contact materials for low voltage apparatus[J]. Electrical materials,2007(3):12-16(in Chinese). doi: 10.3969/j.issn.1671-8887.2007.03.003
    [4] 李文生, 李亚明, 张杰, 等. 银基电接触材料的应用研究及制备工艺[J]. 材料导报, 2011, 25(11):34-39.

    LI Wensheng, LI Yaming, ZHANG Jie, et al. Application research and preparation technology of silver based electrical contact materials[J]. Materials Reports,2011,25(11):34-39(in Chinese).
    [5] GEORGE E, PECHT M. RoHS compliance in safety and reliability critical electronics[J]. Microelectronics Reliability,2016,65(1):1-7.
    [6] LEE H S, SHIN H W, JUNG T K, et al. Microstructure and hardness property of internally oxided AgCdO alloy[J]. Applied Mechanics and Materials,2012,152(1):440-443.
    [7] 李英民, 王俊勃, 纪东, 等. 新型Ag/SnO2触头材料的发展现状[J]. 电气开关, 2003(3):20-26. doi: 10.3969/j.issn.1004-289X.2003.03.007

    LI Yingmin, WANG Junbo, JI Dong, et al. The progress of the advanced Ag/SnO2 contact material[J]. Electric Switchgear,2003(3):20-26(in Chinese). doi: 10.3969/j.issn.1004-289X.2003.03.007
    [8] 王绍雄. 低压开关中AgCdO, AgSnO2触头电弧熄灭和电弧运动特性以及触头磨损机理的研究[J]. 低压电器, 1993, 4(5):54-60.

    WANG Shaoxiong. Study on arc extinction, arc motion characteristics and contact wear mechanism of AgCdO, AgSnO2 contacts in low voltage switch[J]. Low voltage electrical apparatus,1993,4(5):54-60(in Chinese).
    [9] MORIN L, JEMAA N B, JEANNOT D, et al. Contacts mater-ials performances under break arc in automotive applications[J]. IEEE Transactions on Components and Packaging Technologies,2000,23(2):367-375. doi: 10.1109/6144.846776
    [10] 荣命哲, 万江文. 含微量添加剂的AgSnO2触头材料电弧侵蚀机理[J]. 西安交通大学学报, 1997, 31(11):1-7.

    RONG Mingzhe, WAN Jiangwen. Arc erosion mechanism of AgSnO2 contact materials with trace additives[J]. Journal of Xi’an Jiaotong University,1997,31(11):1-7(in Chinese).
    [11] OSOVI V, OSOVI A, TALIJAN N, et al. Improving dispersion of SnO2 nanoparticles in Ag-SnO2 electrical contact materials using template method[J]. Journal of Alloys and Compounds,2013,567(3):33-39.
    [12] 陈宏燕, 谢明, 王锦, 等. 银氧化锡电触头材料研究现状及发展趋势[J]. 贵金属, 2011, 32(2):77-81. doi: 10.3969/j.issn.1004-0676.2011.02.016

    CHEN Hongyan, XIE Ming, WANG Jin, et al. Research status and development trend of silver tin oxide electrical contact materials[J]. Precious Metals,2011,32(2):77-81(in Chinese). doi: 10.3969/j.issn.1004-0676.2011.02.016
    [13] CHANG H K, WOO H S. Selective trimethylamine sensors using Cr2O3 decorated SnO2 nanowires[J]. Sensors and Actuators B: Chemical,2014,204(2):231-238.
    [14] 曹风, 王俊勃, 刘松涛, 等. AgSnO2触头材料中添加物的研究与发展[J]. 电工材料, 2016(3):34-37.

    CAO Feng, WANG Junbo, LIU Songtao, et al. Research and development of additives in AgSnO2 contact materials[J]. Electrical Materials,2016(3):34-37(in Chinese).
    [15] 倪孟良. 添加剂对AgSnO2电触头材料组织与性能的影响[D]. 杭州: 浙江大学, 2006.

    NI Mengliang. Effect of additives on Microstructure and properties of AgSnO2 electrical contact materials[D]. Hangzhou: Zhejiang University, 2006(in Chinese).
    [16] 张尧卿. AgSnO2电触头材料动态性能研究[D]. 天津: 天津大学, 2007.

    ZHANG Yaoqing. Study on dynamic properties of AgSnO2 electrical contact materials[D]. Tianjin: Tianjin University, 2007(in Chinese).
    [17] 喻力, 郑广, 何开华, 等. 过渡金属掺杂SnO2的电子结构与磁性[J]. 物理化学学报, 2010, 26(3):763-768. doi: 10.3866/PKU.WHXB20100308

    YU Li, ZHENG Guang, HE Kaihua, et al. Electronic structure and magnetic properties of transition metal doped SnO2[J]. Acta Physico-Chimica Sinica,2010,26(3):763-768(in Chinese). doi: 10.3866/PKU.WHXB20100308
    [18] WANG Haitao, WANG Jingqin, DU Jiang. Influence of rare earth on the wetting ability of AgSnO2 contact material[J]. Rare Metal Materials and Engineering,2014,43(8):1846-1849. doi: 10.1016/S1875-5372(14)60143-0
    [19] 蔡亚楠. 稀土元素掺杂AgSnO2触头材料的计算与研究[D]. 天津: 河北工业大学, 2017.

    CAI Ya'nan. Calculation and study of rare earth doped AgSnO2 Contact Materials[D]. Tianjin: Hebei University of Technology, 2017(in Chinese).
    [20] 刘周, 王景芹, 陈令, 等. La和S共掺SnO2材料性能的第一性原理研究[J]. 贵金属, 2019, 40(4):64-71. doi: 10.3969/j.issn.1004-0676.2019.04.012

    LIU Zhou, WANG Jingqin, CHEN Ling, et al. First principles study on the properties of La and S co-doped SnO2 materials[J]. Precious Metals,2019,40(4):64-71(in Chinese). doi: 10.3969/j.issn.1004-0676.2019.04.012
    [21] WANG Jingqin, ZHANG Ying, KANG Huiling. Simulation and experimental study on properties of AgSnO2 contact materials doped with different ratios of Ce[J]. Advances in Materials Science and Engineering,2018(9):253-260.
    [22] 赵彩甜, 王景芹, 蔡亚楠, 等. La掺杂AgSnO2触头材料导电性能的第一性原理分析[J]. 中国有色金属学报, 2017, 27(12):2552-2559.

    ZHAO Caitian, WANG Jingqin, CAI Yanan, et al. First principles analysis of conductivity of La doped AgSnO2 contact materials[J]. Chinese Journal of Nonferrous Metals,2017,27(12):2552-2559(in Chinese).
    [23] 于淼. Al-S共掺杂SnO2电子结构的第一性原理研究[J]. 硅酸盐通报, 2020, 39(06):1985-1988.

    YU Miao. First principles study on electronic structure of Al-S Co doped SnO2[J]. Bulletin of the Chinese Ceramic Society,2020,39(06):1985-1988(in Chinese).
    [24] GIL G L, TOSHIYUKI O, KOJI H, et al. Synthesis of SnO2 particle dispersed Ag alloy by mechanical alloying[J]. Journal of the Japan Society of Powder and Powder Metallurgy,1996,43(6):795-800. doi: 10.2497/jjspm.43.795
    [25] DOLBEC R, KHAKANI M, SERVENTI A M, et al. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of Pulsed laser deposition[J]. Thin Solid Films,2002,419(1):230-236.
    [26] JOHN P P, MEL L. Physical content of the exact kohn-sham orbital energies: Band gaps and derivative discontinuities[J]. Physical Review Letters,1983,51(20):1884-1887. doi: 10.1103/PhysRevLett.51.1884
    [27] 蒋鸿. 带隙问题: 第一性原理电子能带理论研究现状[J]. 化学进展, 2012, 24(6):910-927.

    JIANG Hong. The band gap problem: The state of the art of first-principles electronic band structure theory[J]. Progress in Chemistry,2012,24(6):910-927(in Chinese).
    [28] CHEN Zhijie. Relationship between the electric structures calculated by the first principles calculation method and the photoelectrocatalysis degradation of Ir-doped SnO2 electrodes[J]. Applied Surface Science,2017,422(5):891-899.
    [29] KIM M. A first-principles study of the electronic and structural properties of Sb and F doped SnO2 nanocrystals[J]. The Journal of Chemical Physics,2015,142(4):44-53.
    [30] 季敏霞. 溶胶凝胶法制备纳米氧化物的研究[D]. 青岛: 山东科技大学, 2005.

    JI Minxia. Study on preparing nanophase oxide by sol-gel method[D]. Qingdao: Shandong University of Science and Technology, 2005(in Chinese).
    [31] 王海涛. 银氧化锡触头材料性能改善机理的研究[D]. 天津: 河北工业大学, 2007.

    WANG Haitao. Study on the mechanism of improving the properties of silver tin oxide contact materials[D]. Tianjin: Hebei University of Technology, 2007(in Chinese).
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  1521
  • HTML全文浏览量:  469
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-06-30
  • 录用日期:  2021-07-05
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回