Simulation and experiment on properties of Cr-Y co-doped AgSnO2 contact materials
-
摘要: 采用掺杂改性的方式改善AgSnO2复合触头材料的电性能和加工性能。基于密度泛函理论的第一性原理,对掺杂Cr-Y、Cr-Ce的SnO2超晶胞进行弹性常数的仿真计算,筛选出力学性能较好的稀土元素Y进行电性能的仿真与实验。从能带结构和态密度分析Cr、Y单掺杂和共掺杂对SnO2电子结构的影响,结果表明,掺杂后SnO2能带隙减小,电子跃迁所需能量降低。采用溶胶凝胶法制备掺杂的SnO2粉末,并应用XRD对其进行物相结构分析,验证了掺杂离子进入SnO2晶格,形成固溶体,能实现仿真建立的替代掺杂模型。采用粉末冶金法制备掺杂的AgSnO2复合触头材料,测量其密度、硬度和电导率,掺杂后AgSnO2触头材料电导率提高,其中Cr、Y共掺时物理性能最优,验证了仿真结果。使用JF04D型电接触触头材料测试系统对触头材料进行电接触性能试验,试验结果表明,掺杂Cr、Y可有效降低AgSnO2触头材料的燃弧能量,改善抗电弧侵蚀性,抑制电弧对触头的烧蚀,稳定触头材料的抗电弧侵蚀性能、抗熔焊性能。
-
关键词:
- AgSnO2触头材料 /
- 溶胶-凝胶法 /
- 电接触性能 /
- 燃弧能量 /
- 能带结构
Abstract: The electrical and processing properties of AgSnO2 composite contact materials were improved by doping. Based on the first principles of density functional theory, the elastic constants of SnO2 supercells doped with Cr-Y and Cr-Ce were calculated by simulation, and the rare earth element Y with better mechanical properties was selected for simulation and experiment of electrical properties. The effects of Cr and Y doping on the electrical properties of SnO2 were analyzed from the energy band structure and density of states. The results show that the band gap of SnO2 decreases and the energy required for electron transition cuts down after doping. The doped SnO2 powder was prepared by sol-gel method, and its phase structure was analyzed by XRD. It is verified that doping ions enter into the SnO2 lattice to form solid solution, and achieves the alternative doping model established by simulation. The doped AgSnO2 composite contact materials were prepared by powder metallurgy method, and their densities, hardnesses and conductivities were measured. The conductivities of doped AgSnO2 contact materials are improved, and Cr-Y co-doped is the best among them, which verifies the simulation results. JF04D type electrical contact material test system was used to test the electrical contact performance of contact materials. The test results show that doping Cr and Y can effectively reduce the arc energy of AgSnO2 contact materials, improve the arc erosion resistance, inhibit the arc ablation of contact materials, and stabilize the arc erosion resistance and welding resistance of contact materials.-
Key words:
- AgSnO2 contact material /
- sol-gel method /
- electrical contact performance /
- arc energy /
- band structure
-
表 1 各SnO2体系晶格常数与焓变
Table 1. Lattice constant and enthalpy change of various SnO2 systems
Model a/nm b/nm c/nm Volume/nm3 ΔH/eV SnO2 0.474 0.474 0.318 0.0715 −0.012 SnO2-Cr 0.482 0.482 0.325 0.0762 −2.281 SnO2-Y 0.502 0.502 0.338 0.0849 −8.163 SnO2-Cr-Y 0.489 0.490 0.330 0.0791 −9.917 SnO2-Ce 0.496 0.496 0.334 0.0862 −3.652 SnO2-Cr-Ce 0.491 0.490 0.330 0.0795 −6.341 Notes: a, b, c—Lattice parameter; ΔH—Enthalpy change. 表 2 各SnO2体系弹性常数
Table 2. Elastic constants of various SnO2 systems
Model C11 C12 C13 C22 C33 C44 C55 C66 SnO2 184.09 111.62 100.48 184.09 339.49 81.59 81.59 165.08 SnO2-Cr 300.27 −17.94 95.69 315.19 334.11 91.03 81.64 38.46 SnO2-Y 302.31 −9.77 123.38 271.81 305.31 51.92 72.59 30.42 SnO2-Cr-Y 165.85 105.20 135.37 331.18 194.52 75.95 166.40 76.99 SnO2-Ce 318.04 −5.65 130.33 303.89 323.59 73.84 78.09 32.46 SnO2-Cr-Ce 176.86 104.62 110.06 324.61 181.76 72.41 155.69 74.57 Note: C—Elastic constant. 表 3 各SnO2体系的体积模量B、剪切模量G、杨氏模量E、泊松比ν和硬度HV
Table 3. Bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio ν and hardness (HV) of various SnO2 systems
Model B/GPa G/GPa E/GPa G/B ν Hardness (HV)/GPa SnO2 144.059 82.102 206.984 0.569 0.261 11.003 SnO2-Cr 142.587 83.853 210.328 0.588 0.254 11.574 SnO2-Y 137.639 67.112 173.187 0.487 0.290 7.989 SnO2-Cr-Y 152.224 70.922 184.166 0.466 0.298 7.888 SnO2-Ce 151.893 74.861 192.894 0.493 0.288 8.737 SnO2-Cr-Ce 142.816 75.782 193.177 0.531 0.275 9.585 表 4 制备SnO2粉末所需试剂质量比
Table 4. Mass ratio of reagents for preparation of SnO2 powders
Composition Mass ratio SnCl4·5H2O∶CrCl3·6H2O 6.58∶1 SnCl4·5H2O∶YCl3·6H2O 5.75∶1 SnCl4·5H2O:CrCl3·6H2O∶YCl3·6H2O 11.56∶0.88∶1 表 5 AgSnO2触头材料的电导率、硬度和密度
Table 5. Conductivity, hardness and density of AgSnO2 contact materials
Contact
materialConductivity/
(mS·m−1)Hardness/
GPaDensity/
(g·cm−3)AgSnO2 24.39 121.55 8.58 Cr-AgSnO2 29.41 119.07 8.74 Y-AgSnO2 27.04 118.90 8.63 Cr-Y-AgSnO2 31.09 106.81 9.08 表 6 不同掺杂情况下AgSnO2触头材料熔焊力的平均值与方差
Table 6. Average and variance of welding force of AgSnO2 contact materials with different doping
Contact
materialAverage value of
welding force/cNVariance of
welding forceAgSnO2 69.06 9.85 Cr-AgSnO2 73.43 2.28 Y-AgSnO2 71.49 2.61 Cr-Y-AgSnO2 71.26 2.43 -
[1] 赵浩融, 罗韦, 谢永忠, 等. 2015年电触头材料的研究进展[J]. 电工材料, 2016, 142(1):24-28.ZHAO Haorong, LUO Wei, XIE Yongzhong, et al. Research progress of electrical contact materials in 2015[J]. Electrical Materials,2016,142(1):24-28(in Chinese). [2] TOKUMITSU S, HASEGAWA M. Relationships between break arc behaviors of AgSnO2 contacts and lorentz force to be applied by an external magnetic force in a DC inductive load circuit up to 20 V-17 A[J]. IEICE Transactions on Electronics,2019,102(9):641-645. [3] 柏小平, 林万焕, 张明江. 低压电器用电触头材料[J]. 电工材料, 2007(3):12-16. doi: 10.3969/j.issn.1671-8887.2007.03.003BAI Xiaoping, LIN Wanhuan, ZHANG Mingjiang. Electrical contact materials for low voltage apparatus[J]. Electrical materials,2007(3):12-16(in Chinese). doi: 10.3969/j.issn.1671-8887.2007.03.003 [4] 李文生, 李亚明, 张杰, 等. 银基电接触材料的应用研究及制备工艺[J]. 材料导报, 2011, 25(11):34-39.LI Wensheng, LI Yaming, ZHANG Jie, et al. Application research and preparation technology of silver based electrical contact materials[J]. Materials Reports,2011,25(11):34-39(in Chinese). [5] GEORGE E, PECHT M. RoHS compliance in safety and reliability critical electronics[J]. Microelectronics Reliability,2016,65(1):1-7. [6] LEE H S, SHIN H W, JUNG T K, et al. Microstructure and hardness property of internally oxided AgCdO alloy[J]. Applied Mechanics and Materials,2012,152(1):440-443. [7] 李英民, 王俊勃, 纪东, 等. 新型Ag/SnO2触头材料的发展现状[J]. 电气开关, 2003(3):20-26. doi: 10.3969/j.issn.1004-289X.2003.03.007LI Yingmin, WANG Junbo, JI Dong, et al. The progress of the advanced Ag/SnO2 contact material[J]. Electric Switchgear,2003(3):20-26(in Chinese). doi: 10.3969/j.issn.1004-289X.2003.03.007 [8] 王绍雄. 低压开关中AgCdO, AgSnO2触头电弧熄灭和电弧运动特性以及触头磨损机理的研究[J]. 低压电器, 1993, 4(5):54-60.WANG Shaoxiong. Study on arc extinction, arc motion characteristics and contact wear mechanism of AgCdO, AgSnO2 contacts in low voltage switch[J]. Low voltage electrical apparatus,1993,4(5):54-60(in Chinese). [9] MORIN L, JEMAA N B, JEANNOT D, et al. Contacts mater-ials performances under break arc in automotive applications[J]. IEEE Transactions on Components and Packaging Technologies,2000,23(2):367-375. doi: 10.1109/6144.846776 [10] 荣命哲, 万江文. 含微量添加剂的AgSnO2触头材料电弧侵蚀机理[J]. 西安交通大学学报, 1997, 31(11):1-7.RONG Mingzhe, WAN Jiangwen. Arc erosion mechanism of AgSnO2 contact materials with trace additives[J]. Journal of Xi’an Jiaotong University,1997,31(11):1-7(in Chinese). [11] OSOVI V, OSOVI A, TALIJAN N, et al. Improving dispersion of SnO2 nanoparticles in Ag-SnO2 electrical contact materials using template method[J]. Journal of Alloys and Compounds,2013,567(3):33-39. [12] 陈宏燕, 谢明, 王锦, 等. 银氧化锡电触头材料研究现状及发展趋势[J]. 贵金属, 2011, 32(2):77-81. doi: 10.3969/j.issn.1004-0676.2011.02.016CHEN Hongyan, XIE Ming, WANG Jin, et al. Research status and development trend of silver tin oxide electrical contact materials[J]. Precious Metals,2011,32(2):77-81(in Chinese). doi: 10.3969/j.issn.1004-0676.2011.02.016 [13] CHANG H K, WOO H S. Selective trimethylamine sensors using Cr2O3 decorated SnO2 nanowires[J]. Sensors and Actuators B: Chemical,2014,204(2):231-238. [14] 曹风, 王俊勃, 刘松涛, 等. AgSnO2触头材料中添加物的研究与发展[J]. 电工材料, 2016(3):34-37.CAO Feng, WANG Junbo, LIU Songtao, et al. Research and development of additives in AgSnO2 contact materials[J]. Electrical Materials,2016(3):34-37(in Chinese). [15] 倪孟良. 添加剂对AgSnO2电触头材料组织与性能的影响[D]. 杭州: 浙江大学, 2006.NI Mengliang. Effect of additives on Microstructure and properties of AgSnO2 electrical contact materials[D]. Hangzhou: Zhejiang University, 2006(in Chinese). [16] 张尧卿. AgSnO2电触头材料动态性能研究[D]. 天津: 天津大学, 2007.ZHANG Yaoqing. Study on dynamic properties of AgSnO2 electrical contact materials[D]. Tianjin: Tianjin University, 2007(in Chinese). [17] 喻力, 郑广, 何开华, 等. 过渡金属掺杂SnO2的电子结构与磁性[J]. 物理化学学报, 2010, 26(3):763-768. doi: 10.3866/PKU.WHXB20100308YU Li, ZHENG Guang, HE Kaihua, et al. Electronic structure and magnetic properties of transition metal doped SnO2[J]. Acta Physico-Chimica Sinica,2010,26(3):763-768(in Chinese). doi: 10.3866/PKU.WHXB20100308 [18] WANG Haitao, WANG Jingqin, DU Jiang. Influence of rare earth on the wetting ability of AgSnO2 contact material[J]. Rare Metal Materials and Engineering,2014,43(8):1846-1849. doi: 10.1016/S1875-5372(14)60143-0 [19] 蔡亚楠. 稀土元素掺杂AgSnO2触头材料的计算与研究[D]. 天津: 河北工业大学, 2017.CAI Ya'nan. Calculation and study of rare earth doped AgSnO2 Contact Materials[D]. Tianjin: Hebei University of Technology, 2017(in Chinese). [20] 刘周, 王景芹, 陈令, 等. La和S共掺SnO2材料性能的第一性原理研究[J]. 贵金属, 2019, 40(4):64-71. doi: 10.3969/j.issn.1004-0676.2019.04.012LIU Zhou, WANG Jingqin, CHEN Ling, et al. First principles study on the properties of La and S co-doped SnO2 materials[J]. Precious Metals,2019,40(4):64-71(in Chinese). doi: 10.3969/j.issn.1004-0676.2019.04.012 [21] WANG Jingqin, ZHANG Ying, KANG Huiling. Simulation and experimental study on properties of AgSnO2 contact materials doped with different ratios of Ce[J]. Advances in Materials Science and Engineering,2018(9):253-260. [22] 赵彩甜, 王景芹, 蔡亚楠, 等. La掺杂AgSnO2触头材料导电性能的第一性原理分析[J]. 中国有色金属学报, 2017, 27(12):2552-2559.ZHAO Caitian, WANG Jingqin, CAI Yanan, et al. First principles analysis of conductivity of La doped AgSnO2 contact materials[J]. Chinese Journal of Nonferrous Metals,2017,27(12):2552-2559(in Chinese). [23] 于淼. Al-S共掺杂SnO2电子结构的第一性原理研究[J]. 硅酸盐通报, 2020, 39(06):1985-1988.YU Miao. First principles study on electronic structure of Al-S Co doped SnO2[J]. Bulletin of the Chinese Ceramic Society,2020,39(06):1985-1988(in Chinese). [24] GIL G L, TOSHIYUKI O, KOJI H, et al. Synthesis of SnO2 particle dispersed Ag alloy by mechanical alloying[J]. Journal of the Japan Society of Powder and Powder Metallurgy,1996,43(6):795-800. doi: 10.2497/jjspm.43.795 [25] DOLBEC R, KHAKANI M, SERVENTI A M, et al. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of Pulsed laser deposition[J]. Thin Solid Films,2002,419(1):230-236. [26] JOHN P P, MEL L. Physical content of the exact kohn-sham orbital energies: Band gaps and derivative discontinuities[J]. Physical Review Letters,1983,51(20):1884-1887. doi: 10.1103/PhysRevLett.51.1884 [27] 蒋鸿. 带隙问题: 第一性原理电子能带理论研究现状[J]. 化学进展, 2012, 24(6):910-927.JIANG Hong. The band gap problem: The state of the art of first-principles electronic band structure theory[J]. Progress in Chemistry,2012,24(6):910-927(in Chinese). [28] CHEN Zhijie. Relationship between the electric structures calculated by the first principles calculation method and the photoelectrocatalysis degradation of Ir-doped SnO2 electrodes[J]. Applied Surface Science,2017,422(5):891-899. [29] KIM M. A first-principles study of the electronic and structural properties of Sb and F doped SnO2 nanocrystals[J]. The Journal of Chemical Physics,2015,142(4):44-53. [30] 季敏霞. 溶胶凝胶法制备纳米氧化物的研究[D]. 青岛: 山东科技大学, 2005.JI Minxia. Study on preparing nanophase oxide by sol-gel method[D]. Qingdao: Shandong University of Science and Technology, 2005(in Chinese). [31] 王海涛. 银氧化锡触头材料性能改善机理的研究[D]. 天津: 河北工业大学, 2007.WANG Haitao. Study on the mechanism of improving the properties of silver tin oxide contact materials[D]. Tianjin: Hebei University of Technology, 2007(in Chinese).