留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VOCs传感器敏感材料的研究进展

林秉群 赵国敏 潘明珠

林秉群, 赵国敏, 潘明珠. 基于VOCs传感器敏感材料的研究进展[J]. 复合材料学报, 2022, 39(2): 478-488. doi: 10.13801/j.cnki.fhclxb.20210714.001
引用本文: 林秉群, 赵国敏, 潘明珠. 基于VOCs传感器敏感材料的研究进展[J]. 复合材料学报, 2022, 39(2): 478-488. doi: 10.13801/j.cnki.fhclxb.20210714.001
LIN Bingqun, ZHAO Guomin, PAN Mingzhu. Research progress of sensing materials for VOCs detection[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 478-488. doi: 10.13801/j.cnki.fhclxb.20210714.001
Citation: LIN Bingqun, ZHAO Guomin, PAN Mingzhu. Research progress of sensing materials for VOCs detection[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 478-488. doi: 10.13801/j.cnki.fhclxb.20210714.001

基于VOCs传感器敏感材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20210714.001
基金项目: 江苏省自然科学基金(BK20201384)
详细信息
    通讯作者:

    潘明珠,博士,教授,主要研究方向为生物基复合材料 E-mail:mzpan@njfu.edu.cn

  • 中图分类号: TB34

Research progress of sensing materials for VOCs detection

  • 摘要: 挥发性有机化合物(Volatile organic compounds,VOCs)检测是环境治理的重要环节,而开发快速、灵敏的检测系统仍然面临挑战。基于智能系统的VOCs传感器能够实时监测空气中污染物浓度,从而严格把控排放标准,减小VOCs对环境和健康的影响。通过调控材料及构筑方法能够制成适用于识别和快速捕获VOCs的敏感元件,从而获得传感性能优越、安全可靠的气敏传感器。本文以敏感机制为出发点,介绍了聚合物、金属氧化物、复合材料及新材料作为敏感膜的研究进展,重点讨论了VOCs与敏感膜的相互作用机制。基于此,分析了提高VOCs检出浓度和响应速度的构筑方法。最后,展望了基于光学效应的光致发光型和手性向列型敏感膜材料在VOCs智能检测领域的前景和面临的挑战。

     

  • 图  1  常见的基于吸附效应的敏感材料[11]

    Figure  1.  Common sensitive materials based on adsorption effects[11]

    PT—Polythiophene; PANI—Polyaniline; PPy—Polypyrrole

    图  2  吸附挥发性有机化合物(VOCs)分子作用示意图:(a) 甲醛分子与干凝胶之间席夫碱吸附和氢键吸附[15];(b) 官能化的碳纳米管表面上芳族VOCs的相互作用[20]

    Figure  2.  Schematic diagram of adsorption of volatile organic compounds (VOCs) molecule: (a) Adsorption of Schiff base and hydrogen bond between formaldehyde molecule and xerogel[15]; (b) Interaction of aromatic VOCs on functionalized carbon nanotube[20]

    H—Adsorption enthalpy change values

    图  3  吸附功能复合材料的典型制备流程图:(a) 层层自组装法;(b) 机械混合法[23-24]

    Figure  3.  Typical preparation flow chart of adsorption functional composites: (a) Layer-by-layer self-assembly; (b) Mechanical mixing[23-24]

    图  5  电负载效应材料敏感机制示意图:(a) 电子导电型材料对还原性气氛的反应机制[5];(b) 空穴导电型材料对氧化性气氛的反应机制[50]

    Figure  5.  Schematic diagram of sensing mechanism of materials with electric load effect: (a) Reaction mechanism of electronic conductive materials in reducing atmosphere[5]; (b) Reaction mechanism of hole conducting materials in oxidizing atmosphere[50]

    Ev—Valence band; Ec—Conduction band; Ef—Fermi level; VBM—Valence band maximum; CBM—Conduction band maximum; Eg—Band gap; F—Work function

    图  4  常见的金属纳米结构及制备方法[5,36]

    Figure  4.  Common metal nanostructures and preparation methods[5,36]

    图  6  纳米晶纤维素(CNC)的湿度和甲醛响应机机制示意图[63] (a)、柱状近晶噬菌体纳米结构合成的示意图[66] (b)、蒸发法[63] (c) 和推拉法[64] (d) 制CNC彩虹膜

    Figure  6.  Schematic diagram of humidity response mechanism and formaldehyde response mechanism of crystalline nanocellulose (CNC) periodic spiral structure[63] (a), schematic diagram of synthesis of columnar smectic phage nanostructure[66] (b), evaporation method[63] (c) and push-pull method[64] (d) to prepare CNC rainbow film

    MCC—Microcrystalline cellulose

    表  1  基于吸附效应VOCs传感器的性能

    Table  1.   Performance of VOCs sensor based on adsorption effect

    Sensitive membrane
    materials
    Sensitive
    gas
    Gas concentration/
    (mg·m−3)
    Sensitivity/
    (Hz·mg−1)
    Detection
    limit/mg
    Response
    time/s
    Ref.
    Graphene oxide (rGO) Formaldehyde 0-4.29 11.6 0.07 60 [25]
    Polyethylene acetate Benzene 1597.3-9584.0 0.006 98.39 225 [26]
    Chitosan Ethanol 1.88-69.72 0.21 5.38 15 [27]
    rGO/CuO Trimethylamine 0-12.09 1.96 0.23 20 [23]
    ZnO/acetaldehyde molecularly
    imprinted polymer
    Hexanal 8.19-450.61 1.73 1.73 [24]
    rGO/chitosan Dimethylamine 24.98-749.50 1.25 4.06 16 [28]
    Co/Zn- Zeolite imidazolium salt framework Benzene 319.47-3194.66 8.01 1.63 [29]
    MIL-101(Cr) Formaldehyde 2.47-61.41 1.36 2.18 25 [30]
    Note: "—"—No specific values are given in the references.
    下载: 导出CSV

    表  2  改性金属基VOCs传感器的敏感性能

    Table  2.   Performance of modified metals-based VOCs sensor

    Sensitive membrane
    materials
    Sensitive
    gas
    Microcrystalline
    size/mm
    Optimum working
    temperature/℃
    Response value
    (Ra/Rg)
    Gas concentration/
    (mg·m−3)
    Response
    time/s
    Ref.
    Pd/SnO2 nanoclusters loaded Toluene 5 300 1720 188.42 [37]
    Pt/ZnO/g-C3N4 Ethanol 90 250 23 92.41 9 [38]
    Mpg-CN loaded with pt-MoO3 Acetone 175 34.1 90.04 8.6 [39]
    CdS doped SnO2 Toluene 51.53 200 51 18842.41 [40]
    Ag doped ZnO N-butanol 6-12 250 156 303.15 [41]
    SiO2@ZnO core-shell structure Ethanol 136 400 22.6 565.27 16.2 [42]
    SiO2@ZnO core-shell structure Isopropanol 30 300 99.03 1 686.08 14 [43]
    ZnO@ZIF–8 core-shell heterostructures Formaldehyde 400 300 6.87 16 [44]
    Note: Ra and Rg—Resistance of the gas sensor in air and in the detected gases.
    下载: 导出CSV
  • [1] 杨员, 张新民, 徐立荣, 等. 中国大气挥发性有机物控制问题及其对策研究[J]. 环境与可持续发展, 2015, 40(1):14-18. doi: 10.3969/j.issn.1673-288X.2015.01.004

    YANG Yuan, ZHANG Xinmin, XU Lirong, et al. Control problems and countermeasures of atmospheric volatile organic compounds in China[J]. Environment and Sustainable Development,2015,40(1):14-18(in Chinese). doi: 10.3969/j.issn.1673-288X.2015.01.004
    [2] 唐孝炎, 张远航, 邵敏. 大气环境化学-第2版[M]. 北京: 高等教育出版社, 2006.

    TANG Xiaoyan, ZHANG Yuanhang, SHAO Min. Atmosphe-ric environmental chemistry-2nd Edition[M]. Beijing: Higher Education Press, 2006(in Chinese).
    [3] 沈小群, 陈李, 李顺波, 等. VOCs传感器敏感膜材料及敏感机理研究进展[J]. 材料工程, 2019, 47(11):64-70. doi: 10.11868/j.issn.1001-4381.2018.001136

    SHEN Xiaoqun, CHEN Li, LI Shunbo, et al. Research progress on sensitive film materials and sensitive mechanism of VOCs sensor[J]. Materials Engineering,2019,47(11):64-70(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.001136
    [4] ESLAMI M R, ALIZADEH N. Ultrasensitive and selective QCM sensor for detection of trace amounts of nitroexplo-sive vapors in ambient air based on polypyrrole-Bromophenol blue nanostructure[J]. Sensors and Actuators B: Chemical,2019,278:55-63. doi: 10.1016/j.snb.2018.09.060
    [5] CHEN N, DENG D Y, XING X X, et al. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity[J]. Sensors and Actuators B: Chemical,2017,238:264-273. doi: 10.1016/j.snb.2016.07.051
    [6] TOMER V K, MALIK R, et al. Superior visible light photocatalysis and low-operating temperature VOCs sensor using cubic Ag(0)-MoS2 loaded g-CN 3D porous hybrid[J]. Applied Materials Today,2019,16:193-203. doi: 10.1016/j.apmt.2019.05.010
    [7] SAYAGO I, FERNÁNDEZ M J, FONTECHA J L, et al. Surface acoustic wave gas sensors based on polyisobutylene and carbon nanotube composites[J]. Sensors and Actuators B: Chemical,2011,156(1):1-5. doi: 10.1016/j.snb.2011.04.047
    [8] JAKUBIK W, WROTNIAK J, POWROŹNIK P. Theoretical analysis of a surface acoustic wave gas sensor mechanism using electrical conductive bi-layer nanostructures[J]. Sensors and Actuators B: Chemical,2018,262:947-952. doi: 10.1016/j.snb.2018.02.106
    [9] HE Z H, GONG S, CAI S L, et al. A Benzimidazole-containing covalent organic framework-based QCM sensor for exceptional detection of CEES[J]. Crystal Growth and Design,2019,19(6):3543-3550. doi: 10.1021/acs.cgd.9b00409
    [10] WANG L Y, WANG Z X, XIANG Q, et al. High performance formaldehyde detection based on a novel copper (II) complex functionalized QCM gas sensor[J]. Sensors and Actuators B: Chemical,2017,248:820-828. doi: 10.1016/j.snb.2016.12.015
    [11] ANDRE R S, SANFELICE R C, PAVINATTO A, et al. Hybrid nanomaterials designed for volatile organic compounds sensors: A review[J]. Materials and Design,2018,156:154-166. doi: 10.1016/j.matdes.2018.06.041
    [12] COSNIER S, PERROT H, WESSEL R. Biotinylated polypyrrole modified quartz crystal microbalance for the fast and reagentless determination of avidin concentration[J]. Electroanalysis,2001,13(11):971-974. doi: 10.1002/1521-4109(200107)13:11<971::AID-ELAN971>3.0.CO;2-D
    [13] IHDENE Z, MEKKI A, METTAI B, et al. Quartz crystal microbalance VOCs sensor based on dip coated polyaniline emeraldine salt thin films[J]. Sensors and Actuators B: Chemical,2014,203:647-654. doi: 10.1016/j.snb.2014.07.030
    [14] LIU M, LI J, LI B. A colorimetric aptamer biosensor based on cationic polythiophene derivative as peroxidase mimetics for the ultrasensitive detection of thrombin[J]. Talanta,2017:224-228.
    [15] WANG L Y, ZHU Y, XIANG Q, et al. One novel humidity-resistance formaldehyde molecular probe based hydrophobic diphenyl sulfone urea dry-gel: Synthesis, sensing perfor-mance and mechanism[J]. Sensors and Actuators B: Chemical,2017,251:590-600. doi: 10.1016/j.snb.2017.05.074
    [16] TEMEL F. One novel calix[4]arene based QCM sensor for sensitive, selective and high performance-sensing of formaldehyde at room temperature[J]. Talanta,2020,211:120725. doi: 10.1016/j.talanta.2020.120725
    [17] ZHANG J T, ZHU Z J, CHEN C M, et al. ZnO-carbon nanofibers for stable, high response, and selective H2S sensors[J]. Nanotechnology,2018,29(27):275501. doi: 10.1088/1361-6528/aabd72
    [18] QUANG V V, HUNG V N, TUAN L A, et al. Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature[J]. Thin Solid Films,2014,568:6-12. doi: 10.1016/j.tsf.2014.07.036
    [19] REINECKE T L, PERKINS F K, ROBINSON J A, et al. Role of defects in single-walled carbon nanotube chemical sensors[J]. Nano Letters,2006,6(8):1747. doi: 10.1021/nl0612289
    [20] PAULY A, BRUNET J, VARENNE C, et al. Insight in the interaction mechanisms between functionalized CNTs and BTX vapors in gas sensors: Are the functional peripheral groups the key for selectivity?[J]. Sensors and Actuators B: Chemical,2019,298:126768. doi: 10.1016/j.snb.2019.126768
    [21] 何应飞. 甲醛QCM气体传感器的制备与特性研究[D]. 成都: 电子科技大学, 2015.

    HE Yingfei. Preparation and characteristics of formaldehyde QCM gas sensor[D]. Chengdu: University of Electronic Science and Technology, 2015(in Chinese).
    [22] 王俊, 崔绍庆. 聚吡咯/二氧化钛频率型薄膜QCM气敏传感器及其制备方法: 中国, CN201510095391.4[P]. 2020-12-21.

    WANG Jun, CUI Shaoqing. Polypyrrole/titanium dioxide frequency type thin film QCM gas sensor and its preparation method: China, CN201510095391.4[P]. 2020-12-21(in Chinese).
    [23] CHEN W, DENG F F, XU M, et al. GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations[J]. Sensors and Actuators B: Chemical,2018,273:498-504. doi: 10.1016/j.snb.2018.06.062
    [24] CHEN W, WANG Z H, GU S, et al. Detection of hexanal in humid circumstances using hydrophobic molecularly imprinted polymers composite[J]. Sensors and Actuators B: Chemical,2019,291:141-147. doi: 10.1016/j.snb.2019.04.065
    [25] YANG M Q, HE J H. Graphene oxide as quartz crystal microbalance sensing layers for detection of formaldehyde[J]. Sensors and Actuators B: Chemical,2016,228:486-490. doi: 10.1016/j.snb.2016.01.046
    [26] RIANJANU A, HASANAH S A, NUGROHO D B, et al. Polyvinyl acetate film-based quartz crystal microbalance for the detection of benzene, toluene, and xylene vapors in air[J]. Chemosensors,2019,7(2):20. doi: 10.3390/chemosensors7020020
    [27] TRIYANA K, SEMBIRING A, RIANJANU A, et al. Chitosan-based quartz crystal microbalance for alcohol sensing[J]. Electronics,2018,7(9):181. doi: 10.3390/electronics7090181
    [28] ZHANG K H, HU R F, FAN G K, et al. Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors[J]. Sensors and Actuators B: Chemical,2017,243:721-730. doi: 10.1016/j.snb.2016.12.063
    [29] TORAD N L, KIM J, KIM M, et al. Nanoarchitectured porous carbons derived from ZIFs toward highly sensitive and selective QCM sensor for hazardous aromatic vapors[J]. Journal of Hazardous Materials,2020,405:124248.
    [30] HAGHIGHI E, ZEINALI S. Formaldehyde detection using quartz crystal microbalance (QCM) nanosensor coated by nanoporous MIL-101(Cr) film[J]. Microporous and Mesoporous Materials,2020,300:110065. doi: 10.1016/j.micromeso.2020.110065
    [31] RAJ V B, SINGH H, NIMAL A T, et al. Oxide thin films (ZnO, TeO2, SnO2, and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents[J]. Sensors and Actuators B: Chemical,2013,178:636-647. doi: 10.1016/j.snb.2012.12.074
    [32] LI D, PANG K, ZHANG Q, et al. A surface acoustic wave ethanol sensor based on uniform ZnO nanoparticles-reduced graphene oxide composite film[J]. IEEE Sensors Journal,2020,20(16):9038-9045.
    [33] VIESPE C, GRIGORIU C. Surface acoustic wave sensors with carbon nanotubes and SiO2/Si nanoparticles based nanocomposites for VOC detection[J]. Sensors and Actuators B: Chemical,2010,147(1):43-47. doi: 10.1016/j.snb.2010.02.064
    [34] JINKAWA T, SAKAI G, TAMAKI J, et al. Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides[J]. Journal of Molecular Catalysis A: Chemical,2000,155(1-2):193-200. doi: 10.1016/S1381-1169(99)00334-9
    [35] KIM H J, LEE J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview[J]. Sensors and Actuators B: Chemical,2014,192:607-627. doi: 10.1016/j.snb.2013.11.005
    [36] 李娜, 向群, 程知萱, 等. 多孔SnO2空心球材料的合成及甲醛气敏性能研究[J]. 郑州大学学报(工学版), 2019(6):27-31.

    LI Na, XIANG Qun, CHENG Zhixuan, et al. Synthesis and formaldehyde gas sensing properties of porous SnO2 hollow spheres[J]. Journal of Zhengzhou University (Engineering Edition),2019(6):27-31(in Chinese).
    [37] SUEMATSU K, SHIN Y, HUA Z Q, et al. Nanoparticle cluster gas sensor: Controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection[J]. ACS Applied Materials and Interfaces,2014,6(7):5319-5326. doi: 10.1021/am500944a
    [38] TIAN H L, FAN H Q, MA J W, et al. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing[J]. Journal of Hazardous Materials,2018,341:102-111. doi: 10.1016/j.jhazmat.2017.07.056
    [39] CHUAUDLHARY V, NEHRA S. Pt-sensitized MoO3/mpg-CN mesoporous nanohybrid: A highly sensitive VOC sensor[J]. Microporous and Mesoporous Materials,2021,315:110906. doi: 10.1016/j.micromeso.2021.110906
    [40] YADAV P, SHARMA A K, YAVADA S K, et al. Sensing response of toluene gas and structural properties of CdS-SnO2 thick films sensor[J]. Materials Today: Proceedings,2021,38(5):2792-2796.
    [41] POSTICA V, VAHL A, SANTOS-CARBALLAL D, et al. Tuning ZnO sensors reactivity toward volatile organic compounds via Ag doping and nanoparticle functionalization[J]. ACS Applied Materials and Interfaces,2019,11(34):31452-31466. doi: 10.1021/acsami.9b07275
    [42] SABOOR F H, KHODADADI A A, MORTAZAVI Y, et al. Microemulsion synthesized silica/ZnO stable core/shell sensors highly selective to ethanol with minimum sensitivity to humidity[J]. Sensors and Actuators B: Chemical,2017,238:1070-1083. doi: 10.1016/j.snb.2016.07.127
    [43] POLOJU M, JAYABABU N, MANIKANDAN E, et al. Enhancement of the isopropanol gas sensing performance of SnO2/ZnO core/shell nanocomposites[J]. Journal of Materials Chemistry C,2017,5(10):2662-2668. doi: 10.1039/C6TC05095F
    [44] TIAN H L, FAN H Q, LI M M, et al. Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor[J]. Acs Sensors,2016,1(3):243-250. doi: 10.1021/acssensors.5b00236
    [45] NAGARE A B, HARALE N S, MAIL S S, et al. Chemiresistive ammonia gas sensor based on branched nanofibrous polyaniline thin films[J]. Journal of Materials ence Materials in Electronics,2019,30(13):11878-11887. doi: 10.1007/s10854-019-01514-7
    [46] JISHA P, SUMA M S, MURUGENDRAPPA M V. Synthesis and characterization of WO3-doped polyaniline to sense biomarker VOCs of Malaria[J]. Applied Nanoscience,2020,11:29-44.
    [47] 胡明江, 崔秋娜, 虞婷婷, 等. 基于氧化锌/聚苯胺复合材料的薄膜型甲醇传感器研究[J]. 分析化学, 2018, 46(8):1201-1207. doi: 10.11895/j.issn.0253-3820.181081

    HU Mingjiang, CUI Qiuna, YU Tingting, et al. Thin film methanol sensor based on ZnO/PANI composite[J]. Analytical Chemistry,2018,46(8):1201-1207(in Chinese). doi: 10.11895/j.issn.0253-3820.181081
    [48] CAO J, WANG S, LI J, et al. Porous nanosheets assembled Co3O4 hierarchical architectures for enhanced BTX (benzene, toluene and Xylene) gas detection[J]. Sensors and Actuators B: Chemical,2020,315:128120. doi: 10.1016/j.snb.2020.128120
    [49] SARICA N, ALEV O, ARSLAN L C, et al. Characterization and gas sensing performances of noble metals decorated CuO nanorods[J]. Thin Solid Films,2019,685:321-328. doi: 10.1016/j.tsf.2019.06.046
    [50] CHEN W Y, JIANG X, LAI S N, et al. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds[J]. Nature Communications,2020,11(1):1302. doi: 10.1038/s41467-020-15092-4
    [51] BAG A, MOON D B, PARK K H, et al. Room-temperature-operated fast and reversible vertical-heterostructure-diode gas sensor composed of reduced graphene oxide and AlGaN/GaN[J]. Sensors and Actuators B: Chemical,2019,296:126684. doi: 10.1016/j.snb.2019.126684
    [52] TRIET N M, DUY L T, HWANG B U, et al. High-performance schottky diode gas sensor based on the heterojunction of three-dimensional nanohybrids of reduced graphene oxide-vertical ZnO nanorods on an AlGaN/GaN layer[J]. ACS Applied Materials and Interfaces,2017,9(36):30722-30732. doi: 10.1021/acsami.7b06461
    [53] ROMIH T, MENART E, JOVANOVSKI V, et al. Sodium-polyacrylate-based electrochemical sensor for highly sensitive detection of gaseous phenol at room temperature[J]. ACS Sensors,2020,5(8):2570-2577. doi: 10.1021/acssensors.0c00973
    [54] BROZA Y Y, HAICK H. Nanomaterial-based sensors for detection of disease by volatile organic compounds[J]. Nanomedicine,2013,8(5):785-806. doi: 10.2217/nnm.13.64
    [55] HODGKINSON J, TATAM R P. Optical gas sensing: A review[J]. Measurement Science and Technology,2013,24(1):012004. doi: 10.1088/0957-0233/24/1/012004
    [56] CHEN X, SUN X K, XU W, et al. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor[J]. Nanoscale,2018,10(3):1111-1118. doi: 10.1039/C7NR06958H
    [57] HIBARD H A J, BURNLRY M J, RUBIN H N, et al. Porphyrin-based metal-organic framework and polyvinylchloride composites for fluorescence sensing of divalent cadmium ions in water[J]. Inorganic Chemistry Communications,2020,115:107861. doi: 10.1016/j.inoche.2020.107861
    [58] GILLANDERS R N, SAMUEL I D W, TURNBULL G A. A low-cost, portable optical explosive-vapour sensor[J]. Sensors and Actuators B: Chemical,2017,245:334-340. doi: 10.1016/j.snb.2017.01.178
    [59] DUAN Y A, LIU Y, HAN H L, et al. A donor-π-acceptor aggregation-induced emission compound serving as a portable fluorescent sensor for detection and differentiation of methanol and ethanol in the gas phase[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2021:119515.
    [60] JACKSON S L, RANANAWARE A, RIX C, et al. Highly fluorescent metal-organic framework for the sensing of volatile organic compounds[J]. Crystal Growth and Design,2016,16(6):3067-3071. doi: 10.1021/acs.cgd.6b00428
    [61] BAGHERI M, MASOOMI M Y, MORSALI A. Highly sensitive and selective ratiometric fluorescent metal-organic framework sensor to nitroaniline in presence of nitroaromatic compounds and VOCs[J]. Sensors and Actuators B: Chemical,2017,243:353-360. doi: 10.1016/j.snb.2016.11.144
    [62] 姜海晶. 晶态纳米纤维素基复合膜光学性质的研究[D]. 长春: 吉林大学, 2019.

    JIANG Haijing. Optical properties of crystalline nano cellulose based composite films[D]. Changchun: Jilin University, 2019(in Chinese).
    [63] ZHAO G M, ZHANG Y, ZHAI S C, et al. Dual response of photonic film with chiral nematic cellulose nanocrystal: Humidity and formaldehyde[J]. ACS Applied Materials and Interfaces,2020,12(15):17833-17844. doi: 10.1021/acsami.0c00591
    [64] SONG W B, LEE J K, GONG M S, et al. Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases[J]. ACS Applied Materials and Interfaces,2018,10(12):10353-10361. doi: 10.1021/acsami.7b19738
    [65] SAWADA T. Filamentous virus-based soft materials based on controlled assembly through liquid crystalline formation[J]. Polymer Journal,2017,49(9):639-647. doi: 10.1038/pj.2017.35
    [66] LEE J H, FAN B, SAMDIN T D, et al. Phage-based structural color sensors and their pattern recognition sensing system[J]. ACS Nano,2017,11(4):3632-3641. doi: 10.1021/acsnano.6b07942
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1105
  • HTML全文浏览量:  616
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 修回日期:  2021-06-30
  • 录用日期:  2021-07-05
  • 网络出版日期:  2021-07-14
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回