Numerical investigations on mesoscopic structure parameters affecting mechanical responses of propellant
-
摘要: 为了更好地理解并预测复合固体推进剂组分、界面对其宏观力学性能的影响,在细观层次上建立了考虑界面和颗粒形貌的代表性体积单元(Representative volume elements,RVE)计算模型,通过引入内聚力模型(Cohesive zone model,CZM)研究了界面刚度、强度及最大失效位移对推进剂力学性能的影响,并对比分析了颗粒形貌与界面对其力学性能的贡献。研究结果表明:界面刚度为0.004~400 MPa/mm时,推进剂初始模量从0.67 MPa提升到3.67 MPa;界面强度从0.05 MPa提高至30 MPa时,推进剂拉伸强度从0.15 MPa 提高到了0.76 MPa,即界面刚度增加对推进剂初始模量的提高有限,而界面强度对其拉伸强度的提高非常显著;然而,较高的界面强度可能导致细观结构出现“损伤局部化”,从而降低延伸率。相对于界面对推进剂实际力学性能的提升,颗粒级配、形状的作用显得较小,说明界面是决定推进剂拉伸性能的主要因素之一。最后基于以上分析结果,对另一种推进剂在不同应力下的蠕变性能进行了预测,发现蠕变断裂时间的对数与恒定应力满足线性关系。Abstract: A computational representative volume element (RVE) framework considering interface, as well as particle morphology, was adopted to provide a better understanding and prediction of the existing links between the behaviors of contents, interface and the macroscopic mechanical responses of composite solid propellants. A cohesive zone model (CZM) was taken into account to study the significance of interface stiffness, strength and critical displacement, along with the relative contribution of particle morphology and interface, on the macroscopic mechanical properties of the propellant. Results indicate that the initial modulus of propellant increases from 0.67 MPa to 3.67 MPa as the interface stiffness varies between 0.004 MPa/mm and 400 MPa/mm, while the tensile strength of propellant increases from 0.15 MPa to 0.76 MPa when the interface strength changes from 0.05 MPa to 30 MPa, which implies that an increase in the interface stiffness has a limited improvement over the initial modulus of the propellant. In comparison, the interface strength improves its tensile strength remarkably. However, higher interfacial strength may lead to “damage localization” in the microstructure, thus reducing the elongation of propellant. The different behaviors observed on macroscopic view are rather due to interface than to the morphology of particles; all of the results exhibit that the interface is one of the major determining factors affecting the tensile properties of the propellant. Finally, based on the previous analyses, the creep behaviors of another propellant were predicted under various stress levels. It is found that the logarithm of creep rupture time is linear with constant stress.
-
图 1 由3个参数定义的纯法向(或纯切向)双线性内聚力单元模型示意图
Figure 1. Traction-separation behavior of a cohesive element for a purely normal (or purely tangent) displacement defined by 3 parameters
Tc—Interface strength; ${\delta _{\rm{0}} }$—Displacement at damage initiation; ${\delta _{\rm{f}} } $—Interface critical displacement; K—Interface stiffness; $\varGamma $—Interface fracture energy
表 1 丁羟 (HTPB)黏合剂材料模型参数
Table 1. Material parameters for the constitutive phases of hydroxyl-terminated polybutadiene (HTPB) binder
Parameter ${\mu _1}$/MPa ${\alpha _1}$ ${\mu _2}$/MPa ${\alpha _2}$ ${\mu _3}$/MPa ${\alpha _3}$ $\nu $ Value 0.0202 −1.584 0.0246 −1.584 0.0189 1.9898 0.495 Parameter ${m_\infty }$ ${m_1}$ ${m_2}$ ${m_3}$ ${\tau _1}$/s ${\tau _2}$/s ${\tau _3}$/s Value 0.556 0.064 0.184 0.1966 614.53 24.5 37.03 Notes: ${\mu _1},{\mu _2},{\mu _3},{\alpha _1},{\alpha _2},{\alpha _3}$—Ogden constants; ${m_\infty },{m_1},{m_2},{m_3}$—Prony series; ${\tau _1},{\tau _2},{\tau _3}$—Relaxation times; $\nu $—Poisson’s ratio. 表 2 颗粒力学模型参数
Table 2. Particles mechanical properties
Particle Elastic modulus/GPa Poisson’s ratio AP 19.5 0.25 Al 68.3 0.33 Note: AP—Ammonium perchlorate. 表 3 HTPB推进剂基本组分及尺寸
Table 3. Components and dimensions of HTPB propellant
Component HTPB AP(Large particles) AP(Small particles) Al Auxiliary Density/(g·cm-3) 0.9 1.95 1.95 2.70 − Mass fraction/wt% 8 36.92 32.58 18.5 4 Volume fraction/vol% 23.9 34 30 12.1 Treated as binder Diameter/μm − 100-300 20 10 − 表 4 HTPB推进剂力学性能随界面性能变化关系
Table 4. Mechanical responses of HTPB propellant varying with interface properties
Order Matrix 1 2 3 4 5 6 7 8 9 10 11 Without interface Condition With Tc=0.45 MPa, ${\delta _{\rm{f}}}$=0.06 mm Interface stiffness K/(MPa·mm-1) 0.004 4 20 40 100 200 300 400 4000 10000 16000 19500 Initial modulus E/MPa 0.28 0.67 1.12 1.98 2.50 3.10 3.45 3.60 3.67 3.90 3.96 3.97 4.00 Condition With K=400 MPa/mm, ${\delta _{\rm{f}}}$=0.06 mm Interface strength/MPa 0.05 0.1 0.2 0.3 0.45 0.6 0.75 1 2 3 30 300 Tensile strength/MPa 0.15 0.17 0.21 0.27 0.34 0.40 0.46 0.55 0.73 0.76 0.764 0.83 表 5 不同HTPB推进剂RVE颗粒粒径分布
Table 5. Particle size distributions of different RVEs of HTPB propellant
Type S0 S1 S2 Diameter/μm 100-300 100 200 200 300 Volume fraction/vol% 34 10 24 10 24 Sum of particles 48 80 25 Notes: S1—Model with minimum mean particle size; S2—Model with the largest average particle size. 表 6 NEPE推进剂在不同应力下蠕变模拟结果
Table 6. Simulation results of creep of NEPE propellant at various stress
Time/s Creep strain Constant stress/MPa Exceeded 60000 0.063 0.05 Exceeded 60000 0.128 0.1 56903 0.489 0.3 36772 0.540 0.4 18297 0.553 0.5 5203 0.728 0.6 1624 0.630 0.7 -
[1] 孟红磊, 鞠玉涛. 含损伤非线性粘弹性本构模型及数值仿真应用[J]. 固体火箭技术, 2012, 35(6):764-768.MENG Honglei, JU Yutao. Nonlinear viscoelastic equation with cumulative damage and its application on numerical simulation[J]. Journal of solid Rocket Technology,2012,35(6):764-768(in Chinese). [2] HUI Li, JIN Shengxu, XIONG Chen, et al. Experimental investigation and modeling the compressive behavior of NEPE propellant under confining pressure[J]. Propellants, Explosives, Pyrotechnics,2021,46:1-14. doi: 10.1002/prep.202180101 [3] 封涛, 许进升, 范兴贵, 等. 考虑初始缺陷的HTPB推进剂粘超弹本构模型[J]. 含能材料, 2018, 26(4):316-322. doi: 10.11943/j.issn.1006-9941.2018.04.005FENG Tao, XU Jinsheng, FAN Xinggui, et al. Visco-hyperelastic constitutive model of HTPB propellant considering initial defects[J]. Chinese Journal of Energetic Materials,2018,26(4):316-322(in Chinese). doi: 10.11943/j.issn.1006-9941.2018.04.005 [4] CUI H, SHEN Z, LI H. A new constitutive equation for solid propellant with the effects of aging and viscoelastic Poisson's ratio[J]. Meccanica,2018,53:2393-2410. [5] WANG Z, QIANG H, WANG T, et al. A thermo-visco-hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates[J]. Mechanics of Time-Dependent Materials,2018,22:291-314. [6] MA H, SHEN Z, LI D. A viscoelastic constitutive model of composite propellant considering dewetting and strain-rate and its implementation[J]. Propellants Explosives Pyrotechnics,2019,44:759-768. doi: 10.1002/prep.201800264 [7] XU F. Micromechanics approach to the study of constitutive response and fracture of solid propellant materials[D]. Illinois: University of Illinois at Urbana-Campaign, 2007. [8] XU F, ARAVAS N, SOFRONIS P. Constitutive modeling of solid propellant materials with evolving microstructural damage[J]. Journal of the Mechanics and Physics of Solids,2008,56(5):2050-2073. doi: 10.1016/j.jmps.2007.10.013 [9] HUR J, PARK J B, JUNG G D, et al. Enhancements on a micromechanical constitutive model of solid propellant[J]. International Journal of Solids and Structures,2016,87:110-119. doi: 10.1016/j.ijsolstr.2016.02.025 [10] YUN K S, PARK J B, JUNG G D, et al. Viscoelastic constitutive modeling of solid propellant with damage[J]. International Journal of Solids and Structures,2016,80:118-127. doi: 10.1016/j.ijsolstr.2015.10.028 [11] XU J, CHEN X, WANG H, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solids and Structures,2014,51(18):3209-3217. doi: 10.1016/j.ijsolstr.2014.05.024 [12] LEI M, WANG J, CHENG J, et al. A constitutive model of the solid propellants considering the interface strength and dewetting[J]. Composites Science and Technology,2020,185:107893.1-107893.9. [13] RAE P J, GOLDREIN H T, PALMER S, et al. Quasi-static studies of the deformation and failure of -HMX based polymer bonded explosives[J]. Proceedings Mathematical Physical & Engineering Sciences,2002,458(2019):743-762. [14] 常武军. 复合固体推进剂细观损伤及其数值仿真研究[D]. 南京: 南京理工大学, 2013.CHANG W J. Research on microstructural damage and its numerical simulation method for composite solid propellant[D]. Nanjing: Nanjing University of Science and Technology, 2013(in Chinese). [15] LI G, WANG Y, JIang A, et al. Micromechanical investigation of debonding processes in composite solid propellants[J]. Propellants Explosives Pyrotechnics,2017,43(7):642-649. [16] ZHI S J, BING S, ZHANG J W. Multiscale modeling of heterogeneous propellants from particle packing to grain failure using a surface-based cohesive approach[J]. Acta Mechanica Sinica,2012,28(3):746-759. doi: 10.1007/s10409-012-0058-y [17] 封涛, 郑健, 许进升, 等. 复合固体推进剂细观结构建模及脱黏过程数值模拟[J]. 航空动力学报, 2018, 33(1):223-231.FENG Tao, ZHENG Jian, XU Jinsheng, et al. Mesoscopic structure modeling and numerical simulation of debonding process of composite solid propellants[J]. Journal of Aerospace Power,2018,33(1):223-231(in Chinese). [18] CHANG W, JU Y, HAN B, et al. Numerical simulation of particle/matrix interface failure in composite propellant[J]. Journal of China Ordnance,2012,8(3):146-153. [19] FRANCQUEVILLE F D, DIANI J, GILORMINI P, et al. Use of a micromechanical approach to understand the mechanical behavior of solid propellants[J]. Mechanics of Materials,2021,153:103656. doi: 10.1016/j.mechmat.2020.103656 [20] FRANCQUEVILLE F D, GILORMINI P, DIANI J, et al. comparison of the finite strain macroscopic behavior and local damage of a soft matrix highly reinforced by spherical or polyhedral particles[J]. European Journal of Mechanics-A/Solids,2020,84:104070. doi: 10.1016/j.euromechsol.2020.104070 [21] TAN H, LIU C, HUANG Y, et al. The cohesive law for the particle/matrix interfaces in high explosives[J]. Journal of the Mechanics and Physics of Solids,2005,53(8):1892-1917. doi: 10.1016/j.jmps.2005.01.009 [22] 李高春, 邢耀国, 戢治洪, 等. 复合固体推进剂细观界面脱粘有限元分析[J]. 复合材料学报, 2011, 28(3):229-235.LI G C, XING Y G, JI Z H, et al. Finite element analysis of microscale interfacial debonding in composite solid propellants[J]. Acta Materiae Compositae Sinica,2011,28(3):229-235(in Chinese). [23] RUIZE H, CHANDRA P, VIKAS T, et al. Experimentally-validated mesoscale modeling of the coupled mechanical-thermal response of AP–HTPB energetic material under dynamic loading[J]. International Journal of Fracture,2016,203:277-298. [24] PRAKASH C, GUNDUZ I E, OSKAY C, et al. Effect of interface chemistry and strain rate on particle-matrix delamination in an energetic material[J]. Engineering Fracture Mechanics,2018,191:46-64. [25] PRAKASH C. Effect of interface chemical composition on the high strain rate dependent mechanical behavior of an energetic material[D]. West Lafayette: Purdue University, 2019. [26] YILMAZER U, FARRIS R J. Finite element formulation for modeling particle debonding in reinforced elastomers subjected to finite deformations[J]. Journal of Applied Polymer Science,1983,28:3280-3369. doi: 10.1016/j.cma.2006.06.008 [27] NGO D, PARK K, PAULINO G H, et al. On the constitutive relation of materials with microstructure using a potential-based cohesive model for interface interaction[J]. Engineering Fracture Mechanics,2010,77(7):1153-1174. doi: 10.1016/j.engfracmech.2010.01.007 [28] TOULEMONDE P A, DIANI J, GILORMINI P, et al. On the account of a cohesive interface for modeling the behavior until break of highly filled elastomers[J]. Mechanics of Materials,2016,93:124-133. [29] LÓPEZ R, SALAZAR A, RODRÍGUEZ J. Fatigue crack propagation behaviour of carboxyl-terminated polybutadiene solid rocket propellants[J]. International Jour-nal of Fracture,2020,223(1):3-15. [30] GAO Y F, BOWER A F. A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces[J]. Modelling & Simulation in Materials Science & Engineering,2004,12(3):453. [31] FRANCQUEVILLE F D, GILORMINI P, DIANI J, et al. Relationship between local damage and macroscopic response of soft materials highly reinforced by monodispersed particles[J]. Mechanics of Materials,2020,146:103408. doi: 10.1016/j.mechmat.2020.103408 [32] FRANCQUEVILLE F D, GILORMINI P, DIANI J. Representative volume elements for the simulation of isotropic composites highly filled with monosized spheres[J]. International Journal of Solids and Structures,2019,158:277-286. doi: 10.1016/j.ijsolstr.2018.09.013 [33] 张镇国, 侯晓, 郜婕, 等. 一种高颗粒填充率丁羟推进剂二维细观模型生成方法[J]. 复合材料学报, 2019, 36(10):2302-2307.ZHANG Z G, HOU X, GAO J, etal. A method of generating two-dimensional mesoscopic model for hydroxyl-terminated polybutadiene propellant with high particle volume fraction[J]. Acta Materiae Compositae Sinica,2019,36(10):2302-2307(in Chinese). [34] MORALEDA J, SEGURADO J, LLORCA J. Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach[J]. Journal of the Mechanics and Physics of Solids,2009,57(9):1596-1613. doi: 10.1016/j.jmps.2009.05.007 [35] 乌布力艾散·麦麦提图尔荪, 葛超, 董永香, 等. 基于Al/PTFE真实细观特性统计模型的宏观力学性能模拟[J]. 复合材料学报, 2016, 33(11):2528-2536.MAIMAITITUERSUN W, GE C, DONG Y X, et al. Simulation on mechanical properties of Al/PTFE based on mesoscopic statistical model[J]. Acta Materiae Compositae Sinica,2016,33(11):2528-2536(in Chinese). [36] GE Chao, DONG Yongxiang, MAIMAITITUERSUN Wubuliaisan, et al. Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures[J]. Materials,2016,9(7):590. doi: 10.3390/ma9070590 [37] SONG W, LIU H, NING J. Tensile property and crack propagation behavior of tungsten alloys[J]. International Journal of Modern Physics B,2011,24(11):1475-1492. [38] SMIT R J M, BREKELMANS W A M, MEIJER H E H. Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling[J]. Computer Methods in Applied Mechanics and Engineering,1988,155(2):181-192. [39] LI S, SITNIKOVA E. Representative volume elements and unit cells—Concepts, theory, applications and implementation[M]. Amsterdam: Elsevier, 2019. [40] XIA Z, ZHANG Y, ELLYIN F. A unified periodical boundary conditions for representative volume elements of compo-sites and applications[J]. International Journal of Solids and Structures,2003,40:1907-1921. doi: 10.1016/S0020-7683(03)00024-6 [41] TAN H, HUANG Y, LIU C, et al. The uniaxial tension of particulate composite materials with nonlinear interface debonding[J]. International Journal of Solids and Structures,2007,44(6):1809-1822. doi: 10.1016/j.ijsolstr.2006.09.004 [42] 赵玖玲, 强洪夫. 复合固体推进剂宏细观损伤机理[M]. 北京: 中国宇航出版社, 2014.ZHAO J L, QIANG H F. Macroscopic and microscopic damage mechanism of composite solid propellant[M]. Beijing: China Aerospace Publishing House, 2014(in Chinese).