留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细观结构参量对推进剂力学性能影响的数值研究

乌布力艾散•麦麦提图尔荪 吴艳青 侯晓 王宁

乌布力艾散•麦麦提图尔荪, 吴艳青, 侯晓, 等. 细观结构参量对推进剂力学性能影响的数值研究[J]. 复合材料学报, 2022, 39(6): 2949-2961. doi: 10.13801/j.cnki.fhclxb.20210708.001
引用本文: 乌布力艾散•麦麦提图尔荪, 吴艳青, 侯晓, 等. 细观结构参量对推进剂力学性能影响的数值研究[J]. 复合材料学报, 2022, 39(6): 2949-2961. doi: 10.13801/j.cnki.fhclxb.20210708.001
MAIMAITITUERSUN Wubuliaisan, WU Yanqing, HOU Xiao, et al. Numerical investigations on mesoscopic structure parameters affecting mechanical responses of propellant[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2949-2961. doi: 10.13801/j.cnki.fhclxb.20210708.001
Citation: MAIMAITITUERSUN Wubuliaisan, WU Yanqing, HOU Xiao, et al. Numerical investigations on mesoscopic structure parameters affecting mechanical responses of propellant[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2949-2961. doi: 10.13801/j.cnki.fhclxb.20210708.001

细观结构参量对推进剂力学性能影响的数值研究

doi: 10.13801/j.cnki.fhclxb.20210708.001
基金项目: 国家自然科学基金(11872119)
详细信息
    通讯作者:

    吴艳青,博士,教授,博士生导师,研究方向为高能炸药及推进剂细观力学  E-mail:wuyqing@bit.edu.cn

  • 中图分类号: V512; TB330.1

Numerical investigations on mesoscopic structure parameters affecting mechanical responses of propellant

  • 摘要: 为了更好地理解并预测复合固体推进剂组分、界面对其宏观力学性能的影响,在细观层次上建立了考虑界面和颗粒形貌的代表性体积单元(Representative volume elements,RVE)计算模型,通过引入内聚力模型(Cohesive zone model,CZM)研究了界面刚度、强度及最大失效位移对推进剂力学性能的影响,并对比分析了颗粒形貌与界面对其力学性能的贡献。研究结果表明:界面刚度为0.004~400 MPa/mm时,推进剂初始模量从0.67 MPa提升到3.67 MPa;界面强度从0.05 MPa提高至30 MPa时,推进剂拉伸强度从0.15 MPa 提高到了0.76 MPa,即界面刚度增加对推进剂初始模量的提高有限,而界面强度对其拉伸强度的提高非常显著;然而,较高的界面强度可能导致细观结构出现“损伤局部化”,从而降低延伸率。相对于界面对推进剂实际力学性能的提升,颗粒级配、形状的作用显得较小,说明界面是决定推进剂拉伸性能的主要因素之一。最后基于以上分析结果,对另一种推进剂在不同应力下的蠕变性能进行了预测,发现蠕变断裂时间的对数与恒定应力满足线性关系。

     

  • 图  1  由3个参数定义的纯法向(或纯切向)双线性内聚力单元模型示意图

    Figure  1.  Traction-separation behavior of a cohesive element for a purely normal (or purely tangent) displacement defined by 3 parameters

    Tc—Interface strength; ${\delta _{\rm{0}} }$—Displacement at damage initiation; ${\delta _{\rm{f}} } $—Interface critical displacement; K—Interface stiffness; $\varGamma $—Interface fracture energy

    图  2  网格映射法随机颗粒填充原理示意图

    Figure  2.  Schematic diagram of mesh projection particles randomly dispersed in a matrix

    图  3  考虑小颗粒填充的HTPB推进剂细观模型(76.1vol%)

    Figure  3.  Packing microstructure of HTPB propellant with small particles (76.1vol%)

    图  4  黏合剂及复合基体在准静态单轴加载-卸载应力-应变曲线

    Figure  4.  Stress-strain curves of binder and composite matrix under quasi-static loading-unloading

    图  5  HTPB推进剂应力-应变曲线对比 (◆表示计算不收敛)

    Figure  5.  Comparison between experimental and numerical stress-strain curves of HTPB propellant (◆Indicates the simulation divergence)

    S—Area; S0—Initial area

    图  6  HTPB推进剂代表性体积单元(RVE)变形及应力分布

    Figure  6.  Deformation and stress distribution in representative volume element (RVE) of HTPB propellant

    图  7  HTPB推进剂初始模量随界面刚度K变化预估

    Figure  7.  Estimates of the Young's modulus of HTPB propellant with different interface stiffness

    图  8  HTPB推进剂拉伸强度随界面强度变化预估

    Figure  8.  Tensile strength estimation of HTPB propellant with different interface strength

    图  9  HTPB推进剂拉伸强度随界面最大失效位移的变化

    Figure  9.  Tensile strength estimation of HTPB propellant with various interface critical displacement

    图  10  不同界面断裂能条件下界面强度与最大失效位移对HTPB推进剂拉伸强度的影响

    Figure  10.  Interface strength and critical displacement contributions to the tensile strength of HTPB propellant under various interface fracture energies

    图  11  界面强度与HTPB推进剂强度的关系

    Figure  11.  Strength of HTPB propellant versus interface strength

    图  12  不同颗粒粒径分布HTPB推进剂RVE模型应力-应变曲线

    Figure  12.  Stress-strain responses of mesoscale RVE models of HTPB propellant with various particle size distributions

    图  13  HTPB推进剂中颗粒多边形随机填充流程示意图

    Figure  13.  Process of generation of a microstructure of HTPB propellant filled with randomly dispersed polygons

    图  14  HTPB推进剂中圆形或多边形颗粒填充细观模型应力-应变曲线

    Figure  14.  Stress-strain responses of HTPB propellant microstructures filled with disks or polygons

    图  15  HTPB推进剂应变为0.14及0.25时圆形(上)及多边形(下)细观模型界面损伤演化

    Figure  15.  Interface damage evolution of HTPB propellant RVEs filled with disks (top) and polygon (bottom) at 0.14 and 0.25 strain

    图  16  不同应力载荷水平下NEPE推进剂蠕变性能预测

    Figure  16.  Prediction of creep behaviors of NEPE propellant under various constant stress

    图  17  硝酸酯增塑聚醚 (NEPE)推进剂恒定应力与对数时间关系

    Figure  17.  Constant stress versus logarithmic time of nitrate ester plasticized polyether (NEPE) propellant

    表  1  丁羟 (HTPB)黏合剂材料模型参数

    Table  1.   Material parameters for the constitutive phases of hydroxyl-terminated polybutadiene (HTPB) binder

    Parameter${\mu _1}$/MPa ${\alpha _1}$${\mu _2}$/MPa${\alpha _2}$ ${\mu _3}$/MPa ${\alpha _3}$ $\nu $
    Value0.0202−1.5840.0246−1.5840.01891.98980.495
    Parameter${m_\infty }$${m_1}$${m_2}$${m_3}$${\tau _1}$/s${\tau _2}$/s${\tau _3}$/s
    Value0.5560.0640.1840.1966614.5324.537.03
    Notes: ${\mu _1},{\mu _2},{\mu _3},{\alpha _1},{\alpha _2},{\alpha _3}$—Ogden constants; ${m_\infty },{m_1},{m_2},{m_3}$—Prony series; ${\tau _1},{\tau _2},{\tau _3}$—Relaxation times; $\nu $—Poisson’s ratio.
    下载: 导出CSV

    表  2  颗粒力学模型参数

    Table  2.   Particles mechanical properties

    ParticleElastic modulus/GPaPoisson’s ratio
    AP 19.5 0.25
    Al 68.3 0.33
    Note: AP—Ammonium perchlorate.
    下载: 导出CSV

    表  3  HTPB推进剂基本组分及尺寸

    Table  3.   Components and dimensions of HTPB propellant

    ComponentHTPBAP(Large particles)AP(Small particles)AlAuxiliary
    Density/(g·cm-3) 0.9 1.95 1.95 2.70
    Mass fraction/wt% 8 36.92 32.58 18.5 4
    Volume fraction/vol% 23.9 34 30 12.1 Treated as binder
    Diameter/μm 100-300 20 10
    下载: 导出CSV

    表  4  HTPB推进剂力学性能随界面性能变化关系

    Table  4.   Mechanical responses of HTPB propellant varying with interface properties

    OrderMatrix1234567891011Without interface
    Condition With Tc=0.45 MPa, ${\delta _{\rm{f}}}$=0.06 mm
    Interface stiffness K/(MPa·mm-1) 0.004 4 20 40 100 200 300 400 4000 10000 16000 19500
    Initial modulus E/MPa 0.28 0.67 1.12 1.98 2.50 3.10 3.45 3.60 3.67 3.90 3.96 3.97 4.00
    Condition With K=400 MPa/mm, ${\delta _{\rm{f}}}$=0.06 mm
    Interface strength/MPa 0.05 0.1 0.2 0.3 0.45 0.6 0.75 1 2 3 30 300
    Tensile strength/MPa 0.15 0.17 0.21 0.27 0.34 0.40 0.46 0.55 0.73 0.76 0.764 0.83
    下载: 导出CSV

    表  5  不同HTPB推进剂RVE颗粒粒径分布

    Table  5.   Particle size distributions of different RVEs of HTPB propellant

    TypeS0S1S2
    Diameter/μm 100-300 100 200 200 300
    Volume fraction/vol% 34 10 24 10 24
    Sum of particles 48 80 25
    Notes: S1—Model with minimum mean particle size; S2—Model with the largest average particle size.
    下载: 导出CSV

    表  6  NEPE推进剂在不同应力下蠕变模拟结果

    Table  6.   Simulation results of creep of NEPE propellant at various stress

    Time/sCreep strainConstant stress/MPa
    Exceeded 60000 0.063 0.05
    Exceeded 60000 0.128 0.1
    56903 0.489 0.3
    36772 0.540 0.4
    18297 0.553 0.5
    5203 0.728 0.6
    1624 0.630 0.7
    下载: 导出CSV
  • [1] 孟红磊, 鞠玉涛. 含损伤非线性粘弹性本构模型及数值仿真应用[J]. 固体火箭技术, 2012, 35(6):764-768.

    MENG Honglei, JU Yutao. Nonlinear viscoelastic equation with cumulative damage and its application on numerical simulation[J]. Journal of solid Rocket Technology,2012,35(6):764-768(in Chinese).
    [2] HUI Li, JIN Shengxu, XIONG Chen, et al. Experimental investigation and modeling the compressive behavior of NEPE propellant under confining pressure[J]. Propellants, Explosives, Pyrotechnics,2021,46:1-14. doi: 10.1002/prep.202180101
    [3] 封涛, 许进升, 范兴贵, 等. 考虑初始缺陷的HTPB推进剂粘超弹本构模型[J]. 含能材料, 2018, 26(4):316-322. doi: 10.11943/j.issn.1006-9941.2018.04.005

    FENG Tao, XU Jinsheng, FAN Xinggui, et al. Visco-hyperelastic constitutive model of HTPB propellant considering initial defects[J]. Chinese Journal of Energetic Materials,2018,26(4):316-322(in Chinese). doi: 10.11943/j.issn.1006-9941.2018.04.005
    [4] CUI H, SHEN Z, LI H. A new constitutive equation for solid propellant with the effects of aging and viscoelastic Poisson's ratio[J]. Meccanica,2018,53:2393-2410.
    [5] WANG Z, QIANG H, WANG T, et al. A thermo-visco-hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates[J]. Mechanics of Time-Dependent Materials,2018,22:291-314.
    [6] MA H, SHEN Z, LI D. A viscoelastic constitutive model of composite propellant considering dewetting and strain-rate and its implementation[J]. Propellants Explosives Pyrotechnics,2019,44:759-768. doi: 10.1002/prep.201800264
    [7] XU F. Micromechanics approach to the study of constitutive response and fracture of solid propellant materials[D]. Illinois: University of Illinois at Urbana-Campaign, 2007.
    [8] XU F, ARAVAS N, SOFRONIS P. Constitutive modeling of solid propellant materials with evolving microstructural damage[J]. Journal of the Mechanics and Physics of Solids,2008,56(5):2050-2073. doi: 10.1016/j.jmps.2007.10.013
    [9] HUR J, PARK J B, JUNG G D, et al. Enhancements on a micromechanical constitutive model of solid propellant[J]. International Journal of Solids and Structures,2016,87:110-119. doi: 10.1016/j.ijsolstr.2016.02.025
    [10] YUN K S, PARK J B, JUNG G D, et al. Viscoelastic constitutive modeling of solid propellant with damage[J]. International Journal of Solids and Structures,2016,80:118-127. doi: 10.1016/j.ijsolstr.2015.10.028
    [11] XU J, CHEN X, WANG H, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solids and Structures,2014,51(18):3209-3217. doi: 10.1016/j.ijsolstr.2014.05.024
    [12] LEI M, WANG J, CHENG J, et al. A constitutive model of the solid propellants considering the interface strength and dewetting[J]. Composites Science and Technology,2020,185:107893.1-107893.9.
    [13] RAE P J, GOLDREIN H T, PALMER S, et al. Quasi-static studies of the deformation and failure of -HMX based polymer bonded explosives[J]. Proceedings Mathematical Physical & Engineering Sciences,2002,458(2019):743-762.
    [14] 常武军. 复合固体推进剂细观损伤及其数值仿真研究[D]. 南京: 南京理工大学, 2013.

    CHANG W J. Research on microstructural damage and its numerical simulation method for composite solid propellant[D]. Nanjing: Nanjing University of Science and Technology, 2013(in Chinese).
    [15] LI G, WANG Y, JIang A, et al. Micromechanical investigation of debonding processes in composite solid propellants[J]. Propellants Explosives Pyrotechnics,2017,43(7):642-649.
    [16] ZHI S J, BING S, ZHANG J W. Multiscale modeling of heterogeneous propellants from particle packing to grain failure using a surface-based cohesive approach[J]. Acta Mechanica Sinica,2012,28(3):746-759. doi: 10.1007/s10409-012-0058-y
    [17] 封涛, 郑健, 许进升, 等. 复合固体推进剂细观结构建模及脱黏过程数值模拟[J]. 航空动力学报, 2018, 33(1):223-231.

    FENG Tao, ZHENG Jian, XU Jinsheng, et al. Mesoscopic structure modeling and numerical simulation of debonding process of composite solid propellants[J]. Journal of Aerospace Power,2018,33(1):223-231(in Chinese).
    [18] CHANG W, JU Y, HAN B, et al. Numerical simulation of particle/matrix interface failure in composite propellant[J]. Journal of China Ordnance,2012,8(3):146-153.
    [19] FRANCQUEVILLE F D, DIANI J, GILORMINI P, et al. Use of a micromechanical approach to understand the mechanical behavior of solid propellants[J]. Mechanics of Materials,2021,153:103656. doi: 10.1016/j.mechmat.2020.103656
    [20] FRANCQUEVILLE F D, GILORMINI P, DIANI J, et al. comparison of the finite strain macroscopic behavior and local damage of a soft matrix highly reinforced by spherical or polyhedral particles[J]. European Journal of Mechanics-A/Solids,2020,84:104070. doi: 10.1016/j.euromechsol.2020.104070
    [21] TAN H, LIU C, HUANG Y, et al. The cohesive law for the particle/matrix interfaces in high explosives[J]. Journal of the Mechanics and Physics of Solids,2005,53(8):1892-1917. doi: 10.1016/j.jmps.2005.01.009
    [22] 李高春, 邢耀国, 戢治洪, 等. 复合固体推进剂细观界面脱粘有限元分析[J]. 复合材料学报, 2011, 28(3):229-235.

    LI G C, XING Y G, JI Z H, et al. Finite element analysis of microscale interfacial debonding in composite solid propellants[J]. Acta Materiae Compositae Sinica,2011,28(3):229-235(in Chinese).
    [23] RUIZE H, CHANDRA P, VIKAS T, et al. Experimentally-validated mesoscale modeling of the coupled mechanical-thermal response of AP–HTPB energetic material under dynamic loading[J]. International Journal of Fracture,2016,203:277-298.
    [24] PRAKASH C, GUNDUZ I E, OSKAY C, et al. Effect of interface chemistry and strain rate on particle-matrix delamination in an energetic material[J]. Engineering Fracture Mechanics,2018,191:46-64.
    [25] PRAKASH C. Effect of interface chemical composition on the high strain rate dependent mechanical behavior of an energetic material[D]. West Lafayette: Purdue University, 2019.
    [26] YILMAZER U, FARRIS R J. Finite element formulation for modeling particle debonding in reinforced elastomers subjected to finite deformations[J]. Journal of Applied Polymer Science,1983,28:3280-3369. doi: 10.1016/j.cma.2006.06.008
    [27] NGO D, PARK K, PAULINO G H, et al. On the constitutive relation of materials with microstructure using a potential-based cohesive model for interface interaction[J]. Engineering Fracture Mechanics,2010,77(7):1153-1174. doi: 10.1016/j.engfracmech.2010.01.007
    [28] TOULEMONDE P A, DIANI J, GILORMINI P, et al. On the account of a cohesive interface for modeling the behavior until break of highly filled elastomers[J]. Mechanics of Materials,2016,93:124-133.
    [29] LÓPEZ R, SALAZAR A, RODRÍGUEZ J. Fatigue crack propagation behaviour of carboxyl-terminated polybutadiene solid rocket propellants[J]. International Jour-nal of Fracture,2020,223(1):3-15.
    [30] GAO Y F, BOWER A F. A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces[J]. Modelling & Simulation in Materials Science & Engineering,2004,12(3):453.
    [31] FRANCQUEVILLE F D, GILORMINI P, DIANI J, et al. Relationship between local damage and macroscopic response of soft materials highly reinforced by monodispersed particles[J]. Mechanics of Materials,2020,146:103408. doi: 10.1016/j.mechmat.2020.103408
    [32] FRANCQUEVILLE F D, GILORMINI P, DIANI J. Representative volume elements for the simulation of isotropic composites highly filled with monosized spheres[J]. International Journal of Solids and Structures,2019,158:277-286. doi: 10.1016/j.ijsolstr.2018.09.013
    [33] 张镇国, 侯晓, 郜婕, 等. 一种高颗粒填充率丁羟推进剂二维细观模型生成方法[J]. 复合材料学报, 2019, 36(10):2302-2307.

    ZHANG Z G, HOU X, GAO J, etal. A method of generating two-dimensional mesoscopic model for hydroxyl-terminated polybutadiene propellant with high particle volume fraction[J]. Acta Materiae Compositae Sinica,2019,36(10):2302-2307(in Chinese).
    [34] MORALEDA J, SEGURADO J, LLORCA J. Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach[J]. Journal of the Mechanics and Physics of Solids,2009,57(9):1596-1613. doi: 10.1016/j.jmps.2009.05.007
    [35] 乌布力艾散·麦麦提图尔荪, 葛超, 董永香, 等. 基于Al/PTFE真实细观特性统计模型的宏观力学性能模拟[J]. 复合材料学报, 2016, 33(11):2528-2536.

    MAIMAITITUERSUN W, GE C, DONG Y X, et al. Simulation on mechanical properties of Al/PTFE based on mesoscopic statistical model[J]. Acta Materiae Compositae Sinica,2016,33(11):2528-2536(in Chinese).
    [36] GE Chao, DONG Yongxiang, MAIMAITITUERSUN Wubuliaisan, et al. Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures[J]. Materials,2016,9(7):590. doi: 10.3390/ma9070590
    [37] SONG W, LIU H, NING J. Tensile property and crack propagation behavior of tungsten alloys[J]. International Journal of Modern Physics B,2011,24(11):1475-1492.
    [38] SMIT R J M, BREKELMANS W A M, MEIJER H E H. Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling[J]. Computer Methods in Applied Mechanics and Engineering,1988,155(2):181-192.
    [39] LI S, SITNIKOVA E. Representative volume elements and unit cells—Concepts, theory, applications and implementation[M]. Amsterdam: Elsevier, 2019.
    [40] XIA Z, ZHANG Y, ELLYIN F. A unified periodical boundary conditions for representative volume elements of compo-sites and applications[J]. International Journal of Solids and Structures,2003,40:1907-1921. doi: 10.1016/S0020-7683(03)00024-6
    [41] TAN H, HUANG Y, LIU C, et al. The uniaxial tension of particulate composite materials with nonlinear interface debonding[J]. International Journal of Solids and Structures,2007,44(6):1809-1822. doi: 10.1016/j.ijsolstr.2006.09.004
    [42] 赵玖玲, 强洪夫. 复合固体推进剂宏细观损伤机理[M]. 北京: 中国宇航出版社, 2014.

    ZHAO J L, QIANG H F. Macroscopic and microscopic damage mechanism of composite solid propellant[M]. Beijing: China Aerospace Publishing House, 2014(in Chinese).
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  1605
  • HTML全文浏览量:  575
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 修回日期:  2021-06-25
  • 录用日期:  2021-06-29
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回