留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面反应产物对B4C/Al复合材料颗粒润湿性及界面强度的影响机制

郭文波 胡启耀 肖鹏

郭文波, 胡启耀, 肖鹏. 界面反应产物对B4C/Al复合材料颗粒润湿性及界面强度的影响机制[J]. 复合材料学报, 2022, 39(6): 2941-2948. doi: 10.13801/j.cnki.fhclxb.20210707.005
引用本文: 郭文波, 胡启耀, 肖鹏. 界面反应产物对B4C/Al复合材料颗粒润湿性及界面强度的影响机制[J]. 复合材料学报, 2022, 39(6): 2941-2948. doi: 10.13801/j.cnki.fhclxb.20210707.005
GUO Wenbo, HU Qiyao, XIAO Peng. Effect of interfacial reaction products on the wettability and interfacial strength of B4C/Al composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2941-2948. doi: 10.13801/j.cnki.fhclxb.20210707.005
Citation: GUO Wenbo, HU Qiyao, XIAO Peng. Effect of interfacial reaction products on the wettability and interfacial strength of B4C/Al composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2941-2948. doi: 10.13801/j.cnki.fhclxb.20210707.005

界面反应产物对B4C/Al复合材料颗粒润湿性及界面强度的影响机制

doi: 10.13801/j.cnki.fhclxb.20210707.005
基金项目: 江西省自然科学基金面上项目(20192BAB206003);博士科研启动基金项目(EA201803210)
详细信息
    通讯作者:

    胡启耀,博士,讲师,硕士生导师,研究方向为金属新材料的制备及其数值模拟 E-mail:huqiyao2008@163.com

  • 中图分类号: TB333

Effect of interfacial reaction products on the wettability and interfacial strength of B4C/Al composites

  • 摘要: 采用搅拌铸造法制备了B4C/Al复合材料,利用实验分析结合第一性原理计算的方法,探讨了界面反应产物Al3BC和TiB2对B4C/Al复合材料颗粒润湿性及界面结合强度的影响机制。结果表明,界面反应产物为Al3BC时,B4C颗粒润湿性没有得到实质性改善,存在明显的颗粒团聚现象,界面结合强度较低且过度的界面反应使B4C颗粒分解损耗严重,导致B4C颗粒增强效果不明显;而通过添加Ti元素使界面反应产物为TiB2时,颗粒润湿性明显改善,B4C颗粒团聚现象显著减少,界面结合强度较高,力学性能得到显著提高。这主要是由于不同终端的Al(111)/TiB2(0001)界面黏附功均大于Al(111)/B4C(0001)的界面黏附功,表明界面反应产物TiB2可以提高B4C颗粒的润湿性,而界面反应产物Al3BC对提高B4C颗粒的润湿性非常有限;Al(111)/Al3BC(0001)和Al(111)/TiB2(0001)的界面上均形成了混合的共价键/金属键;Al(111)/TiB2(0001)的界面上的化学键作用力更大,相应地界面结合强度也更大。

     

  • 图  1  Al(111)/B4C(0001) ((a)、(b))、Al(111)/Al3BC (0001) ((c)~(e)) 和Al(111)/TiB2(0001) ((f)、(g)) 的界面模型

    Figure  1.  Interface models of Al(111)/B4C(0001) interface ((a), (b)), Al(111)/Al3BC (0001) interface ((c)-(e)) and Al(111)/TiB2(0001) ((f), (g))

    图  2  B4C/Al复合材料的SEM图像:(a)、(b)不含Ti,颗粒团聚明显;(c)、(d)含Ti,颗粒分布较均匀

    Figure  2.  SEM images of B4C/Al composites: (a), (b) Without Ti, obvious particle agglomeration; (c), (d) With Ti, more uniform particle distribution

    图  3  B4C/Al复合材料界面微结构的TEM图像:(a)、(b)不含Ti复合材料界面存在微缝隙;(c)、(d)含Ti复合材料界面存在TiB2细晶层

    Figure  3.  TEM images of interfacial microstructure in B4C/Al composites: (a), (b) Showing the interfacial cracks of the Ti-free composite; (c), (d) Showing a continuous TiB2 layer of the Ti-containing composite

    图  4  B4C/Al复合材料的SEM断口形貌:(a)、(b)不含Ti;(c)、(d)含Ti

    Figure  4.  SEM fracture surface morphologies of B4C/Al composites: (a), (b) Without Ti; (c), (d) With Ti

    图  5  Al(111)/Al3BC(0001)界面 (a) 和Al(111)/TiB2(0001)界面 (b) 附近原子层的偏态密度(PDOS)

    Figure  5.  Partial density of states (PDOS) of the atomic layers near Al(111)/Al3BC(0001) interface (a) and Al(111)/TiB2(0001) interface (b)

    图  6  Al(111)/Al3BC(0001)界面(a) 和Al(111)/TiB2(0001)界面 (b) 的差分电荷密度

    Figure  6.  Charge density differences of Al(111)/Al3BC(0001) interface (a) and Al(111)/TiB2(0001) interface (b)

    表  1  B4C/Al复合材料的力学性能

    Table  1.   Mechanical properties of B4C/Al composites

    SampleParticle content/wt%Poriness/%Hardness/MPaTensile strength/MPaDuctility/%
    Pure aluminium 40±2.7 34.2±0.7
    B4C/Al, Ti 0.0wt% 10 3.6±1.3 45.6±0.3 89±6.8 5.2±2.6
    B4C/Al, Ti 3.5wt% 10 1.8±0.3 52.1±0.2 139±6.5 9.7±1.9
    B4C/Al, Ti 1.5wt%a 15 111.1±0.5 19.1±2.8
    B4C/Al, Ti 1.5wt%b 15 34±0.9 100.9±0.4 23.1±1.5
    Notes: a Ref. [22]; b Ref. [23].
    下载: 导出CSV

    表  2  Al(111)/B4C(0001)、Al(111)/Al3BC(0001)和Al(111)/TiB2(0001)界面的黏附功Wad

    Table  2.   Adhesion work Wad of Al(111)/B4C(0001) interfaces, Al(111)/Al3BC(0001) interfaces and Al(111)/TiB2(0001) interfaces

    InterfaceTerminationWad/(J·m−2)
    Al(111)/B4C(0001) B- 1.328
    C- 1.853
    Al(111)/Al3BC(0001) B- 1.976
    AlC- 0.560
    Al- 1.352
    Al(111)/TiB2(0001) Ti- 3.085
    B- 2.631
    下载: 导出CSV
  • [1] 杨涛, 刘润爱, 王文先, 等. 热轧高含量B4C颗粒增强Al基复合材料的成形性能[J]. 复合材料学报, 2021, 38(7):2234-2243.

    YANG T, LIU R A, WANG W X, et al. Theformability of high content B4C particle reinforced Al matrix composites by hot rolling[J]. Acta Materiae Compositae Sinica,2021,38(7):2234-2243(in Chinese).
    [2] 童攀, 林立, 王全兆, 等. 颗粒尺寸对B4C增强铝基中子吸收材料界面反应与力学性能的影响[J]. 复合材料学报, 2019, 36(4):927-937.

    TONG P, LIN L. WANG Q Z, et al. Effects of particle size on interfacial reaction and mechanical properties of B4C reinforced aluminum matrix neutron absorber materials[J]. Acta Materiae Compositate Sinica,2019,36(4):927-937(in Chinese).
    [3] 靳涛, 王伟, 庞晓轩, 等. 热轧工艺对20% B4C/Al复合材料显微组织及缺陷的影响[J]. 材料导报, 2017, 31(S1):102-104.

    JIN Tao, WANG Wei, PANG Xiaoxuan, et al. Effect of hot rolling process on the microstructures and defects of 20wt% B4C/Al composites[J]. Materials Reports,2017,31(S1):102-104(in Chinese).
    [4] 周丽, 张鹏飞, 王全兆, 等. B4C/6061Al复合材料热压缩断裂行为的多尺度研究[J]. 金属学报, 2019, 55(7):911-918.

    ZHOU Li, ZHANG Pengfei, WANG Quanzhao, et al. Multi-scale study on the fracture behavior of hot compression B4C/6061Al composite[J]. Acta Metallurgica Sinica,2019,55(7):911-918(in Chinese).
    [5] KALAISELVAN K, MURUGAN N, PARAMESWARAN S. Production and characterization of AA6061–B4C stir cast composite[J]. Materials & Design,2011,32(7):4004-4009.
    [6] 邹爱华, 周贤良, 康志兵, 等. 不连续界面相Al4C3对SiC/Al复合材料界面结合影响的第一性原理及实验[J]. 复合材料学报, 2021, 38(3):824-831.

    ZOU Aihua, ZHOU Xianliang, KANG Zhibing, et al. Effect of discontinuous interfacial phase Al4C3 on interface bonding of SiC/Al composites: A first-principle and experiment[J]. Acta Materiae Compositae Sinica,2021,38(3):824-831(in Chinese).
    [7] GUO Hao, ZHANG Zhongwu, ZHANG Yang, et al. Improving the mechanical properties of B4C/Al composites by solidstate interfacial reaction[J]. Journal of Alloys and Compounds,2020,829:154521. doi: 10.1016/j.jallcom.2020.154521
    [8] MO Zhuoqiang, LIU Yunzhong, GENG Jiangjiang, et al. The effects of temperatures on microstructure evolution and mechanical properties of B4C-AA2024 composite strips prepared by semi-solid powder rolling[J]. Materials Science & Engineering A,2016,652(15):305-314.
    [9] CHEN H S, WANG W X, LI Y L, et al. The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites[J]. Journal of Alloys and Compounds,2015,632:23-29. doi: 10.1016/j.jallcom.2015.01.048
    [10] LI Yuli, WANG Wenxian, ZHOU Jun, et al. 10B areal density: A novel approach for design and fabrication of B4C/6061Al neutron absorbing materials[J]. Journal of Nuclear Mater-ials,2017,487:238-246. doi: 10.1016/j.jnucmat.2017.02.020
    [11] ZHANG Z, FORTIN K, CHARETTE A, et al. Effect of titanium on microstructure and fluidity of Al-B4C composites[J]. Journal of Materials Ence,2011,46(9):3176-3185.
    [12] HU Qiyao, ZHAO Haidong, LI Fangdong et al. Effects of manufacturing processes on microstructure and properties of Al/A356-B4C composites[J]. Materials and Manufacturing Processes,2016,31(10):1292-1300. doi: 10.1080/10426914.2016.1151049
    [13] 朱刚. SiCp/6061搅拌制备及铸造组织性能的研究[D]. 广州: 华南理工大学, 2015.

    ZHU Gang. Research on microstructure and mechanical properities of SiCp/6061 composites prepared by stirring technology[D]. Guangzhou: South China University of Technology, 2015(in Chinese).
    [14] PERDEW J P, BURKE K, ERNZERHOF M, et al. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77:3865.
    [15] LAASONEN K, PASQUARELLO A, CAR R, et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials[J]. Physical Review B Condensed Matter,1993,47(16):10142. doi: 10.1103/PhysRevB.47.10142
    [16] FROYEN S. Brillouin-zone integration by Fourier quadra-ture: Special points for superlattice and supercell calculations[J]. Physical Review B Condensed Matter,1989,39(5):3168-3172. doi: 10.1103/PhysRevB.39.3168
    [17] DENG Chao, XU Ben, WU Ping, et al. Stability of the Al/TiB2 interface and doping effects of Mg/Si[J]. Applied Surface Science,2017,425:639-645. doi: 10.1016/j.apsusc.2017.06.227
    [18] XIAN Yajiang, QIU Ruizhi, WANG Xin, et al. Interfacial properties and electron structure of Al/B4C interface: A first-principles study[J]. Journal of Nuclear Materials,2016,478:227-235. doi: 10.1016/j.jnucmat.2016.06.015
    [19] YANG Jian, HUANG Jihua, FAN Shuhai, et al. LaAlO3 as the heterogeneous nucleus of ferrite: Experimental investigation and theoretical calculation[J]. Journal of Alloys and Compounds,2016,683:357-369. doi: 10.1016/j.jallcom.2016.05.091
    [20] HU Qiyao, ZHAO Haidong, GE Jilong, et al. Microstructure and mechanical properties of (B4C+Al3Ti)/Al hybrid composite fabricated by a two-step stir casting process[J]. Materials Science & Engineering A,2016,650:478-482.
    [21] ZHANG Jingjing, JUNG Moolee, YOUNG Heecho, et al. Effect of the Ti/B4C mole ratio on the reaction products and reaction mechanism in an Al-Ti-B4C powder mixture[J]. Materials Chemistry and Physics,2014,147(3):925-933. doi: 10.1016/j.matchemphys.2014.06.039
    [22] RUAN Qing, JIA Yuzhen, ZHENG Jiyun et al. Improvement on mechanical property of B4C/Al composites by addition of Ti through interfacial reaction[J]. Rare Metal Materials and Engineering,2019,48(6):1777-1784.
    [23] LI Yu, LI Qinliu, LIU Wei, et al. Effect of Ti content and stirring time on microstructure and mechanical behavior of Al-B4C composites[J]. Journal of Alloys and Compounds,2016,684:496-503. doi: 10.1016/j.jallcom.2016.05.135
    [24] ZHANG W, SMITH J R. Stoichiometry and adhesion of Nb/Al2O3[J]. Physical Review B,2000,61(24):16883-16889.
    [25] WANG Zhixuan, LI Qiulin, ZHENG Jiyuan, et al. Improving Al wettability on B4C by transition metal doping: A combined DFT and experiment study[J]. Rare Metal Materials and Engineering,2017,46(9):2345-2351. doi: 10.1016/S1875-5372(17)30195-9
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1039
  • HTML全文浏览量:  650
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-06-25
  • 录用日期:  2021-06-30
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回