Preparation and properties of low dielectric and temperature-resistant poly (aryl ether nitrile) composites filled with modified hollow SiO2
-
摘要: 开发低介电常数、低介电损耗和同时兼具耐温、高力学强度的聚合物介电材料对于满足5G领域的高性能介电材料具有重要的研究意义。采用含氟1H,1H,2H,2H-全氟取代癸基三乙氧基硅烷(PTES)对空心SiO2纳米粒子(HS)进行表面改性,并基于含氟聚芳醚腈共聚物(PEN-F),分别以流延法和相转换法制备了两种PTES改性HS填充的PEN-F复合材料(HS@PTES/PEN-F)。采用FTIR和1H NMR证实了PEN-F共聚物的成功合成;通过FTIR、TGA和XPS等技术手段表征了PTES改性的HS结构和形貌;同时研究了HS@PTES/PEN-F复合材料的介电性能、力学强度和热稳定性等。研究结果表明,经PTES改性后的HS纳米粒子在PEN-F基体树脂中具有较好的分散性与界面相容性。在介电性能方面,当改性SiO2纳米粒子填充含量为7wt%时,通过流延法制备的HS@PTES/PEN-F复合膜在1 kHz时介电常数达2.88,介电损耗为0.0198;通过相转换法制备的HS@PTES/PEN-F复合膜在1 kHz时介电常数达1.19,介电损耗为0.0043。在力学性能方面,以相转换法为例,改性SiO2纳米粒子填充含量为5wt%时,其拉伸强度和弹性模量分别达到10.34 MPa和365.32 MPa。此外,HS@PTES/PEN-F复合膜的玻璃化转变温度可达到160℃,具有较好的热稳定性。Abstract: The development of polymer dielectric materials with low dielectric constant, low dielectric loss, temperature resistance and high mechanical strength is of great significance to meet the requirements of high performance dielectric materials in 5G field. The hollow SiO2 nanoparticles (HS) were modified by 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), and two kinds of low dielectric poly (aryl ether nitrile) composites (HS@PTES/PEN-F) were prepared by solution casting and phase conversion methods based on fluorinated poly (aryl ether nitrile) copolymer (PEN-F). The successful synthesis of fluorinated poly (aryl ether nitrile) copolymer was confirmed by FTIR and 1H NMR; the structure and morphology of PTES modified HS were characterized by FTIR, TGA and XPS. At the same time, the dielectric properties, mechanical strength and thermal stability of the HS@PTES/PEN-F composites were studied. The results show that the HS modified by PTES exhibit good dispersion and interface compa-tibility in the PEN-F matrix resin. In terms of dielectric properties, when the content of modified SiO2 nanoparticles reaches 7wt%, the dielectric constant and the dielectric loss of the HS@PTES/PEN-F composite film prepared by solution casting method are 2.88 and 0.0198 at 1 kHz; the dielectric constant and dielectric loss of the HS@PTES/PEN-F composite film prepared by phase conversion method are 1.19 and 0.0043, respectively. In the aspect of mechanical properties, taking the phase conversion method as an example, when the content of modified SiO2 nanoparticles reaches 5wt%, the tensile strength and elasticity modulus increase to 10.34 MPa and 365.32 MPa, respectively. In addition, the glass transition temperature of HS@PTES/PEN-F composite film can reach 160℃, which shows good thermal stability.
-
图 8 流延法(a)和相转换法(b) HS@PTES/PEN-F膜的断面SEM图像以及不同比例HS@PTES的流延法和相转换法HS@PTES/PEN-F膜的实物(c)
Figure 8. Cross-sectional SEM images of HS@PTES/PEN-F composite films prepared by solution casting method (a) and phase conversion method (b), as well as digital photos of HS@PTES/PEN-F composite films with different HS@PTES contents (c)
图 9 流延法制备的HS@PTES含量为1wt% (a)、5wt% (c)和7wt% (e)的HS@PTES/PEN-F复合膜和相转换法制备的HS@PTES含量为1wt% (b)、5wt% (d)和7wt% (f)的HS@PTES/PEN-F复合膜截面微观形貌
Figure 9. Cross-sectional SEM images of HS@PTES/PEN-F composite films prepared by solution casting method with the HS@PTES loading content of 1wt% (a), 5wt% (c) and 7wt% (e), and prepared by phase conversion method with the HS@PTES loading content of 1wt% (b), 5wt% (d) and 7wt% (f)
图 10 流延法制备HS@PTES/PEN-F膜的介电常数(a)和介电损耗(b)以及相转换法制备HS@PTES/PEN-F膜的介电常数(c)和介电损耗(d)
Figure 10. Dielectric constant (a) and dielectric loss (b) of the HS@PTES/PEN-F composite films prepared by solution casting method, dielectric constant (c) and dielectric loss (d) of the HS@PTES/PEN-F composite films prepared by phase conversion method
表 1 含氟1H,1H,2H,2H-全氟取代癸基三乙氧基硅烷(PTES)改性空心SiO2(HS)填充的含氟聚芳醚腈复合材料(HS@PTES/PEN-F)铸膜液中各组分的比例
Table 1. Proportion of components in casting solution of fluorinated poly (aryl ether nitrile) composites filled with 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES) modified hollow silica (HS@PTES/PEN-F)
Sample HS@PTES/g PEN-F/g NMP/mL HS@PTES content/wt% PEN-F 0 1.300 8.7 0 1wt%HS@PTES/PEN-F 0.013 1.287 8.7 1 3wt%HS@PTES/PEN-F 0.039 1.261 8.7 3 5wt%HS@PTES/PEN-F 0.065 1.235 8.7 5 7wt%HS@PTES/PEN-F 0.091 1.209 8.7 7 表 2 相关聚合物介电材料性能比较
Table 2. Performance comparison of related polymer dielectric materials
Sample K (1 kHz) tanδ (1 kHz) Tensile strength/MPa Tg/℃ Ref. PI/POSS 2.56 0.012 62 — [23] PE/SiO2 2.2 0.005 5.6 104 [24] F-GO/F-PI 2.09 0.0019 300 — [25] PEN/SiO2 1.71 0.0047 50 175 [26] PI/SiO2 1.32 0.006 — — [27] HS@PTES/PEN-F 2.88 0.0198 101 — This work HS@PTES/PEN-F 1.19 0.0043 10.34 160 This work Notes: K—Dielectric constant; tanδ—D ielectric loss; Tg—Glass transition temperature; PI—Polyimide; POSS—Polysesquisiloxane; PE—Polyethylene; F-GO—Fluorinated graphene oxide; F-PI—Fluorinated polyimidel. -
[1] LIU Y, QIAN C, QU L, et al. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties[J]. Chemistry of Materials,2015,27(19):6543-6549. doi: 10.1021/acs.chemmater.5b01798 [2] SHI H, LIU X, LOU Y. Materials and micro drilling of high frequency and high speed printed circuit board: A review[J]. The International Journal of Advanced Manufacturing Technology,2018,100(4):827-841. [3] ZHANG J, TANG P, TIAN L, et al. 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication[J]. Science China Information Sciences,2017,60(8):1-18. [4] 陆亚宁. 低介电常数POSS/聚芳醚酮复合材料的制备及其性能研究[D]. 吉林: 吉林大学, 2017.LU Yaning. Preparation and properties of POSS/poly (aryl ether ketone) composites with low dielectric constant[D]. Jilin: Jilin University, 2017(in Chinese). [5] 杨盟辉. 高频PCB基材介电常数与介电损耗的特性与改性进展[J]. 印制电路信息, 2009(4):27-31.YANG Menghui. Characteristics and modification progress of dielectric constant and dielectric loss of high frequency PCB substrate[J]. Printed Circuit Information,2009(4):27-31(in Chinese). [6] 李鸿韬. 低介电常数聚酰亚胺复合薄膜的制备及性能研究[D]. 安徽: 中国科学院大学, 2020.LI Hongtao. Preparation and properties of polyimide composite films with low dielectric constant[D]. Anhui: University of Chinese Academy of Sciences, 2020(in Chinese). [7] 潘晨. 聚四氟乙烯材料介电和导热性能研究[D]. 陕西: 西北工业大学, 2019.PAN Chen. Study on dielectric and thermal conductivity of polytetrafluoroethylene materials[D]. Shaanxi: Northwest University of Technology, 2019(in Chinese). [8] WANG J Y, YANG S Y, HUANG Y L, et al. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization[J]. Journal of Materials Chemistry,2011,21(35):13569-13575. doi: 10.1039/c1jm11766a [9] CHENG Y, CHEN W, LI Z, et al. Hydrolysis and condensation of a benzocyclobutene-functionalized precursor for the synthesis of high performance low-K polymers[J]. RSC Advances,2017,7(24):14406-14412. doi: 10.1039/C7RA00141J [10] CHAO Q, FAN Z, ZHENG W. A facile strategy for non-fluorinated intrinsic low-k and low-loss dielectric polymers: Valid exploitation of secondary relaxation behaviors[J]. Chinese Journal of Polymer Science,2020,38(1):213-219. [11] 皇甫梦鸽, 李一丹, 张燕, 等. 面向5G应用需求的低介电高分子材料研究与应用进展[J]. 绝缘材料, 2020, 8(53):1-9.HUANG Fumengge, LI Yidan, ZHANG Yan, et al. Progress in research and application of low dielectric polymer materials for 5G applications[J]. Insulation Materials,2020,8(53):1-9(in Chinese). [12] YOU Y, LIU S, TU L, et al. Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors[J]. Macromolecules,2019,52(15):5850-5859. doi: 10.1021/acs.macromol.9b00799 [13] 唐晓赫. 氧化石墨烯/聚芳醚腈复合材料的制备及在薄膜电容器中的应用[D]. 四川: 电子科技大学, 2019.TANG Xiaohe. Preparation of graphene oxide/poly (arylene ether nitrile) composite and its application in thin film capacitor[D]. Sichuan: University of Electronic Science and Technology, 2019(in Chinese). [14] WEI J, MENG X, CHEN X, et al. Facile synthesis of fluorinated poly(arylene ether nitrile) and its dielectric properties[J]. Journal of Applied Polymer Science,2018,135(47):46837-46844. doi: 10.1002/app.46837 [15] CHENG Y L, LIN Y L, LEE C Y, et al. Electrical characteristics and reliability of nitrogen-stuffed porous low-k SiOCH/Mn2O3-xN/Cu integration[J]. Molecules,2019,24(21):3882-3894. doi: 10.3390/molecules24213882 [16] 魏东阳. SiO2空心球及氧化石墨烯协同改性聚酰亚胺低介电常数复合薄膜的研究[D]. 黑龙江: 哈尔滨理工大学, 2016.WEI Dongyang. Study on low dielectric constant polyimide composite film co modified by SiO2 hollow spheres and graphene oxide[D]. Heilongjiang: Harbin University of Science and Technology, 2016(in Chinese). [17] ZHANG G, ZHAN Y, HE S, et al. Construction of superhydrophilic/underwater superoleophobic polydopamine-modified h-BN/poly (arylene ether nitrile) composite membrane for stable oil-water emulsions separation[J]. Polymers for Advanced Technologies,2020,31(5):1007-1018. doi: 10.1002/pat.4835 [18] ZHAN Y, WAN X, HE S, et al. Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopa-mine coated graphene oxide nanofibrous composite membrane for anionic dyes separation[J]. Chemical Engi-neering Journal,2018,333(1):132-145. [19] WAN X, ZHAN Y, ZENG G, et al. Nitrile functionalized halloysite nanotubes/poly(arylene ether nitrile) nanocompo-sites: Interface control, characterization, and improved properties[J]. Applied Surface Science,2017,393(30):1-10. [20] 王海. 含氟低介电常数有机材料研究进展[J]. 有机氟工业, 2020, 1(2):30-34.WANG Hai. Research progress of fluorine containing organic materials with low dielectric constant[J]. Organic Fluorine Industry,2020,1(2):30-34(in Chinese). [21] 金霞, 张立欣, 鲁思如, 等. 低吸水率和低介电损耗PTFE/SiO2复合材料制备[J]. 工程塑料应用, 2020, 48(7):33-37. doi: 10.3969/j.issn.1001-3539.2020.07.007JIN Xia, ZHANG Lixin, LU Siru, et al. Preparation of low water absorption and dielectric loss PTFE/SiO2 composites[J]. Application of Engineering Plastics,2020,48(7):33-37(in Chinese). doi: 10.3969/j.issn.1001-3539.2020.07.007 [22] 廖凌元, 彭忠泉, 章明秋, 等. 高频印制电路板用低介电高分子材料的研究进展[J]. 功能高分子学报, 2021, 4(34):1-16.LIAO Lingyuan, PENG Zhongquan, ZHANG Mingqiu, et al. Research progress of low dielectric polymer materials for high frequency printed circuit board[J]. Acta Functional Polymer Sinica,2021,4(34):1-16(in Chinese). [23] WANG C Y, CHEN W T, ZHAO X Y, et al. Fluorinated polyimide/POSS hybrid polymers with high solubility and low dielectric constant[J]. Chinese Journal of Polymer Science,2016,11(34):1363−1372. [24] YANG X P, SHAN Y X, HUANG Y W, et al. Polyethylene/silica nanorod composites with reduced dielectric constant and enhanced mechanical strength[J]. Journal of Applied Polymer Science,2018,9(136):47143. [25] YIN X D, FENG Y Y, FENG W, et al. Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant[J]. Journal of Materials Chemistry C,2018,24(6):6378-6384. [26] YI Q Q, ZHENG P L, LIU X B, et al. Design of bi-modal pore structure polyarylene ether nitrile/SiO2 foams with ultralow-k dielectric and wave transparent properties by supercritical carbon dioxide[J]. Composites Part B: Engineering,2019,15(173):106915. [27] LIU L P, LU F Z, ZHANG Y H, et al. Preparation of ultra-low dielectric constant silica/polyimide nanofiber membranes by electrospinning[J]. Composites Part A: Applied Science and Manufacturing,2016,5(84):292-298. [28] PU Z, XIA J, LIU X, et al. Novel polyethersulfone dielectric films with high temperature resistance, intrinsic low dielectric constant and low dielectric loss[J]. Journal of Materials Science: Materials in Electronics,2020,32(1):967-976. [29] ZHOU W, ZHANG Y, WANG J, et al. Lightweight porous polystyrene with high thermal conductivity by constructing 3D interconnected network of boron nitride nanosheets[J]. ACS Applied Materials & Interfaces,2020,12(41):46767-46778. doi: 10.1021/acsami.0c11543 [30] PU Z, ZHENG X, XIA J, et al. Novel low-dielectric-constant fluorine-functionalized polysulfone with outstanding comprehensive properties[J]. Polymer International,2020,69(7):604-610. doi: 10.1002/pi.5995