Preparation and properties of low dielectric and temperature-resistant poly (aryl ether nitrile) composites filled with modified hollow SiO2
-
摘要: 开发低介电常数、低介电损耗和同时兼具耐温、高力学强度的聚合物介电材料对于满足5G领域的高性能介电材料具有重要的研究意义。采用含氟1H,1H,2H,2H-全氟取代癸基三乙氧基硅烷(PTES)对空心SiO2纳米粒子(HS)进行表面改性,并基于含氟聚芳醚腈共聚物(PEN-F),分别以流延法和相转换法制备了两种PTES改性HS填充的PEN-F复合材料(HS@PTES/PEN-F)。采用FTIR和1H NMR证实了PEN-F共聚物的成功合成;通过FTIR、TGA和XPS等技术手段表征了PTES改性的HS结构和形貌;同时研究了HS@PTES/PEN-F复合材料的介电性能、力学强度和热稳定性等。研究结果表明,经PTES改性后的HS纳米粒子在PEN-F基体树脂中具有较好的分散性与界面相容性。在介电性能方面,当改性SiO2纳米粒子填充含量为7wt%时,通过流延法制备的HS@PTES/PEN-F复合膜在1 kHz时介电常数达2.88,介电损耗为0.0198;通过相转换法制备的HS@PTES/PEN-F复合膜在1 kHz时介电常数达1.19,介电损耗为0.0043。在力学性能方面,以相转换法为例,改性SiO2纳米粒子填充含量为5wt%时,其拉伸强度和弹性模量分别达到10.34 MPa和365.32 MPa。此外,HS@PTES/PEN-F复合膜的玻璃化转变温度可达到160℃,具有较好的热稳定性。Abstract: The development of polymer dielectric materials with low dielectric constant, low dielectric loss, temperature resistance and high mechanical strength is of great significance to meet the requirements of high performance dielectric materials in 5G field. The hollow SiO2 nanoparticles (HS) were modified by 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), and two kinds of low dielectric poly (aryl ether nitrile) composites (HS@PTES/PEN-F) were prepared by solution casting and phase conversion methods based on fluorinated poly (aryl ether nitrile) copolymer (PEN-F). The successful synthesis of fluorinated poly (aryl ether nitrile) copolymer was confirmed by FTIR and 1H NMR; the structure and morphology of PTES modified HS were characterized by FTIR, TGA and XPS. At the same time, the dielectric properties, mechanical strength and thermal stability of the HS@PTES/PEN-F composites were studied. The results show that the HS modified by PTES exhibit good dispersion and interface compa-tibility in the PEN-F matrix resin. In terms of dielectric properties, when the content of modified SiO2 nanoparticles reaches 7wt%, the dielectric constant and the dielectric loss of the HS@PTES/PEN-F composite film prepared by solution casting method are 2.88 and 0.0198 at 1 kHz; the dielectric constant and dielectric loss of the HS@PTES/PEN-F composite film prepared by phase conversion method are 1.19 and 0.0043, respectively. In the aspect of mechanical properties, taking the phase conversion method as an example, when the content of modified SiO2 nanoparticles reaches 5wt%, the tensile strength and elasticity modulus increase to 10.34 MPa and 365.32 MPa, respectively. In addition, the glass transition temperature of HS@PTES/PEN-F composite film can reach 160℃, which shows good thermal stability.
-
随着我国桥梁建设的快速发展,交通量的增加,桥梁结构遭遇火灾情况也时有发生[1-4],2007年10月广东广深高速虎门大桥,油罐车爆炸引发大火,拉索和桥墩都被大火湮灭;2014年,湖南郴州在建赤石特大桥在主跨合拢前6号桥墩左幅塔顶突发大火,事故导致6号桥墩左幅9根斜拉索断裂,这些火灾事故对缆索的受力性能构成了极大的考验。文献[5-8]对钢丝缆索的高温力学性能进行研究,在火灾高温下钢丝力学性能会明显下降,导致缆索的承载能力急剧下降。
采用轻质、高强、耐腐蚀、抗疲劳的碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)用于桥梁缆索,可提高桥梁跨径,从根本上解决钢质拉索的腐蚀及疲劳问题。但CFRP索内的CFRP筋遇到火灾后环氧树脂会燃烧分解,影响其极限承载性能,对桥梁结构的安全造成影响。文献[9-12]通过试验研究发现,高温下CFRP筋的力学性能下降十分明显。付成龙等[11]研究了温度对CFRP筋弯曲强度和压缩强度的影响,研究显示温度对试样弯曲强度和压缩强度的影响较大,CFRP筋的强度保留率随温度升高而降低。方志等[12]对较高玻璃化转变温度Tg(Tg >200℃)的CFRP筋高温后力学性能进行研究,处理温度为100℃时,筋材静力性能与常温试件相比未发生明显变化,筋材经历200℃和300℃温升作用后,其抗拉强度、弹性模量和极限拉应变均有所下降。
文献[13-15]对桥梁缆索的阻燃防火措施做了一些研究。李艳等[13]在索体外表面设置一种导热系数很低的耐高温防火涂层,从而降低火源热辐射传给索体的温度。张凯等[14]研究了带砂浆包覆层CFRP筋的高温力学性能,在砂浆包覆层保持完好未爆裂的情况下,包覆层为CFRP筋提供了较好的隔氧环境,CFRP筋在长时间高温作用后具有较高的残余强度。徐玉林等[15]对外包陶瓷纤维防火层的CFRP索的耐火性进行了火灾试验研究,对CFRP 缆索外包陶瓷纤维防火层可大幅提高缆索的临界安全耐火时长。
综上所述,目前已有一些缆索的阻燃防火措施,如外包砂浆或陶瓷纤维防火层,但这些措施会大幅度增大索体直径,严重影响索体外表面的空气动力学特性。本文针对桥梁缆索用CFRP筋在高温下的力学性能及CFRP索的阻燃防火措施进行系统研究,研制开发具有阻燃防火特性的CFRP索,避免火灾带来的风险,保障应用安全,有助于CFRP索的推广应用。
1. CFRP筋高温力学性能
CFRP筋采用拉挤成型工艺制备,为了便于锚固,筋材表面带有螺旋肋,筋材底径7 mm,纤维体积分数为72vol%,密度为1.52 g/cm3,玻璃化转变温度Tg为120℃。
图1为CFRP筋高温拉伸试验。可见,筋材两端采用粘结型锚固方式,筋材锚固后穿过试验台架,在筋材中间自由段部位外套金属铝筒,金属铝筒外缠绕加热带对筒内空气进行加热,采用热电偶监测空气温度,采用温度继电器控制温度,使金属铝筒内温度保持设定温度,采用千斤顶加载,加载速度不超过300 MPa/min。筋材拉伸强度为筋材破断时压力传感器载荷读数除以筋材承载面积。
1.1 CFRP筋不同加热温度下力学性能
对筋材中间自由段部位进行加热,加热至指定温度,保温2 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。
图2为不同温度下保温 2 h后的CFRP筋材抗拉强度。可以看出,随着试验温度的升高,筋材拉伸强度呈线性下降趋势,270℃加热2 h,筋材强度降为2000 MPa左右,210℃加热2 h,筋材强度最低为2245.8 MPa,比初始强度下降26.13%。图3为保温2 h后筋材高温拉伸破断照片。可以看出,筋材发生了散丝状断裂。
1.2 CFRP筋不同加热时间下力学性能
对筋材中间自由段部位进行加热,加热至210℃,分别保温1、2、3 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。图4为210℃不同保温时间下的CFRP筋材抗拉强度。
可以看出,筋材高温拉伸强度仅与试验温度有关,当筋材芯部温度达到保温温度时,筋材的高温拉伸强度与保温时间无关,210℃的高温3 h内,筋材剩余拉伸强度均能达到2245.8 MPa以上。
1.3 CFRP筋加热冷却后力学性能
对筋材中间自由段部位进行加热,加热至指定温度,保温2 h,待筋材充分冷却至室温后进行破断拉伸试验,获得筋材经历高温冷却后的拉伸强度,如图5所示。可以看出,筋材高温加热冷却后继续进行拉伸试验,拉伸强度会存在一定的可逆性恢复,且恢复后的剩余强度均能达到2800 MPa以上,但最终剩余拉伸强度较原始强度呈略微下降趋势,且加热温度越高,剩余拉伸强度越低,最大下降幅度为6.13%。
2. CFRP索阻燃防火措施
分别采用石棉布、陶瓷纤维布及阻燃防火涂层材料来研究对CFRP筋/索的阻燃防火效果。
2.1 石棉布、陶瓷纤维布阻燃防火效果
对在持荷状态下的7 mm直径CFRP筋试验件中间部位用火焰温度1000℃的高温火焰枪进行灼烧,如图6所示,其中图6(a)中筋材无保护,图6(b)中筋材包裹陶瓷纤维布,观测不同时间筋材的受力状态及筋材表面的温度变化,灼烧2 h后,进行破断拉伸试验,获得剩余强度。
表1为不同防护措施下筋材温度及持荷性能。可以看出,在无任何防护条件下,对拉伸应力水平1170 MPa条件下的CFRP筋用火焰温度1000℃的高温火焰枪进行灼烧,25 min后,筋材灼烧部位树脂热解,筋材断裂;采用45 mm厚度陶瓷纤维布与石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高分别为562℃与635℃,筋材高温部位树脂发生热解,没有发生断裂(图7),剩余强度分别为1646 MPa与1249 MPa,图8为其破断试样;采用60 mm厚度石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高为170℃,筋材完好,没有发生断裂,剩余强度为3121 MPa,筋材基本没有发生损伤。
表 1 不同防护类型下CFRP筋材温度及持荷性能Table 1. Temperature and load carrying capacity of CFRP tendons under different protection typesProtection
typeProtection thickness/mm Burning time/min CFRP tendons temperature/℃ Stress level/MPa Test result Resident strength/MPa — — 25 1000 1170 Resin pyrolysis,
tendon tensile fracture— Ceramic fiber cloth 45 120 562 1170 Resin pyrolysis,
tendon is not fracture1646 Asbestos 45 120 635 1170 Resin pyrolysis,
tendon is not fracture1249 Asbestos 60 120 170 1170 The tendon is not damaged 3121 以上试验研究可以看出,包裹60 mm厚的石棉可以起到很好的阻燃防火效果,但是过厚的石棉必然影响索体直径,给CFRP索的盘卷带来困难,同时会改变索体表面原有的空气动力学特性,不方便应用。
2.2 阻燃防火涂层
选用一种阻燃防火涂层,刷在CFRP索股索体双层聚乙烯(PE)护套外表面,其中索股直径61 mm,PE护套厚度6 mm,阻燃防火涂层厚度2 mm,如图9所示。所用阻燃防火涂料层由基料丙烯酸乳液、膨胀催化剂聚磷酸铵、碳化剂季戊四醇、膨胀发泡剂三聚氰胺与氯化石蜡、颜料钛白粉、成膜助剂醇酯等组成。
在PE表面刷有2 mm阻燃防火涂层,并在索体PE内表面预埋测温线,用火焰温度1000℃的高温火焰枪对索股局部进行长达2 h的高温灼烧试验(图10),阻燃防火涂料层发生膨胀并形成均匀而致密蜂窝状碳化层,保护双层PE护套不发生燃烧,使得缆索具有阻燃防火特性,PE护套仅发生软化。无阻燃防火涂层保护的索体5 min内PE护套燃烧殆尽,漏出索体(图11)。图12为2 mm阻燃防火涂层温度-时间曲线。可以看出,2 h灼烧索股PE内表面最高温度为206℃。
2.3 CFRP索股表层不同位置处温度测定
为探究发生火灾时CFRP索股内部PE内筋材温度,将测温线置于不同位置处测量灼烧试验时各位置的温度(图13),分别为索股PE内表面、距离PE内表面7 mm、距离PE内表面14 mm。图14为灼烧2 h索股内部不同位置处温度-时间曲线。可以看出,紧贴PE内表面的温度最高,为206℃,其次是测温线与PE内表层间隔7 mm处的温度(次外层筋材),为156℃,温度最低的是与PE内表层距离14 mm处的温度(第三层筋材),为100℃。
3. 阻燃防火涂层耐火时间
针对阻燃防火涂层的不同厚度,试验研究在1000℃火焰灼烧下阻燃防火效果的持续性,索股规格同2.2节。图15为不同厚度阻燃防火涂层温度-时间曲线。可知无阻燃防火涂层防护,索股PE层5 min燃烧殆尽;0.3 mm厚度阻燃防火涂层可保护索股PE层20 min;1.4 mm厚度阻燃防火涂层可保护索股PE层160 min;刷有2 mm厚度阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层厚度为2 mm。
图16为2 mm厚度阻燃防火涂层的索股燃烧360 min试验过程的发泡过程。可以看出,随着火焰灼烧时间的增长,发泡层高度逐渐增大,发泡尺寸也逐渐增大,6 h熄火后形成一个6 cm×8 cm、高4 cm的发泡层,长达6 h的灼烧试验,PE内表面最高温度为245℃,熄火后,拨开厚厚的发泡层,PE护套仅发生软化。结合图15与图16,可以看出,燃烧前20 min为快速发泡升温阶段,发泡层快速增大,PE内表面温度从室温上升到196℃;20~140 min为稳定阶段,发泡层缓慢增大,PE内表面温度维持在203~209℃之间;140~360 min为动态平衡阶段,继续燃烧温度缓慢升高,燃烧至180 min,PE内表面温度达到216℃,阻燃防火涂层内层达到发泡温度开始发泡,发泡层高度增加,PE内表面温度下降,燃烧至240 min,PE内表面温度降至200℃,燃烧至280 min左右,发泡层表层开始发生热解,PE内表面温度升高至230℃左右,阻燃防火涂层内层达到发泡温度进一步发泡,发泡层高度持续增加,PE内表面温度下降,但随着发泡层表层热解,PE内表面温度又缓慢上升。
4. 结 论
(1) 碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋材高温剩余强度随温度升高呈线性下降趋势,210℃加热3 h,剩余强度最低为2245.8 MPa,比初始强度下降26.13%。
(2) CFRP筋材高温加热冷却后强度存在一定程度的可逆性恢复,剩余强度均能达到2800 MPa以上,但较原始强度略微下降,且经历温度越高剩余强度越低,最大下降幅度为6.13%。
(3) 对比3种阻燃防火措施,阻燃防火涂层具有较好的阻燃防火效果,2 h灼烧索股聚乙烯(PE)内表面最高温度为206℃,次外层筋材最高温度为156℃,第三层筋材最高温度为100℃,火灾2 h内,索股仍可承载,剩余强度≥2245 MPa。
(4) 阻燃防火涂层越厚防护时间越长,2 mm厚阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层的厚度为2 mm。
-
图 8 流延法(a)和相转换法(b) HS@PTES/PEN-F膜的断面SEM图像以及不同比例HS@PTES的流延法和相转换法HS@PTES/PEN-F膜的实物(c)
Figure 8. Cross-sectional SEM images of HS@PTES/PEN-F composite films prepared by solution casting method (a) and phase conversion method (b), as well as digital photos of HS@PTES/PEN-F composite films with different HS@PTES contents (c)
图 9 流延法制备的HS@PTES含量为1wt% (a)、5wt% (c)和7wt% (e)的HS@PTES/PEN-F复合膜和相转换法制备的HS@PTES含量为1wt% (b)、5wt% (d)和7wt% (f)的HS@PTES/PEN-F复合膜截面微观形貌
Figure 9. Cross-sectional SEM images of HS@PTES/PEN-F composite films prepared by solution casting method with the HS@PTES loading content of 1wt% (a), 5wt% (c) and 7wt% (e), and prepared by phase conversion method with the HS@PTES loading content of 1wt% (b), 5wt% (d) and 7wt% (f)
图 10 流延法制备HS@PTES/PEN-F膜的介电常数(a)和介电损耗(b)以及相转换法制备HS@PTES/PEN-F膜的介电常数(c)和介电损耗(d)
Figure 10. Dielectric constant (a) and dielectric loss (b) of the HS@PTES/PEN-F composite films prepared by solution casting method, dielectric constant (c) and dielectric loss (d) of the HS@PTES/PEN-F composite films prepared by phase conversion method
表 1 含氟1H,1H,2H,2H-全氟取代癸基三乙氧基硅烷(PTES)改性空心SiO2(HS)填充的含氟聚芳醚腈复合材料(HS@PTES/PEN-F)铸膜液中各组分的比例
Table 1 Proportion of components in casting solution of fluorinated poly (aryl ether nitrile) composites filled with 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES) modified hollow silica (HS@PTES/PEN-F)
Sample HS@PTES/g PEN-F/g NMP/mL HS@PTES content/wt% PEN-F 0 1.300 8.7 0 1wt%HS@PTES/PEN-F 0.013 1.287 8.7 1 3wt%HS@PTES/PEN-F 0.039 1.261 8.7 3 5wt%HS@PTES/PEN-F 0.065 1.235 8.7 5 7wt%HS@PTES/PEN-F 0.091 1.209 8.7 7 表 2 相关聚合物介电材料性能比较
Table 2 Performance comparison of related polymer dielectric materials
Sample K (1 kHz) tanδ (1 kHz) Tensile strength/MPa Tg/℃ Ref. PI/POSS 2.56 0.012 62 — [23] PE/SiO2 2.2 0.005 5.6 104 [24] F-GO/F-PI 2.09 0.0019 300 — [25] PEN/SiO2 1.71 0.0047 50 175 [26] PI/SiO2 1.32 0.006 — — [27] HS@PTES/PEN-F 2.88 0.0198 101 — This work HS@PTES/PEN-F 1.19 0.0043 10.34 160 This work Notes: K—Dielectric constant; tanδ—D ielectric loss; Tg—Glass transition temperature; PI—Polyimide; POSS—Polysesquisiloxane; PE—Polyethylene; F-GO—Fluorinated graphene oxide; F-PI—Fluorinated polyimidel. -
[1] LIU Y, QIAN C, QU L, et al. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties[J]. Chemistry of Materials,2015,27(19):6543-6549. DOI: 10.1021/acs.chemmater.5b01798
[2] SHI H, LIU X, LOU Y. Materials and micro drilling of high frequency and high speed printed circuit board: A review[J]. The International Journal of Advanced Manufacturing Technology,2018,100(4):827-841.
[3] ZHANG J, TANG P, TIAN L, et al. 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication[J]. Science China Information Sciences,2017,60(8):1-18.
[4] 陆亚宁. 低介电常数POSS/聚芳醚酮复合材料的制备及其性能研究[D]. 吉林: 吉林大学, 2017. LU Yaning. Preparation and properties of POSS/poly (aryl ether ketone) composites with low dielectric constant[D]. Jilin: Jilin University, 2017(in Chinese).
[5] 杨盟辉. 高频PCB基材介电常数与介电损耗的特性与改性进展[J]. 印制电路信息, 2009(4):27-31. YANG Menghui. Characteristics and modification progress of dielectric constant and dielectric loss of high frequency PCB substrate[J]. Printed Circuit Information,2009(4):27-31(in Chinese).
[6] 李鸿韬. 低介电常数聚酰亚胺复合薄膜的制备及性能研究[D]. 安徽: 中国科学院大学, 2020. LI Hongtao. Preparation and properties of polyimide composite films with low dielectric constant[D]. Anhui: University of Chinese Academy of Sciences, 2020(in Chinese).
[7] 潘晨. 聚四氟乙烯材料介电和导热性能研究[D]. 陕西: 西北工业大学, 2019. PAN Chen. Study on dielectric and thermal conductivity of polytetrafluoroethylene materials[D]. Shaanxi: Northwest University of Technology, 2019(in Chinese).
[8] WANG J Y, YANG S Y, HUANG Y L, et al. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization[J]. Journal of Materials Chemistry,2011,21(35):13569-13575. DOI: 10.1039/c1jm11766a
[9] CHENG Y, CHEN W, LI Z, et al. Hydrolysis and condensation of a benzocyclobutene-functionalized precursor for the synthesis of high performance low-K polymers[J]. RSC Advances,2017,7(24):14406-14412. DOI: 10.1039/C7RA00141J
[10] CHAO Q, FAN Z, ZHENG W. A facile strategy for non-fluorinated intrinsic low-k and low-loss dielectric polymers: Valid exploitation of secondary relaxation behaviors[J]. Chinese Journal of Polymer Science,2020,38(1):213-219.
[11] 皇甫梦鸽, 李一丹, 张燕, 等. 面向5G应用需求的低介电高分子材料研究与应用进展[J]. 绝缘材料, 2020, 8(53):1-9. HUANG Fumengge, LI Yidan, ZHANG Yan, et al. Progress in research and application of low dielectric polymer materials for 5G applications[J]. Insulation Materials,2020,8(53):1-9(in Chinese).
[12] YOU Y, LIU S, TU L, et al. Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors[J]. Macromolecules,2019,52(15):5850-5859. DOI: 10.1021/acs.macromol.9b00799
[13] 唐晓赫. 氧化石墨烯/聚芳醚腈复合材料的制备及在薄膜电容器中的应用[D]. 四川: 电子科技大学, 2019. TANG Xiaohe. Preparation of graphene oxide/poly (arylene ether nitrile) composite and its application in thin film capacitor[D]. Sichuan: University of Electronic Science and Technology, 2019(in Chinese).
[14] WEI J, MENG X, CHEN X, et al. Facile synthesis of fluorinated poly(arylene ether nitrile) and its dielectric properties[J]. Journal of Applied Polymer Science,2018,135(47):46837-46844. DOI: 10.1002/app.46837
[15] CHENG Y L, LIN Y L, LEE C Y, et al. Electrical characteristics and reliability of nitrogen-stuffed porous low-k SiOCH/Mn2O3-xN/Cu integration[J]. Molecules,2019,24(21):3882-3894. DOI: 10.3390/molecules24213882
[16] 魏东阳. SiO2空心球及氧化石墨烯协同改性聚酰亚胺低介电常数复合薄膜的研究[D]. 黑龙江: 哈尔滨理工大学, 2016. WEI Dongyang. Study on low dielectric constant polyimide composite film co modified by SiO2 hollow spheres and graphene oxide[D]. Heilongjiang: Harbin University of Science and Technology, 2016(in Chinese).
[17] ZHANG G, ZHAN Y, HE S, et al. Construction of superhydrophilic/underwater superoleophobic polydopamine-modified h-BN/poly (arylene ether nitrile) composite membrane for stable oil-water emulsions separation[J]. Polymers for Advanced Technologies,2020,31(5):1007-1018. DOI: 10.1002/pat.4835
[18] ZHAN Y, WAN X, HE S, et al. Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopa-mine coated graphene oxide nanofibrous composite membrane for anionic dyes separation[J]. Chemical Engi-neering Journal,2018,333(1):132-145.
[19] WAN X, ZHAN Y, ZENG G, et al. Nitrile functionalized halloysite nanotubes/poly(arylene ether nitrile) nanocompo-sites: Interface control, characterization, and improved properties[J]. Applied Surface Science,2017,393(30):1-10.
[20] 王海. 含氟低介电常数有机材料研究进展[J]. 有机氟工业, 2020, 1(2):30-34. WANG Hai. Research progress of fluorine containing organic materials with low dielectric constant[J]. Organic Fluorine Industry,2020,1(2):30-34(in Chinese).
[21] 金霞, 张立欣, 鲁思如, 等. 低吸水率和低介电损耗PTFE/SiO2复合材料制备[J]. 工程塑料应用, 2020, 48(7):33-37. DOI: 10.3969/j.issn.1001-3539.2020.07.007 JIN Xia, ZHANG Lixin, LU Siru, et al. Preparation of low water absorption and dielectric loss PTFE/SiO2 composites[J]. Application of Engineering Plastics,2020,48(7):33-37(in Chinese). DOI: 10.3969/j.issn.1001-3539.2020.07.007
[22] 廖凌元, 彭忠泉, 章明秋, 等. 高频印制电路板用低介电高分子材料的研究进展[J]. 功能高分子学报, 2021, 4(34):1-16. LIAO Lingyuan, PENG Zhongquan, ZHANG Mingqiu, et al. Research progress of low dielectric polymer materials for high frequency printed circuit board[J]. Acta Functional Polymer Sinica,2021,4(34):1-16(in Chinese).
[23] WANG C Y, CHEN W T, ZHAO X Y, et al. Fluorinated polyimide/POSS hybrid polymers with high solubility and low dielectric constant[J]. Chinese Journal of Polymer Science,2016,11(34):1363−1372.
[24] YANG X P, SHAN Y X, HUANG Y W, et al. Polyethylene/silica nanorod composites with reduced dielectric constant and enhanced mechanical strength[J]. Journal of Applied Polymer Science,2018,9(136):47143.
[25] YIN X D, FENG Y Y, FENG W, et al. Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant[J]. Journal of Materials Chemistry C,2018,24(6):6378-6384.
[26] YI Q Q, ZHENG P L, LIU X B, et al. Design of bi-modal pore structure polyarylene ether nitrile/SiO2 foams with ultralow-k dielectric and wave transparent properties by supercritical carbon dioxide[J]. Composites Part B: Engineering,2019,15(173):106915.
[27] LIU L P, LU F Z, ZHANG Y H, et al. Preparation of ultra-low dielectric constant silica/polyimide nanofiber membranes by electrospinning[J]. Composites Part A: Applied Science and Manufacturing,2016,5(84):292-298.
[28] PU Z, XIA J, LIU X, et al. Novel polyethersulfone dielectric films with high temperature resistance, intrinsic low dielectric constant and low dielectric loss[J]. Journal of Materials Science: Materials in Electronics,2020,32(1):967-976.
[29] ZHOU W, ZHANG Y, WANG J, et al. Lightweight porous polystyrene with high thermal conductivity by constructing 3D interconnected network of boron nitride nanosheets[J]. ACS Applied Materials & Interfaces,2020,12(41):46767-46778. DOI: 10.1021/acsami.0c11543
[30] PU Z, ZHENG X, XIA J, et al. Novel low-dielectric-constant fluorine-functionalized polysulfone with outstanding comprehensive properties[J]. Polymer International,2020,69(7):604-610. DOI: 10.1002/pi.5995
-
期刊类型引用(2)
1. 李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 . 百度学术
2. 马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 . 百度学术
其他类型引用(1)
-