留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器

苏小辉 谢启星 何青青 余林 骆高丹

苏小辉, 谢启星, 何青青, 等. α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器[J]. 复合材料学报, 2022, 39(4): 1628-1637. doi: 10.13801/j.cnki.fhclxb.20210707.001
引用本文: 苏小辉, 谢启星, 何青青, 等. α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器[J]. 复合材料学报, 2022, 39(4): 1628-1637. doi: 10.13801/j.cnki.fhclxb.20210707.001
SU Xiaohui, XIE Qixing, HE Qingqing, et al. Building a high-performance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1628-1637. doi: 10.13801/j.cnki.fhclxb.20210707.001
Citation: SU Xiaohui, XIE Qixing, HE Qingqing, et al. Building a high-performance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1628-1637. doi: 10.13801/j.cnki.fhclxb.20210707.001

α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器

doi: 10.13801/j.cnki.fhclxb.20210707.001
基金项目: 国家自然科学基金(21905054)
详细信息
    通讯作者:

    余林,博士,博士生导师,研究方向为金属氧化复合材料的合成及应用 E-mail:gych@gdut.edu.cn

  • 中图分类号: TQ 152

Building a high-performance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure

  • 摘要: MnO2由于价格低廉、资源丰富、理论比电容高和环境友好等优点而成为理想的超级电容器电极材料。然而,如何通过成本低的合成方法获得高负载量和高性能的MnO2电极材料,仍是一项重大的挑战。因此,通过晶种辅助水热合成及氮化处理,在预处理碳纤维纸(CFP)表面生长了氮掺杂TiO2(N-TiO2)纳米棒阵列,然后再通过水热合成在N-TiO2上生长了新颖的纳米带缠绕纳米花分级混合结构的α-MnO2(α-MnO2@N-TiO2/CFP)。这种分级多孔纳米带缠绕纳米花及纳米棒阵列混合结构能够提供合适的几何空间和电子结构,有助于抑制高质量负载下的活性物质堆积,提高了电极材料的比电容。在α-MnO2负载量高达20.9 mg·cm−2的情况下,该电极材料在电流密度为1 mA·cm−2时的面积比容量高达3.0 F·cm−2,且循环5000次后无电容衰减,具有优异的循环稳定性。因此,α-MnO2@N-TiO2/CFP电极材料是一种极具应用潜力的超级电容器电极材料。

     

  • 图  1  α-MnO2@氮掺杂 TiO2(N-TiO2)/碳纤维纸(CFP)和α-MnO2/CFP合电极材料的合成示意图

    Figure  1.  Schematic of the synthesis procedure of α-MnO2@nitrided TiO2 (N-TiO2)/carbon fiber paper (CFP) and α-MnO2/CFP composite electrode materials

    SDS—Sodium dodecyl sulfate

    图  2  N-TiO2/CFP、α-MnO2@N-TiO2/CFP和α-MnO2/CFP的XRD图谱(a)和拉曼图谱(b)

    Figure  2.  XRD patterns (a) and Raman spectra of N-TiO2/CFP, α-MnO2@N-TiO2/CFP and MnO2/CFP

    图  3  N-TiO2/CFP((a)、(b))、α-MnO2/ CFP((c)、(d))、α-MnO2@N-TiO2/CFP((e)、(f))在低倍率下 及高倍率下的SEM图像

    Figure  3.  SEM images of N-TiO2/CFP ((a), (b)), α-MnO2/CFP ((c), (d)) and α-MnO2@N-TiO2/CFP ((e), (f)) at lower and higher-magnification

    图  4  α-MnO2@N-TiO2/CFP的SEM图像及EDS图谱

    Figure  4.  SEM image and EDS mapping of α-MnO2@N-TiO2/CFP

    图  5  N-TiO2/CFP、α-MnO2/ CFP和α-MnO2@N-TiO2/CFP复合电极材料在50 mV·s−1下的CV曲线 (a) 和复合材料的交流阻抗谱 (d);α-MnO2/CFP (b) 和α-MnO2@N-TiO2/CFP/CFP (c) 在不同扫速下的CV曲线

    Figure  5.  Cyclic voltammograms of the N-TiO2/CFP, α-MnO2/CFP and α-MnO2@N-TiO2/CFP electrode at a scan rate of 50 mV s−1 (a) and nyquist plots of the electrodes (d); Cyclic voltammograms of the α-MnO2/CFP (b) and α-MnO2@N-TiO2/CFP (c) electrodes at different scan rates

    图  6  N-TiO2/CFP、α-MnO2/ CFP和α-MnO2@N-TiO2/CFP在2 mA·cm−2下的充放电曲线(a)、α-MnO2/CFP(b)和α-MnO2@N-TiO2/CFP(c)的充放电曲线、α-MnO2/CFP和α-MnO2@N-TiO2/CFP在不同的电流密度下的面积比电容(d)

    Figure  6.  Galvanostatic charge-discharge profiles of N-TiO2/CFP, α-MnO2/ CFP and α-MnO2@N-TiO2/CFP electrodes at a current density of 2 mA·cm−2 (a), galvanostatic charge-discharge profiles of α-MnO2/CFP (b) and α-MnO2@N-TiO2/CFP (c) electrodes at different charge/discharge current densities, areal capacitance of α-MnO2/ CFP and α-MnO2@N-TiO2/CFP electrodes at different charge/discharge current densities (d)

    图  7  α-MnO2/ CFP和α-MnO2@N-TiO2/CFP在16 mA·cm−2的电流密度下的循环性能(a)、α-MnO2@N-TiO2/CFP ((b)、(c)) 和α-MnO2/ CFP ((d)、(e)) 5000次循环后的SEM图像、α-MnO2@N-TiO2/CFP在5000次循环前后的交流阻抗图(f)

    Figure  7.  Cycle life of α-MnO2/CFP and α-MnO2@N-TiO2/CFP electrodes at a current density of 16 mA·cm-2 (a), SEM images of α-MnO2@N-TiO2/CFP ((b), (c)) and α-MnO2/CFP ((d), (e)) after 5000 cycles, nyquist plots of α-MnO2@N-TiO2/CFP electrode before and after 5000 cycles (f)

  • [1] WANG F, WU X, YUAN X, et al. Latest advances in supercapacitors: From new electrode materials to novel device designs[J]. Chemical Society Reviews,2017,46(22):6816-6854. doi: 10.1039/C7CS00205J
    [2] LIU M, CONG Z, PU X, et al. High-energy asymmetric supercapacitor yarns for self-charging power textiles[J]. Advanced Functional Materials,2019,29(41):1806298. doi: 10.1002/adfm.201806298
    [3] 吴可嘉, 董丽敏, 张琬祺, 等. 用于超级电容器的还原氧化石墨烯/NixMn1−x/2O2复合材料的电化学性能[J]. 复合材料学报, 2018, 35(5):1260-1268.

    WU K J, DONG L M, ZHANG W Q, et al. Electrochemical properties of reduced graphene oxide/NixMn1−x/2O2 composites for supercapacitors[J]. Acta Materiae Compositae Sinica,2018,35(5):1260-1268(in Chinese).
    [4] GUO H, GAO Q. Porous carbon synthesized through che-mical vapor deposition of ferrocene and its electrochemical capacitance behavior[J]. Rare Metals,2011,30(1):35-37.
    [5] ZHU Z, HU Y, JIANG H, et al. A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors[J]. Journal of Power Sources,2014,246:402-408. doi: 10.1016/j.jpowsour.2013.07.086
    [6] JIANG H, LI C, SUN T, et al. A green and high energy den-sity asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nano-tube electrodes[J]. Nanoscale,2012,4(3):807-812. doi: 10.1039/C1NR11542A
    [7] JIANG H, LI C, SUN T, et al. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures[J]. Chemical Communications,2012,48(20):2606-2608. doi: 10.1039/c2cc18079k
    [8] XIAO J, YANG S. Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonatehydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors[J]. RSC Advances,2011,1(4):588-595. doi: 10.1039/c1ra00342a
    [9] LIU T, FINN L, YU M, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Letters,2014,14(5):2522-2527. doi: 10.1021/nl500255v
    [10] 李越, 郝晓刚, 王忠德, 等. 单极脉冲电合成聚苯胺膜及其超级电容性能[J]. 化工学报, 2010, 61(S1):120-125.

    LI Y, HAO X G, WANG Z D, et al. Unipolar pulse electrochemical polymerization of polyaniline nanofiber films for supercapacitor applications[J]. Journal of Chemical Industry and Engineering (China),2010,61(S1):120-125(in Chinese).
    [11] 张妍兰, 王令云, 王菡, 等. 聚苯胺/石墨烯复合材料的制备及应用[J]. 化工新型材料, 2015, 43(8):1-3.

    ZHANG Y L, WANG L Y, WANG H, et al. Preparation and application of polyaniline/ graphene composites[J]. New Chemical Materials,2015,43(8):1-3(in Chinese).
    [12] YU G, XIE X, PAN L, et al. Hybrid nanostructured materials for high-performance electrochemical capacitors[J]. Nano Energy,2013,2(2):213-234. doi: 10.1016/j.nanoen.2012.10.006
    [13] HUANG Y, LI Y, HU Z, et al. A carbon modified MnO2 nanosheet array as a stable high-capacitance supercapacitor electrode[J]. Journal of Materials Chemistry A,2013,1(34):9809-9813. doi: 10.1039/c3ta12148h
    [14] WEI W, CUI X, CHEN W, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews,2011,40(3):1697-1721. doi: 10.1039/C0CS00127A
    [15] ZHANG Q Z, ZHANG D, MIAO Z C, et al. Research progress in MnO2-carbon based supercapacitor electrode materials[J]. Small,2018,14(24):1702883. doi: 10.1002/smll.201702883
    [16] 王易, 霍旺晨, 袁小亚, 等. 二氧化锰与二维材料复合应用于超级电容器[J]. 物理化学学报, 2020, 36(2):1904007. doi: 10.3866/PKU.WHXB201904007

    WANG Y, HUO W, YUAN X Y, et al. Composite application of MnO2 and 2D materials in supercapacitor[J]. Acta Physica Sinica,2020,36(2):1904007(in Chinese). doi: 10.3866/PKU.WHXB201904007
    [17] SARI F N I, So P R. TING J M, et al. MnO2 with controlled phase for use in supercapacitors[J]. Journal of the American Ceramic Society,2017,100(4):1642-1652. doi: 10.1111/jace.14636
    [18] GHODBANE O, PASCAL J L, FAVIER F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors[J]. ACS Applied Materials & Interfaces.,2009,1(5):1130-1139.
    [19] DEVARAJ S, MUNICHANDRAIAH N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. Journal of Physical Chemistry C,2008,112(11):4406-4417. doi: 10.1021/jp7108785
    [20] YAO W, WANG J, LI H, et al. Flexible α-MnO2 paper formed by millimeter-long nanowires for supercapacitor electrodes[J]. Journal of Power Sources,2014,247:824-830. doi: 10.1016/j.jpowsour.2013.09.039
    [21] DE O C J M, TIBA D Y, DOMINGUES S H. Fast synthesis of δ-MnO2 for a high-performance supercapacitor electrode[J]. SN Applied Sciences,2020,2(10):1-9.
    [22] UKE S J, AKHARE V P, BAMBOLE D R, et al. Recent advancements in the cobalt oxides, manganese oxides, and their composite as an electrode material for supercapacitor: A review[J]. Frontiers in Materials,2017,4:21. doi: 10.3389/fmats.2017.00021
    [23] WAN C, JIAO Y, LIANG D, et al. A high-performance, all-textile and spirally wound asymmetric supercapacitors based on core-sheath structured MnO2 nanoribbons and cotton-derived carbon cloth[J]. Electrochimica Acta,2018,285:262-271. doi: 10.1016/j.electacta.2018.07.036
    [24] LEI R, GAO J, QI L, et al. Construction of MnO2 nanosheets@graphenated carbon nanotube networks core-shell heterostructure on 316L stainless steel as binder-free supercapacitor electrodes[J]. International Journal of Hydrogen Energy,2020,45(53):28930-28939. doi: 10.1016/j.ijhydene.2019.09.070
    [25] WANG Z, LI Z, FENG J, et al. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability[J]. Physical Chemistry Chemical Physics,2014,16(18):8521-8528. doi: 10.1039/c3cp55456b
    [26] LI L, ZHANG X, WU G, et al. Supercapacitor electrodes based on hierarchical mesoporous MnOx /nitrided TiO2 nanorod arrays on carbon fiber paper[J]. Advanced Materials Interfaces,2015,2(6):1400446. doi: 10.1002/admi.201400446
    [27] SU X, FENG G, YU L, et al. Seed-assisted synthesis of hierarchical α-MnO2/nitride TiO2 taper nanorod arrays on carbon fiber paper with enhanced supercapacitor perfor-mance[J]. Energy Technology,2019,7(4):1800933. doi: 10.1002/ente.201800933
    [28] QU Y, TONG X, YAN C, et al. Hierarchical binder-free MnO2/TiO2 composite nanostructure on flexible seed graphite felt for high-performance supercapacitors[J]. Vacuum,2020,181:109648. doi: 10.1016/j.vacuum.2020.109648
    [29] ZHANG J, LI Y, ZHANG Y, et al. The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: Towards flexible supercapacitors with high energy density and long service life[J]. Nano Energy,2018,43:91-102. doi: 10.1016/j.nanoen.2017.11.013
    [30] 徐娟, 刘家琴, 李靖巍, 等. MnO2/H-TiO2纳米异质阵列的调控制备及超电容特性[J]. 物理化学学报, 2016, 32(10):2545-2554.

    XU J, LIU J Q, LI J W, et al. Controlled synthesis and supercapacitive performance of heterostructured MnO2/H-TiO2 nanotube arrays[J]. Acta Physica Sinica,2016,32(10):2545-2554(in Chinese).
    [31] YU M, ZHAO S, FENG H, et al. Engineering thin MoS2 nanosheets on TiN nanorods: Advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst[J]. ACS Energy Letters,2017,2(8):1862-1868. doi: 10.1021/acsenergylett.7b00602
  • 加载中
图(7)
计量
  • 文章访问数:  1116
  • HTML全文浏览量:  726
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-06-09
  • 录用日期:  2021-06-30
  • 网络出版日期:  2021-07-07
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回